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ABSTRACT The sizing problem of the hybrid energy system (HES) is a crucial issue especially in rural
communities because any wrong results can mislead the decision makers for building the new HES. Due to
the intermittent nature of the renewable energy sources (RES) such as wind and PV, there will be a need for
a high storage system and/or a standby diesel engine, which increase the investment, required, and increases
the cost of energy (CoE). The use of smart grid concepts like the demand response (DR) using dynamic
tariff can improve the system performance, enhance the stability, reduces the size and investments of HES
components, reduces the customers’ bills, and increases the energy providers’ profits. The DR strategy will
allow the customers to share the responsibility of the HES stability with the energy providers to maintain the
stability of the HES. The DR strategies should be selected to ensure the balance between the available RES
and the load requirements. In this article, a novel DR strategy is introduced to model the required change
in the tariff with the battery state of charge and its charging/discharging power. The novel DR strategy is
used in the sizing of the HES based on techno-economic objectives using three different soft computing
optimization techniques. This article introduces modeling and simulation of the smart grid integrated with
hybrid energy systems to supply a standalone load for a rural site in the north of Saudi Arabia. The sizing
of the HES is built based on minimizing the CoE and the loss of load probability. The novel DR strategy
introduced in this article reduced the size of the HES compared to the fixed load technique by 20.66%. The
results obtained from this novel strategy proved its superiority in the sizing and operation stage of the HES.

INDEX TERMS Hybrid energy system, smart grid, demand response, dynamic tariff, wind, photovoltaic,
diesel, PSO.

I. INTRODUCTION
The renewable energy sources (RES) such as wind and PV
became a very attractive option for generating electricity
in the rural communities as well as for the central power
stations. The intermittent nature of these RESwill need a con-
ventional power sources and/or storage systems to improve
their reliability. For this reason, the RES should be connected
with a battery system and a Diesel generator to have a stable
hybrid energy system (HES). The HES can be connected with
the electric utility network which is called ‘‘on-grid’’ and it
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can be work as a standalone system which is called ‘‘off-
grid’’. The proposed study shown in this article is dealing
with the off-grid HES only. The off-grid systems are used
to feed rural communities away from the electric utility with
their needs from electricity using RES which reduces the
dependence of these communities on the fossil fuels and
avoids the problem of securing enough amount of fuels in
these rural sites which may be become a great challenge.
Moreover, the cost of energy (CoE) from HES is much lower
than the one associated with fossil fuel generators. For this
reason, the off-grid HES system is counted as the best option
for electricity generation in rural communities. The sizing of
the HES should be performed before the installation of the
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system. There are many efforts that have been introduced in
the literature to perform the sizing study. The system con-
figurations have been discussed in [1], [2] to select the best
configuration, where the PV, wind, battery, Diesel, and/or
hydrogen storage tanks are the most famous components in
the modern HES. Many configurations have been introduced
in the literature, [2]–[6], most of these configurations are
using wind and PV energy system as RES [2], [3]. Some
other studies introduced other sources of renewable ener-
gies [4], [5]. Most of these studies used battery and/or Diesel
generators as a first backup source [2], [3], and some other
studies used some other storage systems [6]. The different
energy storing devices that can be used to store electrical
energy are classified and discussed in [7], [8].

The optimal sizing of the HES has been carried out in many
studies using different optimization techniques for different
techno-economical objective functions. The most objective
functions used for optimal sizing of the HES are the min-
imization of the cost of energy [2], [3], the loss of load
probability [9], and the greenhouse gas emission.

Different strategies have been introduced in the literature
to perform CoE estimation, some of these strategies used net
present cost (NPC) [10]. The NPC can give an estimation of
the CoE in each year and cash flow through the operation
of the system [11], [10]. Another strategy uses the life cycle
cost (LCC) in which the total initial cost of the HES and
the all operating, replacements, and the salvage prices are
calculated at the beginning of the paper and the Levelized
cost of energy (LCE) can be calculated dividing the total
LCC by the total energy expected from the HES through its
life span [12], [3]. Another cost study called annualized cost
system (ACS) has been used in [13]. One of the best cost
analysis for the HES is the CoE strategy in which the ratio of
the total annualized cost of the system to the yearly electricity
delivered to the load [14], [15]. A detailed description of these
cost estimation strategies is introduced in [16].

Different reliability indices were introduced in the litera-
ture to model the shortage of the energy in the HES system
such as loss of load probability (LOLP) or loss of energy
expected (LEE) that should beminimized to secure the energy
for the customers during the year. The lower values of reli-
ability indices the higher the size of the HES components
which can be translated to an increase in CoE. Therefore,
searching for a technology that can reduce these indices
without increasing the HES size and CoE is a great challenge
which is tackled by the use of the smart grid as will be shown
in this study.

Under the highly dynamic nature of the generated power,
varying consumer demand, and CoE, the smart grid should
manage the system such that the load demand is met by
giving a higher priority to RES. Most of the sizing studies
introduced in the literature did not take the concepts of the
smart grid into considerations. Some studies divided the loads
into two categories, the high priority loads and low prior-
ity loads [9], [17]–[19]. The high priority loads should be
covered and the low priority loads can be shifted from the

periods of shortage of generations to the high generations
periods. The demand response (DR) as a one of the smart
grid concepts (SGC) is used in the operation of the HES but
still there are no studies shown in the literature taking the DR
into considerations in the sizing stage of the HES.

The nonlinear sizing problem has been tackled using opti-
mization techniques. The first technique to solve the sizing
problem of the HES was using the graphical construction
technique (GCT) [20], [21]. The GCT should be used to
optimize only one variable and the other variables should be
estimated. For this reason, the GCT does not give the optimal
solution for the sizing problem. The iterative approach has
been used also in the sizing of HES by using nested loops for
each variable needs to be optimized with increment change in
these variables is used in many studies [22]–[24]. This tech-
nique is taking a long time to perturb each variable and the
results obtained is depending on the increment in each vari-
able. Another sizing technique called probabilistic approach
which is work based on the effects of random variability up
on the performance of a system [25], [26]. This technique
is easy to implement but it cannot produce accurate results
with the dynamic change of the HES. Another method called
trade-off method is working based on compromising between
the different variables to get an acceptable solution [27]. The
soft computing techniques have been widely used in solv-
ing the sizing problems using many optimization techniques
like particle swarm optimization (PSO) [15], Cuckoo Search
(CS) [9], genetic algorism (GA) [2], firefly optimization
(FFO) [28], gray wolf optimization (GWO) [29], harmony
search (HS) [30], simulated annealing (SA) [31], artificial
bee colony (ABC) algorithm [32], crow search algorithm
(CSA) [33], etc. These optimization techniques are charac-
terized by fast and accurate results, but, in some cases, it may
be trapped in premature convergence in case of inaccurate
value of their control parameters are chosen. These disad-
vantages can be overcome using a suitable tuning study or
a comparison with other similar optimization techniques as
will be introduced in this article.

In this article, a proposed model of a smart grid integrated
with HES is developed. As many HES configurations, the
proposed system in this article is containing wind energy
systems (WES), PV energy system (PVES), batteries, Diesel
Engine (DE), loads, and the power electronics converters
(PEC). A real load for a rural city in the north of Saudi
Arabia has been selected to be used in the design stage of
the proposed HES. The sizing of the HES is built based on
minimizing the CoE and the LOLP. A model for each compo-
nent of the HES, reliability analysis, and CoE methodology,
and DR strategy is introduced. A novel technique is used for
the sizing of the HES components using the concepts of a
smart grid. A novel DR with a dynamic tariff strategy has
been used in the sizing stage to control the load based on
the SoC and the charging/discharging power from the battery.
The novel DR strategy uses a smart technique to predict the
suitable change of cost for the situation of the battery storage
system. This novel DR strategy increases the tariff when the
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generation from RES is lower than the load requirements to
encourage the customers to reduce their loads to maintain
the HES stability. Similarly, the novel DR strategy reduces
the tariff when the generation from the renewable sources is
higher than the load requirements to give incentives to the
customer to increase their loads to preserve the stability of
the HES. This novel DR strategy reduces the sizes of HES
components, reduces the capital cost of the HES, and reduces
the CoE substantially. The optimal size of each component
of the proposed model is determined using the PSO tech-
nique for lower cost and highest or reasonable reliability.
The results obtained from PSO are compared with the results
obtained from BA and Social mimic optimization, SMO [34].
The results obtained from the optimization process prove
the superiority of the novel DR introduced in this article in
reducing the CoE of the HES by 20.66% compared to the
results obtained from the conventional sizing strategy.

The rest of this article is designed to show the SGC in
section II. The novel demand response strategy is introduced
and discussed in section III. The modeling of the HES com-
ponents based on SGC is shown in section IV. The PSO, BA,
and SMO optimization techniques are introduced in section
V. The proposed sizing program based on smart grid is shown
in section VI. The simulation results are shown in section VII.
The conclusions and future work are shown in section VIII.

II. SMART GRID CONCEPTS
Due to the intermittent nature of the RES, it is not having a
considerable penetration in the power systems. These sources
need a storage system and/or fossil fuels power plants to
increase their penetration. The use of the SGC can increase
the penetrations of the RES in the modern power system,
where it is possible to control the load to have a correlation
between the generation from RES and the load. With the
use of SGC the power system can work securely, efficiently,
economically, and environmental friendly [35], [36]. Demand
Response (DR) as one of the SGC is used widely to share the
responsibility of the stability of the power system between the
system operators and the customers. Where the DR strategies
can induce the customers to reduce or increase their loads
when required the load is greater than the generation or
the load is lower than the generation, respectively [37]. The
smart grid is using smart communication technologies and
smart measurement devices to manage the operation of the
power system and enhance the stability of the power system
through controlling the load demand to be correlated with the
available generations [38], as shown in Figure 1.

A. DEMAND SIDE MANAGEMENT STRATEGIES
The idea of using the smart grid system is to share the respon-
sibilities between the customers and the electricity providers
where the customer can know the situation of the smart grid
system. The two-way control of the load can be accomplished
in the smart grid in two different categories. The first one is
the ability of the smart grid system operator to switch on/off
or control its operation some loads that can be controlled

FIGURE 1. Overview of a smart grid system with hybrid renewable energy.

FIGURE 2. Demand-side management strategies.

without affecting its normal operations like desalination sta-
tions if the tank of the freshwater is almost full or the control
the siting temperature of air conditions of some big loads. The
other load control can be accomplished by using demand-side
management (DSM) strategies. The function of the DSM is
simply to balance the value of the load with the available
generation from the smart grid system. Many DSM strategies
can be used to overcome the peak load periods as shown in
Figure 2. These strategies are summarized in the following
points:
Peak clipping: This strategy is used when the capacity of

the smart grid cannot fulfill the loads during the peak periods.
In this case, the smart grid can do many actions like switching
off some loads that able to be switched off for the period of the
peak, or the energy price (Electricity tariff) can be increased
to encourage the customer to reduce their loads.
Valley filling: This strategy is used to increase the loads in

the low load periods when the generation is greater than the
loads. This strategy can be accomplished by switching on low
important loads and by reducing the energy price (Electricity
tariff) to incentive the customers to increase their loads.
Load shifting: The load shedding strategy is used to move

the low priority loads during the peak periods to the valley
periods to increase the load factor of the load curve and
overcome the critical periods of peaks and fill the valleys.
This technique can be accomplished by switching of the
low priority loads and switch them on again at the valley
periods or it can be accomplished by increasing the price of
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FIGURE 3. The demand response programs classifications.

energy (Electricity tariff) during the peak periods and reduce
it during the valley.
Flexible load shape: This sometimes called dynamic load

management in which the load is controlled based on the
current situation of the generation. This strategy can be
accomplished by using a dynamic electricity tariff.
Load conservation: This strategy is sometimes called load

reduction in which the load is required to be reduced all over
the load period. This can be accomplished by switching of
unimportant loads or increasing the electricity tariff.
Load building: This strategy is used to increase the load

all over the load period due to the generation is greater
than the load and the increase in the load is to maintain the
stability of the smart grid system. This can be accomplished
by increasing the electricity tariff.

B. DEMAND RESPONSE PROGRAMS
Demand response implies that the response of customers
to the incentives or penalties that the electric utility takes
to encourage the customer to do some actions. These pro-
grams are introduced to shape the loads to correlate with the
generation available and reduce the need for installing new
generation power plants to face the peak periods. There are
two main categories of demand response programs (DRP)
which are the incentives-based programs and the price-based
programs [39]. The classification of the DRP is shown in
Figure 3 and shown in details in the following:

1) INCENTIVE-BASED PROGRAM
This DRP is based on providing the customers some incentive
when they reduce their loads during the peak period not based
on electricity price. The incentive-based program is further
classified to:
Direct load control (DLC): In this DRP, the customers give

the utility operators permission to switch on/off certain loads
based on their need. These loads can be desalination stations,
air conditions, etc. The utility operators use these loads to
reduce the peak demand at peak periods and dispatch it during
curve valleys to preserve the stability of the power system.
Interruptible/Curtailable Load: The idea of this DRP is to

permit the utility to reduce your load during the critical peak
periods and they give the customers some incentive discount
on electricity bills in return [40].
Demand Bidding and Buyback: This DRP is discussed in

detail in [41], in this DRP the customers can benefit from
cost-saving if they are accepting to reduce their loads at a

FIGURE 4. The price-based demand response programs.

specific bid price. This DRP is used with big customers and
it is used only with wholesale price.
Emergency Demand Reduction: This DRP is discussed

in detail in [42] which the customers can get some rewards
or incentives if they could reduce their loads based on short
notice in case of emergency. Also, this DRP is used with big
customers.

2) PRICE-BASED PROGRAM
The other DRP is done by using a variable tariff to improve
the load curve and to reduce the loads during critical peak
periods and to fill the valleys. The change of the tariff is used
to induces the customers to cooperate with the real situation
of the electric power system. Many programs issued for this
purpose and some of these programs are shown in Figure 4
and listed in the following points:
Time-of-Use (ToU) Pricing: This DRP is using a prede-

fined tariff for each period during the day, a week, month,
or a season. In this DRP, the electricity providers give the
price plan to the customer at the beginning of the contract
based on the data available for the energy providers about the
critical peak periods and valleys and their correlations with
the generation available.
Critical peak pricing (CPP): This DRP is using a fixed

tariff during the most period of time but it gives only high
prices for a certain hour/hours during the day and it is used
only for several numbers of days during the year and it has
a relation on the seasonal activities of the customers during
these periods and it can be changed based on the change of
the behavior of the loads and generations [43].
Real-Time Pricing (RTP): This type of DRP is the most

important one and it is used widely in smart grid systems
and it will be used in the sizing of the proposed HES of
this article. This DRP is sometimes called dynamic tariff
in which the tariff is changing every certain short period
maybe each hour or even each 15 min. The change of the
electricity price may be based on the frequency regulation
in the large power system or it may be based on the state
of charge (SoC) of the battery in micro-grids or autonomous
hybrid power systems. The reduction of SoC of the battery
in autonomous HES indicates the loads are greater than the
available generations. This DRP is very helpful for small HES
that mainly depend on renewable resources like wind and PV
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FIGURE 5. Classifications of the DRP mathematical models.

that have an intermittence nature and for this reason an active
collaboration between the customers and smart grid operators
is very important to preserve the stability of the smart grid in
abnormal conditions.
Inclining Block Rate (IBR): This DRP is using two or

more levels of price for the customers based on their amount
of energy they used during the month. The customers’ used a
small amount of energy will pay a lower price of electricity
and vice versa which is using in Saudi Arabia and many
other countries. This DRP is discussed in detail in [44] and
it has been widely adopted by many power utilities since the
1980s [39].

C. DEMAND RESPONSE MATHEMATICAL MODELS
Several techniques have been introduced in the literature to
model the DRP used to control the loads to correlate with the
available generations. These DRP mathematical models are
classified in Figure 5 and they are defined in the following
points:
Utility Function:Different choices of utility functions will

be chosen to model the behaviors of customers. More for-
mally, the utility represents the level of comfort/satisfaction
obtained by the user as a function of his/her energy consump-
tion, which is non-decreasing and concave. The quadratic
utility functions are usually considered, which correspond to
two linear decreasing marginal benefits. A detailed descrip-
tion of this model is introduced in [45], [46]. This model can
be further classified to the desired load level and marginal
benefits models [39]. The desired load level model is based
on the customers with high power should restrict following
the smart grid operators to preserve the desired load level.
The marginal benefit is by using a concave function which
makes the customers feel comfortable when their energy
consumption gets their satisfaction.
Cost Function: The cost function is used to model the cost

of generating electricity in convex shape. The cost function
model is further classified as shown in Figure 5 to energy cost
increase with load increase, and marginal expense increase.
A detailed description of these models is shown in [47],
and [48].

III. THE NOVEL DEMAND RESPONSE STRATEGY
In this article, a novel adaptive DR strategy is introduced.
The tariff is changing based on the SoC and the charg-
ing/discharging power of the battery. This strategy detects the
SoC of the battery to change the tariff. Where the reduction
in the SoC means that the loads are greater than generations

FIGURE 6. The new proposed DR program, α1 = 0.05 and α2 = 0.046.

and the tariff should be increased and vice versa. This strat-
egy suggested continuously tariff increase until the genera-
tion/load balance is reached. Otherwise, the required value
and the energy of the battery becomes near to its lower SoC
limit, the Diesel generator should be started to feed the load
during these conditions. On the other hand, in case of the
generation fromRES is greater than the load and the battery is
full, an incentives program should be added to the customers
to encourage them to increase their loads by reducing the
tariff, otherwise the surplus energy should be transferred to
dummy loads. The new relation governing the new DR is
shown in equation (1) and the 3-D plot showing this strategy
is shown in Figure 6. The new tariff in terms of the tariff of the
previous step pr (t − 1) and the change in tarif based1pr (t)
is shown in equation (1).

(1)

where, PB(t) and PBR are the hourly and rated battery power.
The factors α1 and α2 are numerical coefficients with values
equal to 0.05 and 0.046, respectively, these values of coeffi-
cients (α1 and α2) can be adjusted based on the DR history of
the smart grid in each site. The new tariff can be obtained as
shown in (2).

pr (t) = pr (t − 1) ∗ (1+ 1pr (t)/100) (2)

A. PRICE ELASTICITY OF DEMAND (PED)
The relation between the percentage change in tariff,1pr (t)
and the percentage change in load is called the price elasticity
of demand (PED) and it can be represented as shown in
equation (3) [49]. The shape of the curve depends mainly
on many social and economic issues and it has been intro-
duced in many studies as a linear relationship as shown in
Figure 7 [49]. In the case of PED higher than −1 (between 0
and −1) it means that the PED has low elasticity (Inelastic),
meanwhile, if PED < −1, it means that the load has high
elasticity (Elastic). In the case of the PED is equal to −1 it
called the PED is unitary. In this study, the PED has been
selected with different values to see the effect of the value
of PED on the CoE of the HES and other parameters of the
HES. Figure 8 shows the relation between the change in tariff
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FIGURE 7. The relation between the price and load demand in different
DR scenarios.

FIGURE 8. The relation between the change in price and the change in
load For PED = −0.5, −1.0. −2.0.

and the change in load For PED = −0.5, −1.0. −2.0 as an
example.

PED =
1PL/PL0
1pr/pr0

(3)

where, the1PL and1pr are the percentage change in power
and price of energy, respectively. The value of PED should be
a negative value where when the change in price is positive,
the change in load should be negative and vice versa.

IV. MODELING OF HES BASED ON SMART GRID
CONCEPTS
The proposed HES is consisting of a WES, PV energy sys-
tem (PVES), battery, DE, loads, and the power electronics
converter as shown in Figure 9. The WES used in this study
generates AC power and for this reason it is economically to
connect it with the AC bus.

Most of the autonomous HES are usually use RES like
WES and PVES that have intermittent nature of their gener-
ated power which need a battery to save the energy during the
generation is greater than the load requirements. Moreover,
a DE is used to give extra power in case of the battery is not
able to supply the load. The idea of using the battery as a first
backup because of its fast response and its lower operating
cost in low power use is shown in Figure 10 [50].

A. MODELING OF THE HES COMPONENTS
In the energy balance program, the generated energy from the
WES, PVES, DE, and the performance of the battery system

FIGURE 9. The configuration of the HES.

FIGURE 10. The cost comparison between the use of battery and Diesel
for certain HES [50].

and power electronic converter is determined. The model
of each component is used to determine its performance on
different operating conditions as shown in the following:

1) WIND ENERGY SYSTEM MODEL
Themeasurements of wind speeds are performed at the height
of the anemometer which should be modified to the height
of the wind turbine. The relation between the wind speed
to any height, h, and the anemometer height is shown in
equation (4) [2].

u(h) = u(hg) ∗
(
h
hg

)α
(4)

Pw (v) =


0 UC&u ≥ UF

PR ∗
uk − U k

C

U k
R − U

k
C

, UC ≤ u ≤ UR

PR UR ≤ u ≤ UF

 (5)

where,UC ,UR, andUF are the WT cut-in speed, rated speed,
and cutoff speed, respectively.

2) PV ENERGY SYSTEM MODEL
The generated electric power from the PVES is affected
substantially by the irradiance falling on the PV as well
as its area. To increase the irradiance and consequently the
generated energy from the PV system it is recommended to
tilt the PV modules with an optimal tilt angle. This optimal
tilt angle is chosen to be equal to the latitude angle of the
site [2]. The hourly generated power from the PV array can
be determined by the following equation:

PPV (t) = Ht (t) ∗PVA∗ηc (t) (6)
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where,Ht is the solar radiation on an optimally tilted surface,
PVA is the total area of PV array, and ηc(t) is the hourly
efficiency of PV array which can be obtained by the following
equation [2]:

ηc (t) = ηcr [1− βt × (Tc (t)− Tcr )] (7)

where, βt is the temperature coefficient and its value used in
this study is 0.005 per ◦C [51], Tcr and ηcr are the solar cell
temperature and efficiency, respectively. Tc(t) is the instanta-
neous solar cell temperature at the ambient temperature (Ta)
which can be obtained by the following equation:

Tc (t) = Ta + 3Ht (t) (8)

3) BATTERY STORAGE MODEL
During the operation of the battery, it loses some of its charges
whenever it is charging, discharging, or storing. The factor
that characterizes the loss of its energy is called the self-
discharge rate. The equation that shows the SoC of the battery
due to the self-discharge rate (SDR) is given by the following
equation [52]:

EB (t + 1) = EB (t) (1− σ) (9)

EB,min ≤ EB (t) ≤ EB,max (10)

EB,min = (1− DoD) EBR (11)

4) DIESEL GENERATOR MODEL
The diesel generator is representing a backup when the bat-
tery cannot fulfill the deficit power. The function used to
determine the fuel consumption of the Diesel engine (L/kWh)
is shown in equation (12) [54].

FD = 0.08415Pdsr + 0.246Pds (t) (12)

where Pdsr is the rated power of Diesel generator and Pds(t)
is the generated power at time t . In this article, the minimum
allowable load ratio is 30% [54]. The fuel cost is $0.9/L [55].

B. RELIABILITY INDICES
The technical objectives used in the sizing of the HES are
mainly the reliability indices that are shown in the following
points:
Loss of load expected (LOLE): LOLE is defined as the

total number of hours for which the HES is not able to provide
the load with its need. This factor accumulates the number of
hours that the HES cannot afford the required power by the
loads during the total number of hours of complete one year
(8760 hrs). The LOLE is shown in (13) [56], [57].

LOLE =
8760∑
i=1

toutage(i) (13)

where, toutage is the hour that the loads can be supplied by the
HES and its value =1 in case of the loads cannot be served
otherwise it equals zero.
Loss of load probabilities (LOLP): This factor is defined

as the ratio between the LOLE and the total number of hours

of complete one year (8760 hrs). The relation showing the
value of the LOLP and its relation with the LOLE is shown in
(14) [56], [57].

LOLP =

8760∑
i=1

toutage(i)

8760
=
LOLE
8760

(14)

Level of autonomy (LA): LA is representing the ratio
between the hours that the HES can feed the load efficiently
to the total number of hours which can be obtained in the
following equation:

LA = 1− LOLP = 1−

8760∑
i=1

toutage(i)

8760
= 1−

LOLE
8760

(15)

Expected energy not supplied (EENS):EENS is represent-
ing the total amount of energy that the HES cannot serve
during yearly and it can be obtained from the following
equation:

EENS =
8760∑
i=1

PL (i)− PH ,max (i) ∀PL (i) > PH ,max (i)

(16)

Loss of energy expected (LOEE): This factor is used to
measure the ratio of the amount of energy that the HES cannot
supply to the load to the total energy load. This index is
sometimes called loss of power supply probability (LPSP).
This can be obtained by accumulating the amount of energy
not supplied divided by the total energy supplied to the load.
It worth to be noted that some other researchers used theLPSP
to represent the LOLP as shown in (17) [58], and [15].

LOEE =

8760∑
i=1

Pde(i)

8760∑
i=1

PL(i)

(17)

where, Pde(t) is the difference in power from the load and
the maximum power afforded from the HES and it can be
obtained from the following equation:

Pde(i)=PL (i)−PH ,max (i) ∀PL (i) > PH ,max (i) (18)

Equivalent loss factor (ELF): This factor is used to get the
summation of the ratios of power did not cover by the HES to
the load power at time t, divided by the total number of steps
the reliability index is used (8760 hrs) in this study. This index
can be obtained as shown in the following equation [58]:

ELF =
8760∑
i=1

Pde(i)
PL (i)

(19)

Renewable energy fraction (REF): REF is representing
the total energy delivered to the load from RES to the load
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demand as shown in the following equation:

REF =

1−

8760∑
t=1

Pds(t)

8760∑
t=1

PL(t)


∗

100 (20)

where Pds(t) is the generated power from the Diesel generator
at time t .

C. THE POWER DISPATCH
The power dispatch is divided into two operating conditions.
The first one is when the generation is lower than the load
and the second one is when the generation is higher than the
load. These two operating conditions are shown in detail in
the following points and shown in detail in Figure 11.

FIGURE 11. The power dispatch subroutine.

1) THE GENERATION IS LOWER THAN THE LOAD
The logic used in this part is built on using the battery to feed
the load whenever the stored energy in the battery is adequate
to feed it. If it is not enough to feed the load, the DE should
work to feed the load in case of the defect power is greater
than the minimum allowable load ratio is 30% [54]. In case
of the deficit, power is less than 30% the DE will be used to
charge the battery with the rest of this percentage.

In case of the DE is not able to satisfy the load requirements
a case of LOLP condition is occurred. The mathematical
model showing this logic is shown in the following equation:

If PG (t) < PL (t) and EB(t)− EB,min > PL (t)− PG (t)
Then, the power discharged from the battery is as shown in

the following equation:

PBD (t) =
[PL (t)− PG (t)]

ηinv ηBD
(21)

where,

PG (t) = PW (t)+ (PPV (t) ηinv) (22)

The stored energy of the battery that will be used in the
next step is shown in the following:

EB(t + 1) = EB(t + 1)− PBD (t) (23)

The SoC of the battery is the percentage of total stored
energy after this step which can be obtained by dividing
the current energy of the battery by the rated energy of the
batteries (EBr ) which can be obtained from the following
equation:

SoC(i+ 1) = EB(i+ 1)/EBr (24)

If the generated power from RES (PG (t)) is lower than
the load demands PG (t) < PL (t) and the stored energy in
the battery is lower than the loads need, EB(i) − EB,min <

PL (i)− PG (i), then the Diesel generator should start to feed
the deficit as shown in the following equation:

Pds (t) = PL (t)− PG (t) (25)

In case of the Pds (t) < 0.3∗Pdsr , then the rest of this
percentage will go to charge the battery as shown in the
following equation:

PBC (t) = 0.3∗Pdsr − Pds (t) (26)

If the required power from the Diesel generator is greater
than its rated power, PL (t)− PG (t) > Pdsr , then the loss of
load expected (LOLE) will be increased by one occurrence as
shown in equation (27). Also, in this case, the loss of energy
expected (LOEE) can be obtained from equation (28).

LOLE = LOLE + 1 (27)

LOEE = LOEE +
PL (i)− PG (i)− Pdsr

8760∑
t=1

PL (t)

(28)

In this case, the accumulated deficit in the generated
energy, Ed can be obtained as shown in the following
equation:

Ed = Ed + PL (t)− PG (t)− Pdsr (29)

After finishing the above logic, the battery state of charge
should also be reduced by the battery self-discharge rate, σ
% of its capacity every one hour during the simulation where
the state of charge can be extracted from (30).

EB (t) = σ EB(t − 1) (30)

The new SoC obtained above and the deficit power should
be used to determine the percentage change in price as shown
in the following equation:

1pr (t + 1) = e0.05(100−SoC(t)) + e0.046
∗|(PL (t)−PG(t))/PBR|

(31)
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The new price of energy per kWh can be obtained from the
following equation:

pr (t + 1) = prb. [1+1pr (t + 1)/100] (32)

where, prb is the basic price of the energy per kWh, PBR is
the rated power from the battery.

The load reduction due to the DR of the next hour can be
obtained from the following equation:

PL (t+1)=PL (t+1) . (1− PED . 1pr (t + 1)) (33)

where, PED is the price elasticity of demand.

2) THE GENERATION IS GREATER THAN THE LOAD
In the case of the generation from the RES (the wind turbines
and the PV array) is greater than the load, the extra power
should go to charge the battery otherwise it will go to the
dummy loads.

At the beginning of this operating condition, the logic
should check first if the generated energy is greater than the
load requirements if PG (t) > PL (t), then the logic should
go to check first if the generation from the wind turbines
is adequate to feed the load requirements alone to feed the
load from wind turbines and the rest with the PV output will
go to charge the battery. The idea behind feeding the load
from wind turbines only is because its output is AC which is
suitable for the load and we do not need to convert the DC
output power from the PV through the inverter to the load
which can lose a considerable amount of power in the losses
of the inverter. This logic is shown in the following equations:

If PW (t) > PL (t) and EB(t) < EB,max, then the surplus
power will charge the battery by PBC (t) as shown in equa-
tion (34); meanwhile the discharging power from the battery,
PBD(t) is zero.

PBC (t) = [(PW (t)− PL (t)) ηinv + PPV (t)] ηBC (34)

The new stored energy in the battery is shown in (35) and
the new SoC can be obtained from (36).

EB(t + 1) = EB(t + 1)+ PBC (t) (35)

SoC(t + 1) = EB(t + 1)/EBr (36)

If PW (t) > PL (t) and EB(t) ≥ EB,max, then the battery
will not able to get extra energy and the control system will
get rid of the extra power to the dummy loads as shown
in (37) and the charging/discharging power to the battery can
be obtained from (38).

Pdummy (t) = (PW (t)− PL (t)) + PPV (t) .ηinv (37)

PBC (t) = PBD (t) = 0 (38)

If PW (t) < PL (t), meanwhile [PW (t)+(PPV (t) ) ηinv]>
PL (t) and the batteries are not fully charged, EB(t) < EB,max,
then the extra power will be transferred to charge the batteries
as shown in the following equation:

PBC (t) = [PW (t)+ (PPV (t) ηinv)− PL] ηBC (39)

If PW (t) < PL (t), meanwhile [PW (t)+(PPV (t) ηinv)]>
PRO (t) and EB(t) ≥ EB,max then the control system will
discard the extra power to the dummy load, and for this
reason, the charging/discharging power of the battery will be
zero as shown in (40) and the power to the dummy load can
be obtained from (41).

PBC (t) = PBD (t) = 0 (40)

Pdummy (t) = PW (t)+ PPV (t) .ηinv − PL (t) (41)

The energy to the dummy loads can be obtained by adding
the new value of dummy power to the previous values as
shown in (42).

Edummy = Edummy + Pdummy (t) (42)

After finishing the above logic, the battery state of charge
should also be reduced by the battery self-discharge rate, σ
% of its capacity every one hour during the simulation where
the state of charge can be extracted from (43).

EB (t) = σ EB(t − 1) (43)

The new SoC obtained above and the surplus power should
be used to determine the percentage change (reduction) in
price as shown in the following equation:

1pr (t + 1) = e0.05(100−SoC(t)) − e0.046
∗|(PG(t)−PL (t))/PBR|

(44)

The new price of energy per kWh can be obtained from the
following equation:

pr (t + 1) = prb. [1+1pr (t + 1)/100] (45)

where, prb is the basic price of the energy per kWh, PBR is the
rated power from the battery.
The load increase due to the DR of the next hour can be

obtained from the following equation:

PL (t + 1) = PL (t + 1) . (1+ PED . 1pr (t + 1)) (46)

where, PED is the price elasticity of demand.

D. COST ANALYSIS
The main objective of this section is to determine the CoE
which can be obtained by using the Levelized CoE (LCE)
factor which can be obtained from (47). In this calculation,
all the factors affecting the price during the operation of the
HES will be referred to the time of starting the paper taking
into consideration the interest and inflation rates. The total
present value (TPV) will be used to determine the LCE to
better choose the best size of each component of the HES
as shown in (47) [59]. Many studies introduced economi-
cal methodologies to calculate the CoE depending on many
assumptions. The TPV of the system components, OMC, and
the price of salvage parts are introduced in [60], [61]. The
TPV is used to determine the CoE from HES as shown in the
following equations:

LCE =
TPV ∗CRF

YE
(47)
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where YE is the yearly generated energy from the HES, and
CRF is the capital recovery factor which is shown in (48).

CRF =
r (1+ r)T

(1+ r)T − 1
(48)

where; T is the paper lifetimes in years, and r is the net
interest rate.

The value of TPV can be determined from (49).

TPV = CC + RC + OMC − PSV (49)

where CC is the capital cost of the whole system including
the installation cost, RC is the replacement cost, OMC is the
operation and maintenance cost, and PSV is the present value
of the salvage [59]. The detailed descriptions of the variables
shown in (49) are shown in the following sections:

1) CAPITAL COST
The capital cost (CC) of the HES systems including the price
of all parts of the system, the installation cost, and etc. which
can be calculated as shown in (50).

CC = WEp+ PVp+ BAp+ DGp+ SGp (50)

where, WEp is the price of wind energy system including
installation, power electronics conditioners, and price of all
components required for the wind energy system, PVp is the
total price of PV energy system including the installation,
civil work, power electronics conditioner, and control system.
BAp is the total price of the battery system with the all
required components for this system.DGp is the total price of
the Diesel generator price. SGp is the total price of sensors,
communication systems, and the control center of the smart
grid which has been used as 5% of the cost of the other
components.

2) REPLACEMENT COST
The components that have a lifetime less than the lifetime
of the paper should be replaced during the operation of the
paper. These replaced components will be bought at the time
of the replacement. The cost of these components should be
calculated as a present value when the paper started taking
into consideration the interest rate, r , and inflation rate, l. The
cost of replacement of any component of the system at the
beginning of the paper, RC is shown in equation (51) [52].

RC = RCU
Nrep∑
j=1

((
1+ l
1+ r

)T∗j/(Nrep+1))
(51)

where, RCU is the current replacement cost of the compo-
nents that will be replaced during the paper period, Nrep is
representing the times that the component is replaced during
the lifetime of the paper, T .

3) OPERATION AND MAINTENANCE COST
The proposed system needs anOMC during the lifetime of the
paper. There is no exact evaluation for theOMC for each price
but the value used for it is obtained from experts and previous

research work or as recommended by the manufactures of
the components. These values will be shown in detail in the
simulation section.

The present value of OMC of any component in the HES
can be determined from (52) [52]:

OMC = OMC0
∗

(
1+ l
r − l

)
∗

(
1−

(
1+ l
1+ r

)T)
, r 6= l

(52)

4) THE PRESENT SALVAGE VALUE
The old components that are replaced with new ones during
the operation of the paper will be sold at the time of replace-
ment. The values of these components should be calculated
at the starting of the paper which is called the PSV which can
be calculated as shown in equation (53) [52].

PSV =
Nrep+1∑
j=1

SV ∗
(
1+ i
1+ r

)T∗j/(Nrep+1)
(53)

where SV is the scrap or salvage value.

V. OPTIMIZATION TECHNIQUES
Three swarm optimization techniques have been used for
getting the optimal sizing of the components of the HES and
the CoE taking into consideration the DR as a smart grid
concept. These three optimization techniques introduced in
this article are chosen with two well know techniques and
one recently introduced optimization technique. The three
techniques are, the BA [62], the PSO [15], and the social
mimic optimization, SMO [34] algorithms. The optimization
used multiobjective function to minimize both the CoE, and
the LOLE values as shown in (54).

F = M∗LCE + LOLE (54)

where, F is the objective function, LCE is the Levelized CoE,
and M is the weight value to give the LOLE the required
weight compared to LCE.

A. OPTIMIZATION TECHNIQUES INITIALIZATION
In the beginning (initialization) of all optimization techniques
used in this study, the values of optimization variables (NWT,
SCA, EBR, and Pdsr ) with numbers of particles called swarm
size, n. The initial values in the original optimization tech-
niques are recommended to be random, but random values of
these variables, may increase the convergence time and may
cause the premature convergence. So, it is recommended to
have random values within reasonable limits of these vari-
ables. The initial values of NWT, PVA, EBR, and Pdsr will
be fed to the energy balance and cost estimation subroutines
and the values of the objective function shown in (54) will be
collected, F1:n

0 . The minimum value of the objective function
will be determined as Fbest = min(F1:n

0 ) and the correspond-
ing best bat, dbest will be determined.
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B. THE PSO IN SIZING OF THE HES
The PSO technique is a very popular optimization technique
where it has been used in numerous applications. This tech-
nique imitates the behaviour of many flocks of animals like
fish or birds in searching for their food to use the same
searching technique in capturing the optimal solutions of real-
world applications. This technique is introduced in 1995 by
Kennedy and Eberhart (1995) [63]. The idea behind this
technique is sending many searching agents called the swarm
and each one is called a particle to search for the optimal
solution. The experience gained from the searching step will
be transferred to offspring in the next step. The particles
share their experience among the other particles in the swarm
(social-experience) and use their private experience (self-
experience) to modify the searching technique.

The searching performance of the PSO is performed using
two equations (55) and (56). The first equation is used to
determine the velocity or trajectory of particles in the new
iterations vki+1. The velocity of the particles in the next step
v1:ni+1 is obtained from three different terms which are summa-
rized in the following points:

• The previous velocity v1:ni is multiplied by the weight
function ω to enhance the stability of searching perfor-
mance [64].

• The second term is using the difference between the
particle’s best value and the current solution and mul-
tiplies this difference by a factor called self-experience
parameter, cl . increasing the value of this parameter will
enhance the self-confidence of searching and it increases
the convergence speed but it may increase the possibility
of capturing a local peak.

• The third term is the difference between the global best
obtained from the previous iteration and the current
solution and multiplies this difference by a factor called
social-experience parameter, cg. increasing the value of
this parameter will enhance the social-confidence of
searching.

The values of cl and cg should be compromised to balance
between the self and social search which differ from one
fitness function to another. This velocity or trajectory will
be added to the previous position of particles d1:ni to get
the new values of particles [65]. The flowchart showing the
logic used in the optimal sizing of HES by PSO is shown in
Figure. 12.

v1:ni+1 = ω v
1:n
i +clrl(d

1:n
best−d

1:n
i )+cgrg(Gbest−d1:ni ) (55)

dki+1 = dki + v
k
i+1, (56)

where, ω is called the inertia weight, cl and cg are the self
and social experience parameters, respectively. d1:nbest is the
personal best position of each particle,Gbest is the global best
position, n is the number of searching agents (swarm size),
and rl and rg are random values in between [0 1], i is the
iteration order which starts at 1 to the end of iterations when
i = it .

FIGURE 12. The flowchart showing the logic used in the optimal sizing of
HES by PSO.

C. THE BA IN SIZING OF THE RES
Like most of the swarm optimization techniques, BA imitates
the bats in searching for their food or prey. The BA is first
developed in 2010 by Yang 2010 [62]. This optimization
technique has very fast and accurate convergence. In nature,
the bats search for their foods by using the echolocation tech-
nique in which they emit numbers of impulses with different
levels and different frequencies and receive the echo of these
sound pulses. The bats get information about the food or prey
from the received sounds to decide their direction and speed
in the next movement. The bats can identify the distance, size
of the prey by measuring the time between pulses and the
intensity of echoed sound pulses, respectively. The searching
behavior of the bats has inspired researchers to imitate it in
searching for the optimal solution for different life problems.
Many generalized rules should be taken into consideration
in the mathematical modeling of the BA which is shown
in [62]. The following sections explain the logic of using the
BA to optimally design the HES system. As with the other
optimization techniques used in this article, the BA will use
the number of WTs, NWT, The area of PV array, SCA, the
size of the batteries, EBR, and the rated power of the DE as
optimization variables. The fitness function is introduced in
equation (54).

The initial velocity v1:n0 and initial frequency f 1:n0 of all
bats are set to zero (where n is the swarm size). The initial
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values of pulse rate, r0, loudness, A0, and many initialization
parameters are set as recommended in [62].

The new position of the particles d1:ni can be determined
from (59) after determining the bat velocity, v1:ni as shown
in (58). The frequency of the particles can be determined
from (57).

f 1:ni = fmin + (fmax − fmin) β (57)

v1:ni = ω v
1:n
i−1 +

(
dbest − d1:ni−1

)
f 1:ni (58)

d1:ni = d1:ni−1 + v
1:n
i (59)

where, the values of fmin and fmax is the minimum and
maximum frequency range and are chosen to be 0 and 2,
respectively [62]. β is a random value, β ∈ [0, 1], and ω is
the inertia weight.

After determining the new position from (59), a random
walk around this position should be performed to get the
new position of the bats as shown in (68) [66]. If the pulse
emission ri less than a random number, then the position di is
replaced by the value obtained from (60).

d1:n(new)i = dbest + εφ
〈
A1:ni

〉
(60)

where, ε is a random number, ε ∈ [−1, 1], and φ is a positive
constant equal to 0.001 [66], while

〈
A1:ni

〉
is the average

loudness of bats at the current iteration.
The value of loudness (Ai) decreasingwith iterationsmean-

while the pulse rate, ri is increasing. The variation of Ai
and ri with iteration numbers are shown in (61) and (62),
respectively [66].

A1:ni = αA
1:n
i−1 (61)

r1:ni = r1:n0 [1− e(−γ i)] (62)

where the values of α and γ have been chosen equal to 0.9 in
many types of research [66].

The new values of the bats’ positions, d1:ni will be fed into
the fitness function (energy balance and cost estimation) to
get its corresponding objective values F1:n

i . After performing
the above logic, the iterations will start and be repeated until
the logic stopped using the stopping criterion. The flowchart
of using BA in the design of HES is shown in Figure 13.

D. THE SMO IN SIZING OF THE RES
A modern optimization technique called the social mimic
optimization algorithm (SMO) [34] is used to be compared
with the PSO and BA in sizing of the HES. This algorithm
is mimicking the human face and body reactions. This newly
proposed technique has been used with many optimization
functions and it shows good convergence performance. This
technique is characterized by there is no control parameters to
be optimized as in the case of the BA and PSO which makes
it a good option to be used with low-experience optimization
researchers. The operating logic of SMO is shown in Fig-
ure 14 and detailed in the following steps:
SMO1: The first step is to initialize the particles d1:n0 and

then calculate the fitness function F1:n
0

FIGURE 13. The flowchart of the Bat Algorithm used for optimal sizing of
the HES.

SMO2: Determine the minimum optimization function,
FFbest (called a leader), and set its corresponding
position to dbest .

SMO3: Determine the difference between the value of best
fitness function (leader) to the value of a function of
each particle ‘‘Flower’’ as shown in the following
equation:

DFki = (FFbest − Fki−1)/F
k
i−1 (63)

SMO4: Check if DFki = 0 set its value to –rand and go to
the next step otherwise go to the next step.

SMO5: Determine the new position of the particles using the
following equation:

dki = dki−1 + DF
k
i × d

k
i−1 (64)

SMO6: Send the new position of particles dki to the EBCE
and determine the corresponding fitness function
Fki .

SMO7: Check if Fki < FFbest , then FFbest = Fki , and go to
the next step, otherwise go to the next step without
modification.

SMO8: Check if all particles are performed, if yes go to the
next step otherwise go to SMO3.

SMO9: Check the stopping criterion is valid print the values
of dbest and FFbest otherwise go to SMO3.
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FIGURE 14. The flowchart of the SMO used for optimal sizing of HES.

VI. THE PROPOSED SIZING PROGRAM BASED ON
SMART GRID
The sizing stage will carry out the above logic to imitate the
real operation of the proposed smart grid operation where
all the studies in the literature did not take these strategies
into considerations when sizing the HES using the SGC. This
strategy will help the customers to participate in the stability
of the smart grid and increase the reliability of the system
under all abnormal conditions. This strategy reduced the size
of the components and the battery size which reduced the
investments required to build the HESwhich can be translated
into a reduction in the customer bills and an increase in energy
providers profit. Suggesting to use the dynamic tariff strategy
introduced in this article for the large power system is studied.
This study showed the reduction in the investments used in
building new big power plants and increase the dependency
on renewable energy which can reduce also the customers’
bills.

A. THE MAIN PROGRAM STRUCTURE
The sizing strategy used in this article is implemented in a
Matlab code with structure as shown in Figure 15. The main
computer program has a sequence shown in the following
points and each point will be discussed in the following
sections.
• Input the data and send it to different parts of the com-
puter program.

• Initialize the optimization technique PSO, BA, and
SMO.

FIGURE 15. The structure of the main computer program.

FIGURE 16. The hourly wind speed at 10 m height for Arar site.

• Send the values of searching agents from the optimiza-
tion technique to the energy balance
subroutine.

• Perform the energy balance between the loads and the
generations taking the DR strategy into consideration
and determine the total generated energy, and reliability
indices like LOLP, LPSP, etc.

• Send the utilized energy, size of different HES compo-
nents to the cost determination subroutine and get the
Levelized CoE (LCE).

• Send the CoE and reliability indices to the optimization
technique to determine the fitness value of the objective
function from (54) and perform the optimization tech-
nique.

• Send the updated values of searching agents to
the energy balance subroutine and continue this
loop until the stopping criteria stop the optimization
technique.

• Get the output results like the size of each HES compo-
nent, CoE, and different reliability indices.

The details of each part of the main computer program are
shown in the following sections:
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FIGURE 17. The wind speed at 10 m height for Arar site.

B. INPUT DATA PART
Many input data should be introduced to the computer pro-
gram as shown in the following points:
• Hourly wind speed for a complete year,
The hourly wind speed is shown in Figure 16 and the
boxplot of the wind speed is shown in Figure 17. Also,
the monthly and yearly average wind speed is shown in
Table 1.

TABLE 1. Wind speed, solar irradiance on a horizontal surface,
temperature for Arar city on 40 m height [67].

• Hourly solar irradiance and temperature for a complete
year,
The hourly solar irradiance is shown in Figure 18 and
the boxplot of the solar irradiance is shown in Figure 19.
Also, the monthly and yearly average solar irradiance is
shown in Table 1.

• Hourly load demand for a complete year, (average load
is 3.8078 MW)
The hourly load along one year is collected from the
isolated area in the north of Saudi Arabia is shown in
Figure 20 and the boxplot of the hourly load curve is
shown in Figure 21. The monthly weather data of Arar
city are shown in Figure 22.

• Wind turbine specification parameters like the rated
power PR, cut-in, rated, and cut-out wind speed, hub-
height, cost per kW, etc.,
The specification parameters of the wind turbines are
shown in Table 2.

• The PV module specification parameters, such as the
module area, efficiency, price/m2,

The specifications parameters of the PV modules used in the
simulation are shown in Table 3.
• Battery specification parameters, such as the rated
energy for each unit and the rated charging/discharging
power, and the charging/discharging efficiencies, and
the price of each battery,

TABLE 2. Wind Turbine parameters.

TABLE 3. The PV specification parameters.

The specification parameters of the battery are shown in
Table 4.

TABLE 4. The battery specification parameters.

• Diesel generators specification parameters, such as the
rated power, operating costs, and its price,
The specifications of theDiesel generator parameters are
shown in Table 5.

• AC/DC inverter cost and efficiency.
The specification parameters are shown in Table 6.

• DC-DC converter and MPPT for the PV system rated
values and price/kWh.

• The control parameters of the optimization technique
(Such as ω, cl , and cg in the PSO). The control parame-
ters of the PSO and BA are shown in Table 7 and Table 9,
respectively.

• The tolerance for the stopping criterion.
• The general parameters like the paper lifetime, T , inter-
est rate, and inflation rate are shown in Table 10.

VII. SIMULATION RESULTS
The optimization results of using the HES is done by using
the PSO, BA, and SMO optimization tools. Three different
studies are introduced in the simulation results part as shown
in the following sections:

1- Evaluation of the best optimization technique.
2- The variation of the weight factor,M .
3- The detailed results of the optimization technique in

HES design.
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FIGURE 18. Hourly solar irradiance on horizontal surface for Arar site.

FIGURE 19. The solar irradiance on horizontal surface for Arar site.

FIGURE 20. Hourly load power for Arar site.

FIGURE 21. Monthly load power for Arar site.

A. EVALUATION OF THE BEST OPTIMIZATION TECHNIQUE
In this study, the detailed results of using the three different
strategies PSO, BA, and SMO are evaluated to choose the best
one of them. The evaluation criterion is based on the lowest

FIGURE 22. Monthly weather data of Arar city.

TABLE 5. The diesel generator specification parameters.

TABLE 6. The inverter specifications parameters.

TABLE 7. The PSO control parameters.

TABLE 8. Bat algorithm control parameters.

TABLE 9. The general economic parameters.

failure rate and the fastest convergence time. In this analysis
the weight value, M which is shown in (54) is selected to
be; M = 1. For fair evaluation the swarm size for all
optimization tools equal to 50 particles. Also, the parameters
used in each technique are the same as introduced in the
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TABLE 10. The variation of the number of WTs, PV area, size of the
batteries, and the rated power of Diesel engine at M = 1.0.

tables shown in the input data section where the PED = −1.
The optimization performance of these optimization tools
is performed for 10 different optimization runs as shown
in Figure 23. It is clear from Figure 23 that the BA is
the fastest convergence one where it captured the optimal
solution after 5 iterations, the PSO captured the optimal
solution after 8 iterations, meanwhile, the SMO captured the
optimal solution after 45 iterations. Also, it is clear that all
the optimization techniques captured the same global optimal
solution where, the minimum fitness function is $0.0392
and the LOLE is zero, and the Levelized CoE (LCE) is
$0.0392/kWh. From these results, it is clear that the BA is the
fastest optimization techniquewhere it captured theminimum
solution with 5 iterations compared to 8, and 45 for PSO
and SMO, respectively. Due to the superior results of the bat
algorithm (BA) technique, it will be used in the following
simulation studies.

B. THE VARIATION OF WEIGHT FACTOR, M
From the above study, the BA is having the best performance
than the other two techniques and for this reason, it will
be used in the next two simulation studies. The objective
function used to reduce the cost and the LOLE is shown
in (54). The weight value, M is multiplied by the LCE to
give the required weight to the LCE compared to LOLE. The
simulation in this study is performed for different values ofM
to see its response of the LCW, and LOLE. Figure 24 shows
the variation of the fitness function, LCW, and LOLE along
with the value ofM . It is clear from Figure 24 that, with a low
value ofM , the cost is dropping very fast where it drops from
$0.0.0393/kWh when M <1 to $0.0.02/kWh when M >1.2.

FIGURE 23. The convergence performance of the PSO, BA, SMO
techniques.

FIGURE 24. The variation of the fitness function, LCE, and LOLE along
with the weight value, M.

During the period M < 1.2 the LOLE is zero. During the
period 1.2 < M < 4 the LOLE is increased from zero
to 0.3482. For the high value of M , the cost is saturated at
M > 1.2 and the LOLE is still increasing and for this reason,
it is better to useM = 1.2 to get the lowest cost at zero LOLE
value.

C. THE DETAILED RESULTS OF THE OPTIMIZATION
TECHNIQUE IN HES DESIGN
Based on the above simulation studies, the best metaheuristic
technique was the BA and the best weight value, M is 1.0,
which will be used in this study. The variation of the number
of WTs, PV area, size of the batteries, and the rated power of
Diesel engine at M = 1.0 when using DR with PED = −1
and without DR at LOLE = 0.0 are shown in Table 10.
It is clear from this table that the sizes of all components
are reduced when using the smart grid concept with DR
(PED = −1) compared to the values without using DR into
consideration (PED = 0.0). Also, the total initial cost of
the HES when using the smart grid concept is $18,759,100
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compared to $20,934,100 when the DR did not use. Also, the
use of DR reduced the Levelized CoE from $0.0473/kWh to
$0.0392/kWhwhen used the smart grid concept (PED = −1)
compared to the condition that does not consider the smart
grid concept. The reduction in LCE is 20.66% when using
the smart grid concept into consideration compared to the
traditional design of the HESwhich does not consider the DR.

VIII. CONCLUSION
RES are becoming promised option in the modern power
system energy mix. Wind and PV energies are the most
frequently used RES. The output power from these sources
is having intermittent nature which makes them cannot work
alone to supply a load with its need for energy in acceptable
reliability. For this reason, these sources should be connected
to the utility grid or should be connected with battery storage
and Diesel energy system in case of off-grid applications
especially in rural areas. In the case of off-grid hybrid energy
systems (HES), the size of the components should be chosen
to feed the load with all normal and abnormal operating
conditions which make the sizes of components are very
large. The sizing of theHES is introduced in literature without
using the SGC which make the HES is not cost-effective
and reduces its reliability. A novel demand response (DR)
strategy is introduced in this article to model the response of
the customers to the dynamic change of the tariff. This novel
DR strategy has been used in the sizing of the HES to reduce
the size of HES and reduces the CoE generated compared to
the traditional sizing of the HES without using the DR into
consideration. The use of the new DR strategy has achieved
zero loss of energy expected at a very low price. The design
of the HES using a smart grid has been optimized using
three modern swarm optimization control namely, particle
swarm optimization (PSO), bat algorithm (BA), and Social
mimic optimization (SMO). The detailed analysis for the
results obtained from these optimization techniques showed
that the BA is the fastest and most reliable technique where it
captured the minimum cost and optimal size of components
with 5 iterations, meanwhile, the PSO and the SMO need 8
and 45 iterations, respectively. The initial cost of the HES is
$18,759,100 when using a smart grid and DR strategy into
consideration, compared to $20,934,100 for the traditional
sizing of the HES without a smart grid. Moreover, the Lev-
elized CoE is $0.0392/kWh when using a smart grid and DR
in the design stage compared to $0.473/kWh when the tradi-
tional design of HES is used. This cost reduction is 20.66%
compared to the cost calculated based on the traditional sizing
technique which proves the superiority of using the DR into
consideration when sizing the HES.
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