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ABSTRACT Since early 2020, the world has been afflicted with an unprecedented global pandemic. The
SARS-CoV-19 (COVID-19) has levied massive economic and public health costs across many countries.
Due to its virulence, the pathogen is rapidly propagating throughout the world in such a way that makes it
incredibly challenging for officials to contain its spread. Therefore, there is a pressing need for national and
local authorities to have tools that aid in their ability to assess and extrapolate the future trends of the spread
of COVID-19, so they may make rational and informed decisions that minimize public harm. Mechanistic
models are prominent mathematical tools that are used to characterize epidemics. In this paper, we propose
a generalized mechanistic model with eight states characterizing the COVID-19 pandemic evolution from a
susceptible state to discharged states while passing by quarantined and hospitalized states. The parameters of
the model are determined by solving a fitting optimization problem with three observed inputs: the number
of infected, deceased, and reported cases. The model’s objective function is weighted over the training days
so as to guide the fitting algorithm towards the latest pandemic period and lead to more accurate trend
predictions for a stronger forecast. We solve the fitting problem with the Levenberg-Marquardt algorithm;
we compare the performance of the model generated from this algorithm to the one of another state-of-the-art
fitting algorithm as well as to the one of another compartmental model widely used in literature. We test the
model on the COVID-19 data from four highly afflicted countries. The fitting algorithm has been validated
graphically and through numerical metrics, and results show significantly accurate results for most of the
countries. Once the model’s parameters are estimated, forecasting results are derived and uncertainty regions
of the expected scenarios are provided.

INDEX TERMS COVID-19, fitting optimization, mathematical modeling, mechanistic model, nonlinear
differential equations, pandemic.

I. INTRODUCTION
Coronaviruses are a large family of viruses that trigger an
infection in the contaminated’s nose, sinuses, or upper
throat, and even fatal acute respiratory distress syndrome
(ARDS) [1], [2]. In addition to humans, the coronaviruses
may also infect animals including camels, cattle, cats, and
bats. Even though coronaviruses originated in animals can
rarely infect humans, the Middle East Respiratory Syndrome
CoronaVirus (MERS-CoV) and the Severe Acute Respiratory
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Syndrome CoronaVirus (SARS-CoV) have broken the rule
and shifted to humans. The same happened with the new
coming virus, named SARS-CoV-2 by International Com-
mittee on Taxonomy of Viruses that causes a disease named
Coronavirus Disease 2019 (COVID-19) by the World Health
Organization (WHO). Generally, the human-to-human trans-
mission occurs when a contaminated person’s coughs,
sneezes, or even talks. Indeed, released droplets may stay in
the air and can infect people within a 6 feet distance [3]. The
virus can also be transmitted through aerosol or surface trans-
mission as researchers have shown that the virus may live in
the air up to three hours and on steel for two or three days [4].
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Originally starting from Wuhan, Hubei a province of
China, the first cases of COVID-19 were announced in the
late of 2019. The outbreak quickly spread within China due
to the massive transportation and large population mobility
before the Chinese Spring Festival, and subsequently,
it spread all over the world. The WHO declared the outbreak
to be a Public Health Emergency of International Concern
on January 30th, 2020 and recognized it as a pandemic on
March 11th, 2020. Generally, coronaviruses are not dan-
gerous, however, the new COVID-19 comes with a con-
siderable mortality rate. Currently, more than 12 millions
cases of COVID-19 are confirmed resulting on more than
550 thousand deaths in 216 different countries, areas, and
territories as indicated by WHO through the COVID-19 sit-
uation dashboard website. These numbers are expected to
dramatically increase. Most of these cases are located in the
United States where more than 3 million confirmed cases and
more than 110 thousand confirmed deaths have been reported
representing around 25% and 24% of the global results,
respectively [5].

In addition to the high fatality rates, the rapid spread
of COVID-19 has engendered tremendous social and eco-
nomic implications all over the world [6]–[10]. For example,
R. Y. Kim identified the pandemic as an accelerator of the
structural change in consumption and the digital transfor-
mation in the marketplace. He also explored how the pan-
demic accelerated the growth of e-commerce [11]. The global
economy has also been impacted since the usage of human
distancing, as an easiest solution to limit the spread of the
disease. Thus, non-essential services have been shut-down,
and hence, hundreds and even thousands of people lost their
jobs. Furthermore, since most of the world nations have
closed their borders, the international trade has collapsed.
Additionally, the impact of the COVID-19 pandemic has
reached the telecommunication industry. Accordingly, Inter-
net Providers (IPs) have recently reported a massive and huge
traffic due to the lock-down and stay-home orders applied by
several states in the USA and other regions and countries [12].
Over just few months, COVID-19 has changed the world
and specifically our habits and daily lives and the situation
does not seem to return to its normal soon in many countries.
Therefore, it is very important to understand the behavior
and expected trend of this disease and predict its spread.
Forecasting the future evolution of this pandemic will also
help assess its future consequences on different social and
economic sectors.

In literature, mathematical modelling has been widely
used to model pandemics since they provide a quantitative
framework that scientists can assess to build hypotheses on
the potential underlying mechanisms explaining patterns in
the real observed data at both spatial and temporal scales
[13]–[17] and especially to model the COVID-19 out-
break [18]–[23]. Mathematical models may have high differ-
ent complexity levels depending on the number of variables
and parameters used to characterize the dynamic states of
the system, their spatial and temporal resolutions, e.g., dis-

crete vs. continuous time, and their design, e.g., determin-
istic or stochastic [24]. The two main mathematical models
used to characterize pandemics are phenomenological and
mechanistic models:
• Phenomenological models are used to describe the rela-

tionship between the patterns of the data without a specific
basis on the physical laws or mechanisms using an empirical
approach, i.e., phenomenological models serve to describe
and explain the reasons of the observed interactions between
the patterns as they are. Two useful phenomenologicalmodels
to characterize pandemic growth patterns exist: the Gener-
alized Growth Model (GGM) and the Generalized Richards
Model (GRM) [24]–[28]. Although they are commonly used,
these models have limitations and downsides because of
their subjectivity. Thus, establishing the reliability and valid-
ity of these approaches can be challenging, which makes
these models very subjective and requires elaborate efforts to
output accurate results.
• Mechanistic models are used to explain patterns in

the observed data while considering key physical laws or
mechanisms involved in the dynamics of the investigated
problem. The Susceptible-Infected-Recovered (SIR) and
Susceptible-Exposed-Infectious-Recovered (SEIR) models
are the least complex mechanistic models [29], and they are
frequently used to characterize pandemics [24], [30]–[33].
TuenWai Ng et al. studied the SARS pandemic and compared
the SIR and SEIR models’ performance in characterising
it. Then, they proposed a new SEIRP model by adding a
protected state and evaluated its performance on multiple
use-cases of SARS outbreak [34]. Another variant of mech-
anistic models are used in [35] to study the Ebola pandemic,
where Tae Sug Do et al. presented a model called SLIRD to
better understand the spread of the disease and tested their
model on the outbreak in Nigeria. Moreover, the authors
of [36] presented a calibration of a SEIR–SEI pandemic
model to describe the dynamics of the 2016 Zika virus out-
break in Brazil. The authors of [19], investigated the lifting
of control measurement, in Wuhan, China, especially social
distancing and the effect of returning to work using an SEIR
model.

Recently, the authors of [37] presented a generalized SEIR
model to characterize the COVID-19 outbreak in different hot
spots in China and applied inverse inference to the starting
date of the outbreak. Similarly, the study in [38] examined
the baseline SIR model along with the SEIR model to char-
acterize the spread in Canada. This study modelled the social
distancing through the isolation of a subset of the suscep-
tible population. Another recent study, presented in [39],
proposed a comprehensive solution to estimate the mortality
due to SARS-Cov-2 infection. An SEIR mathematical model
describing infection transmission and death was developed to
estimate the case-fatality, the symptomatic case fatality, and
the overall infection fatality ratios. The mechanistic model
has been applied to different impacted regions of the world
with the objective of comparing the different indicators and
asses themortality dynamics per age group.Moreover, in [21]
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presented a SIDARTHE model, an extension of the SIR
model, which distinguishes between detected and undetected
cases and between the different Severity of Illness (SoI)
and applied it to characterize the spread in Italy. In [40],
the authors presented a basic SEIR model to model the
COVID-19 spread in India and used it to simulate and evalu-
ate different scenarios of the spread based on the transmission
rate and finally, they proposed potential future evolution of
the spread and possible mitigation. Along with mathematical
modelling, in [41], the authors employed a machine learning
algorithm namely, the decision tree algorithm, to study the
indicators responsible for the evolution of COVID-19 pan-
demic using multi-sourced data. The study identified the
population density as one of the most important determinants
of infection spread. Moreover, the authors of [42] addressed
the future forecasting of COVID-19 spread by identifying
the threatening factors using supervised machine learning
models. They focused on forecasting the number of newly
infected cases, the number of deaths, and the number of
recoveries in the next ten days after the training period.

Although the previouslymentioned studies, at some points,
succeeded to model the pandemic, they only focus on specific
countries or regions and their models are not generalized to
fit different regions simultaneously. The fitting is also usually
done using one target data set containing the number of
confirmed cases. Moreover, the presented models are usually
based on simplistic models, e.g., SIR and SEIR and do not
provide an advanced overview about the different scenarios
that a contaminated person may face.

In this paper, we propose to investigate the evolution
of COVID-19 in different countries of the world using an
extended mechanistic model. The developed model is com-
posed of eight states: protected, susceptible, exposed, infec-
tious, recovered, hospitalized, quarantined, and deaths. These
states aim to characterize the possible behaviour of the crowd
and their effects on the pandemic spread. The evolution of
the pandemic is then modeled as an Ordinary Differential
Equation (ODE) system interconnecting the different states.
In order to forecast the evolution of COVID-19, we proceed
with an identification process that aims to estimate the val-
ues of the coefficients of the model. To this end, a fitting
optimization problem is developed having as inputs three
target data sets, i.e., observations: confirmed infected cases,
death cases, and recovered cases. The objective function to be
optimized is modeled as a weighted non-linear least squares
function and is solved by the Levenberg-Marquardt (LM)
algorithm. The weights are added to guide the focus of the
fitter towards a particular period of the trend. The model
is fitted and tested on multiple countries and show accu-
rate performances. The impact of the weights on the fitting
performance has been also evaluated. The performances of
the fitting algorithms are also compared to the ones of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [43] algorithm
for various metrics. The estimated parameters are then used
to forecast the future evolution of the pandemic given the
current observation. Then, uncertainty regions are provided

to visualize the expected upper and lower limits of the future
evolution of the number of cases and deaths. To the best of
our knowledge, we are the the first to characterize a pan-
demic with a developed model presenting a loop between
the states while taking into consideration all possible move-
ments between them. Moreover, we are the first to employ a
weighted fitting process that endorses the forecasting process
by focusing on the last trends of the spread. We also provide
a comparison of the estimated, best, and worse cases with
regards to the infection rate of the disease to estimate how
well the countries operated against the pandemic and finally,
to validate our forecast results, we compare the performance
of our proposed model to those of a Random Walk (RW)
approach with drift [44] and show that our proposed model
outperforms the RW in most of the investigated scenarios.
Finally, we have validate the efficiency of our proposedmodel
with the state-of-the-art SEIRDmodel composed of five com-
partments, namely, susceptible, exposed, infected, recovered
and deceased cases.

The rest of the paper is organized as follows. In Section II,
we present the developed model and the different parameters
that characterize the COVID-19 spread. Then, we present
the proposed weighted fitting technique in Section III. The
Section IV is devoted to evaluate the performance of the fit-
ting algorithm as well as expected evolution of the COVID-19
spread in the upcoming period using the proposed fitting
technique. The paper is concluded in Section VI.

II. PROPOSED MECHANISTIC MODEL
In this section, we present a generalizedmodel to characterize
the COVID-19 pandemic composedwith eight different states
or phenotypes. These states are supposed to characterize all
the life cycle of an infected case before the infection, during
the infection, and after being discharged, i.e., either deceased
or recovered as shown in Fig. 1. Each state in our model is
supposed to characterize, at a given unit of time t , in our case
day, a specific population’s behaviour as follows:
• S(t): A state representing the total number of susceptible

cases that can be infected with the COVID-19 pandemic.
• P(t): A state representing the total number of protected

cases that are taking the required precautions, i.e., quaran-
tine, social distancing, etc. This state represents the category
of people that are very unlikely to be infected with the
COVID-19.
• E(t): A state representing the total population exposed

to the pandemic and are infected but not yet reported. The
population within this state are supposed to be infected but
not yet be infectious, i.e., in a latent period. An exposed case
can be, or not, reported.
• I (t): A state representing the number of confirmed

infected cases with infectious capabilities that are not respect-
ing the stay-home rules, if exist, and propagating the disease.
• Q(t): A state representing the number of confirmed

cases that are quarantined and are not able to infect other
people. In this paper, we suppose that not all the confirmed
cases are quarantined.
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FIGURE 1. The proposed mechanistic model architecture to characterize the COVID-19 pandemic spread, where the orange boxes are the final states and
other boxes are intermediate states.

• H (t): A state representing the number of confirmed
cases that are hospitalized. This state includes the cases who
require an Intensive Care Unit (ICU) bed to be treated. In this
paper, we suppose that the hospitalized cases are quarantined
and hence, they do not transmit the disease to other people.
• D(t): A state representing the total number of deaths due

to the COVID-19 pandemic.
• R(t): A state representing the total number of recovered

cases from the COVID-19 pandemic. We assume that the
recovered cases are supposed to gain an immunity against the
disease and cannot be infected again [45].

Given the definitions of the states presented earlier,
we define that the total population, denoted by P̄, as P̄ =
S(t) + P(t) + E(t) + I (t) + Q(t) + H (t) + R(t) + D(t) for
each day t . We can also define the total number of confirmed
infected cases, denoted by I rep, and the total number of
infected but not reported cases, denoted by INrep, for each
day t , as follows:

I rep(t) = I (t)+ H (t)+ Q(t), ∀t, (1a)

INrep(t) = E(t), ∀t. (1b)

To characterize the possible interactions between the previ-
ously presented states, we represent each possible transition
from one compartment to another with an arrow as shown
in Fig. 1. Each arrow is labeled with a rate describing the
amount of time required for the transition to take place multi-
plied by the population of the group of individuals that the
transition applies to [46]. The rates between the different
compartments are defined as follows:
• δ−1: The length of the incubation period, i.e., the

average period from exposure to symptoms onset.
• σ−1: The expected amount of time during which the

health of an infected person will get worse and require
hospitalization.
• γ−1: The average quarantine period.
• α−1: The average period for hospitalized cases to be

moved from ICU bed to quarantine.

• ε−1: The expected number of days for a quarantined
case to get worse and require hospitalization.
• λ: The infected population’s fatality rate.
• ν: The hospitalized population’s fatality rate.
• χ : The quarantined population’s fatality rate.
• µ: The quarantined population’s recovery rate.
We also employ two other parameters to characterize the

disease and the possible protection methods that healthy peo-
ple may employ to protect themselves:
• τ : A protection rate to quantify the possible protection
measurements, i.e., social distancing, mask usage, quarantine
respect, etc.
• β: An infection rate reflecting the expected number of
people that an infected person infects per day.
In our model, we suppose that an infected case can be

healed only after passing by the quarantine state because
the COVID-19 usually has symptoms, even light ones, that
will oblige the contaminated persons, sooner or later, to stay
home. In other terms, our assumption is to suppose that the
COVID-19 symptoms with different degrees (light to severe)
will appear on all the infected cases and will force them to
stay home, i.e., quarantined for at least one day before being
totally healed from the diseases. Since our model is based
on a constant infection rate β, considering that an infected
person will be placed on quarantine before its final recovery
will allow our model to learn that an infected case in state I
will not affect people daily, i.e., this assumption will make
our model closer to reality by allowing it to automatically
learn that an infected person may or may not infect people
daily and will help, when needed, determine accurate basic
reproduction number values regardless the constant param-
eters. Other studies are considering similar scenario where
recovery is only possible through quarantine can be found
in [37], [47].
Moreover, we assume that an infected case may require

intensive care as soon as its contamination is confirmed and
hence, can immediately hospitalized in state H . The infected
cases may also choose to be quarantined in state Q and
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hence, will not be able to spread the disease or they may also
keep contaminating other people and spreading the disease
in state I . We also assume that hospitalized cases are quar-
antined by default so they do not spread the virus but they
may pass away while in intensive care, otherwise they may be
moved to the quarantine state Q before their final discharge,
i.e., either to recovered state R or the death stateD. Moreover,
in the model, we suppose that an infected case may move in
loop between the quarantined and hospitalized states multiple
times. Also, we assume that infected cases may die while
being on quarantine or hospitalized at any instant of time
otherwise they will recover. Finally, our analysis exclusively
encloses the COVID-19 cases and hence, we only consider
the death cases that are only due to the COVID-19.

The proposed model, shown in Fig. 1, works as a closed
system and is designed to track the local spread inside mul-
tiple countries to help officials take convenient protective
policies against this pandemic such as border opening dates
and stay-home orders. It can be translated into anODE system
that resumes the variation speed between the different states.
The ODE system is expressed as follows:

∂S(t)
∂t
= −β ·

S(t)

P̄
· I (t)− τ · S(t), (2a)

∂P(t)
∂t
= τ · S(t), (2b)

∂E(t)
∂t
= β ·

S(t)

P̄
· I (t)− δ · E(t), (2c)

∂I (t)
∂t
= δ · E − γ · I − λ · I − σ · I , (2d)

∂Q(t)
∂t
= γ · I (t)+α · H (t)−ε · Q(t)−χ · Q(t)−µ · Q(t),

(2e)
∂H (t)
∂t
= σ · I (t)+ ε · Q(t)− α · H (t)− ν · H (t), (2f)

∂R(t)
∂t
= µ · Q(t), (2g)

∂D(t)
∂t
= λ · I (t)+ χ · Q(t)+ µ · H (t). (2h)

An initialization of the system is needed in order to solve
the ODE system (2). The initial conditions will be denoted
as follows by S0, P0, E0, I0, Q0, H0, D0, and R0 for S(t), P(t),
E(t), I (t),Q(t),H (t),D(t), and R(t), respectively. This model
will be used to characterize the spread of the COVID-19
pandemic. To this end, curve fitting will be applied using
three target data sets to estimate the parameters of the model.
Once estimated, the ODE will be solved by integrating each
equation in (2) over the desired period to determine the
population of each state with respect to the initial conditions
provided.

Lastly, our proposed model has many novel contribu-
tions compared to previous studies on COVID-19 spread.
In Table 1, we introduce a high-level comparison between our
model and those used in these studies.

TABLE 1. High-level comparison of the proposed model and previous
studies on COVID-19 spread.

III. CURVE FITTING MODEL
The goal of this section is to present the curve fitting model
and discuss the algorithm employed to solve the correspond-
ing optimization problem, i.e., the Levenberg-Marquard
method. Finally, we discuss the employed techniques to
validate the efficiency of our model.

The optimization phase is based on three target real-world
data set (real data or observations), collected from official
data sources. Each data set represents a vector of length N
where N is the number of training days, i.e., period during
which real data is observed and collected. The vectors are
defined as follows:
• Deaths (Dr ): the elements of this vector indicate the total
number of confirmed deaths due to COVID-19 at each
day officially reported.

• Recovered (Rr ): the elements of this vector indicate the
total number of recovered cases at each day officially
reported.

• Infected (Ir ): each element of Ir contains the total
number of confirmed infected cases officially reported.
This accounts for previous infected cases plus the new
reported cases that day.

In this paper, we investigate a multiple data set optimization
problem, in which we aim to fit the curve of the model
to the actual data by minimizing an objective function that
takes into consideration the errors between every real and
estimated data at each training day. In the sequel, we denote
by n the nth training day where n = 1, . . . ,N . Hence and for
notation purposes only, we use this discrete notation n instead
of the continuous one t used in (2). Finally, we propose
to employ a weighted Non-Linear Least Squares (NLLS)
method where the objective function that calculates the Mean
Squared Error (MSE) between the predicted and the real data
values given the estimated values of the fitting variables is
expressed as follows:

θ̂ = argmin
θ

N∑
n=1

wn
(
(̂Ir (n, θ )− Ir (n))2

+ (̂R(n, θ )− Rr (n))2 + (D̂(n, θ )− Dr (n))2
)
, (3)

where Ir (n), Rr (n), and Dr (n) are the nth element of the real
data of the infected, recovered, and deaths vectors, respec-
tively. The estimated vectors Îr (n, θ ) = Î (n, θ) + Q̂(n, θ ) +
Ĥ (n, θ ) + R̂(n, θ ) + D̂(n, θ ), R̂(n, θ ), and D̂(n, θ) are the
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predicted data of the total number of Ir (n), Rr (n), and Dr (n)
given a value of a predict vector θ , respectively. The opti-
mized vector θ̂ includes the list of all target parameters as
follows:

θ̂ = [β̂ δ̂ ρ̂ µ̂ λ̂ χ̂ α̂ σ̂ ε̂ ν̂ τ̂ ]T , (4)

and finally, wn are the weights of the data where wn ∈ [0, 1]
and

∑N
n=1 wn = 1. Notice that the Îr (n, θ ) is expressed as

the sum of all the states that involve infected, recovered, and
deceased persons as per the definition of Ir (n). The idea of
employing weights is to endorse the fitting process and force
the model to prioritize the last trends of the spread for each
country and prevent the initial periods from miss-leading the
model, and hence, ensure that the forecast follows the same
latest trends to provide accurate forecast results that are on the
verge of reality. While uniform weights maintain the same
importance level for all the observed results for each day,
the piecewise constant, linear, and exponential weights will
increase the importance of the latest observed results and
neglect the earliest ones uniformly, linearly, and exponen-
tially, respectively. A convenient choice of the weights, that
does not completely neglect the first observations, will not
necessarily lead to an overfitting since the predictions for a
given day t are highly correlated with the data of the last
recent period. In other words, the number of active infected
cases reported in the recent few past days are those who are
going to spread the disease and contaminate a part of the sus-
ceptible population S. This correlation relationship between
day t and the previous days is perfectly modeled using the
weights that will give a higher importance with respect to
time so that our model will learn two major properties to
help the forecast: i) the smooth evolution of the weights will
help optimize the parameters of the model and so learn the
relationship between the states and ii) the last trends will help
achieve accurate forecasting results.

A. MODEL WEIGHTS
The objective function of the fitting problem is weighted
according to the training days. Hence, the values of the
weights will allow the possibility to orient the focus of the fit-
ting model towards some specific days more than the others.
This will allow, for example, to relax the focus on the fitting
model on the first periods of the training where the number
of infected cases is very low. Indeed, the ultimate objective
is to predict the evolution of the COVID-19 spread right after
the training phase. In this paper, we test the following three
configurations of weights:
• Uniform function: this is the typical model, which is

investigated in most of the previous studies. In this model,
a uniform weight is assigned to each training day, i.e., wn =
1
N ,∀n. Hence, all the days are treated similarly by the fitting
model.
• Piecewise constant function: in this case, some consec-

utive days are given additional priority more than the others,
e.g., w1 = . . . ,= wn0 = p1 and wn0+1 = . . . ,= wN = p2
where n0p1 + (N − n0)p2 = 1, p1 < p2, and n0 ∈ [1,N ].

In this example, the fitting model will focus less on the n0

first days than the remaining days. Hence, less fitting errors
will be tolerated for the first days.
• Non-decreasing function: in this model, the first day will

be assigned the least weight value while the last day will be
assigned the highest weight value. The weights are assigned
to the remaining days following a non-decreasing function,
e.g., linear or exponential function. Hence, the fitting model
will progressively give more importance to last days. This is a
very important choice since the first days of the pandemic are
usually characterised with a low number of deaths, infected
cases, and recovered persons.Moreover, as we aim to forecast
the future evolution of the pandemic, it is worthwhile to have
accurate fitting at the end of the fitting period so as to obtain
exact trends at the last portion of each data.

B. OPTIMIZATION PROBLEM
The ODE system presented in (2) could be expressed in the
following non-linear matrix form:

Ẋ(t) = A× X(t)+ B× (S(t) · I (t)) , ∀t, (5)

where

X(t) = [S(t)P(t)E(t) I (t)Q(t)H (t)R(t)D(t)]T , (6a)

Ẋ(t) = [Ṡ(t) Ṗ(t) Ė(t) İ (t) Q̇(t) Ḣ (t) Ṙ(t) Ḋ(t)]T , (6b)

B =
β

P̄
[−1 0 1 0 0 0 0 0]T , (6c)

Note that Ẋ(t) is the derivative with respect to time of X(t).
Finally, (7) as shown at the bottom of the next page.

Hence, the Non-Linear Least squares optimization prob-
lem for the proposed mechanistic model for COVID-19
characterization:

(P) θ̂ = argmin
θ

N∑
n=1

wn
(
(̂Ir (n, θ )− Ir (n))2

+ (̂R(n, θ)− Rr (n))2 + (D̂(n, θ )− Dr (n))2
)
,

subject to:
ODE model: Ẋ(n, θ ) = A× X(n, θ )

+ B× (S(n, θ) · I (n, θ )) , ∀n,
Initialization: P(0) = P0, S(0) = S0, E(0) = E0,

I (0) = I0, Q(0) = Q0, H (0) = H0,

D(0) = D0, and R(0) = R0. (8)

C. FITTING ALGORITHM AND EVALUATION METRIC
Due to the non-convexity of the problem, the NLLS optimiza-
tion problem given in (8) cannot be analytically and optimally
solved.

In this case, there are two major approaches. It is possible
to exploit meta-heuristic algorithms to solve the NLLS prob-
lem [50]–[52] or employ numerical optimization algorithms
that attempt to reach local minima with gradient-based tech-
niques. The latter method is exploited in this paper. The main
representative of this class of algorithms is the Newton algo-
rithm. A downside of this algorithm is that it is considerably
time-consuming due to the need for line searches and the
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computation of theHessianmatrix. To solveNLLS estimation
problems, it is often better to exploit the quadratic structure of
the cost function, as it is done by theGauss-Newton (GN) [53]
and Levenberg-Marquard (LM) [54], [55] algorithms, which
are, by far, the most popular NLLS optimization algorithms.
In this study, we exploit the fitting algorithm to estimate
the parameters presented in (2) that minimize the squared
error between the real data Ir (n), Rr (n), and Dr (n) and their
corresponding predicted values.

1) NLLS OPTIMIZATION ALGORITHM:
LEVENBERG-MARQUARDT (LM)
The LM algorithm [54] is an iterative technique to solve
NLLS problems. This method is a combination of the
Gradient Descent algorithm, that is efficient for early itera-
tions, but performs slowly when it gets close to the best-fit
values, and the GN algorithm, that is inefficient in early
iterations, but performs perfectly when close to the best-fit
values. The LM method uses steepest descent in early itera-
tions and then gradually switches to the GN approach which
means that in many cases it finds a solution even if it starts
very far from the final minimum value and hence, it guar-
antees convergence. In fact, LM method can be seen as a
generalization of the GN algorithm as its normal equations to
estimate the fitting parameters are derived from those of the
GNmethod with an additional damping factor that is adjusted
every iteration.

LM is slightly more computationally demanding than GN,
but it converges for all initialization combinations that are far
away from the solution, where GN often fails [56]. LM shows
global convergence properties and is, therefore, the preferred
method of choice in common NLLS problems and conse-
quently for our problem [56]. Finally, to ensure an efficient
fitting, especially that the optimization target function is non-
convex, we consider multiple starting point optimization (i.e.,
multiple starting points of θ) to select the best fitting solution
among the tested ones.

2) FITTING ALGORITHM VALIDATION
The model validation is the most important step in the model
building process. Our model validation process is composed
of two levels:
• Graphical validation: In this level, we validate the model

by comparing the original data and the fitted data in the
same graph. This method is important to visualize the overall
variation of the model through time.

• Numerical validation: In this level, we calculate numer-
ical metrics to evaluate the error between the estimation
and the real data and to verify the wellness of the fit. The
employed metrics are classified into three types [57]:
• Scale-dependent metrics: These metrics provide insights
about the difference between the predicted and mea-
sured values. The most commonly used are: Mean
Absolute Error (MAE) and Normalized Root Mean
Squared Error (NRMSE) normalized by the difference
between maximum and minimum actual data. Note that
our observed data, in practice, is not a constant data.
Their expressions are given as follows:

AEn = |yn − ŷn|, ∀n, (9a)

MAE =
1
N

N∑
n=1

AEn, (9b)

RMSE =

√√√√ 1
N

N∑
n=1

(yn − ŷn)2, (9c)

NRMSE =
RMSE

max(yn)−min(yn)
, (9d)

• Percentage-errormetrics: Thesemetrics provide insights
about the percentage of the difference between the
approximated and observed values. The most commonly
used is the Symmetric Absolute Percent Error (SAPE).
Its expression and its mean are given as follows:

SAPEn =
|yn − ŷn|(
yn + ŷn

2

) , ∀n, (10)

SMAPE =
1
N

N∑
n=1

SAPEn. (11)

• Relative-error metrics: These metrics provide insights
about the error with regards to its real observed values.
The most commonly used are the Mean Relative Abso-
lute Error (MRAE) and the coefficient of determina-
tion R2, which are expressed as follows:

MRAE =
1
N

N∑
n=1

|yn − ŷn|
|yn − ȳ|

, (12a)

R2 = 1−

N∑
n=1

(yn − ŷn)2

N∑
n=1

(yn − ȳ)2
, (12b)

A =



−τ 0 0 0 0 0 0 0
τ 0 0 0 0 0 0 0
0 0 −δ 0 0 0 0 0
0 0 δ −(γ + λ+ σ ) 0 0 0 0
0 0 0 γ −(µ+ ε + χ ) α 0 0
0 0 0 σ ε −(α + ν) 0 0
0 0 0 0 µ 0 0 0
0 0 0 λ χ µ 0 0


(7)
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where ȳ is the mean value of the observed data.
Similarly to the percentage-error metrics, the relative-error

metrics takes into account the percentage change between
the estimated and the observed values of the data. However,
it provides insights on the quality of the training in general by
considering the order of amplitude of the data that may sig-
nificantly vary between different parts of the training period.
The values of these metrics are independent of the population
of the studied countries. A perfect fitting should achieve an
MRAE and R2 close to 0 and 1, respectively.
Our model is tested and validated using those two levels of

validation in the following section.

IV. RESULTS & DISCUSSION
In this section, we present the simulation results, investi-
gate the proposed model performance, and validate the use
of the proposed fitting technique. To this end, we start by
scrutinizing the COVID-19 spread in Russia to highlight
the effectiveness of the training of the LM algorithm and
the use of different weights in the fitting objective function.
Afterwards, we present the fitting results for all the other
investigated countries, namely Brazil, Italy, and USA using
the proposed approach and the best weight combination.
We also compare the performances of the employed LM algo-
rithm to those of another fitting approach, i.e., BFGS [43].
The proposed mechanistic model is investigated using a real
world data set containing the number of reported infected,
deceased, and recovered cases for the different countries.
The Novel Coronavirus (COVID-19) Cases Data data set
used in this paper is obtained from The Humanitarian Data
Exchange website.1 The initialization values of each country
are given in Table 2. In this study, the training period starts on
January 22nd, 2020 and ends on June 4th, 2020 unless other-
wise stated. For some countries, we suppose that E0 = 1 even
though no confirmed cases are reported, namely for the case
of Russia and Brazil, to take into consideration the delay of an
exposed case to be reported, i.e., the time from being exposed
to the virus until the appearance of the symptoms. Finally,
the estimated parameters obtained from the fitting are used
to forecast the future pandemic spread for each country by
integrating the ODE equations over the desired period. The
selected countries are chosen due to their high number of
confirmed cases reported toWHO. They are classified among
the highest infected countries and witnessing varying trends,

1https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases

TABLE 2. Initialization of the ODE model states in millions for each
investigated country.

which might be challenging for our model. The forecast of
the spread for each country is over a period 1t = 365
days, starting from January 22nd, 2020. This work is imple-
mented using python 3.7. As for the ODE integrator, we use
the SciPy library where we employ the ‘odeint’ function
that solves systems of first-order ordinary differential equa-
tions using ‘lsoda’ implementation of the FORTRAN library
‘odepack’. For the fitting, we employ the python library
‘Lmfit’ that solves the formulated optimization problem (P)
using a predefined algorithm (e.g., LM andBFGS algorithms)
Taking advantage of the ‘odeint’ function, we use amulti-start
optimization to run the ‘Lmfit’ and then, randomly select
initialization values achieved the best fitting performance
(i.e., minimizing the objective function of the optimization
problem (P)). Note that, we selected the same initialization
values for both fitting algorithms (LM and BFGS).

A. TRAINING PHASE AND WEIGHTS IMPACT: THE CASE
OF RUSSIA
During this phase, we employ the LM algorithm to solve the
fitting optimization problem and estimate the ODE system
parameters. To this end, we investigate the effect of weights
employment in the fitting process. In this paper, three forms
of weights are considered: piecewise constant, linear, and
exponential weights. The expressions of the employed nor-
malized weight functions are given, respectively, as follows:

∀n = 1, . . . ,N ,

wpw
n =

{
25 · 10−4 ifn < 70
125 · 10−4 ifn ≥ 70

(13a)

wlnr
n = Aln+ Bl, where Al=8.75 · 10−5,Bl = 1.5 · 10−3,

(13b)

wexp
n = Ae exp(Ben)+Ce, where Ae = 3 · 10−5,

Be = 4 · 10−2,Ce = 6 · 10−3. (13c)

Note that the weight functions are obtained after normaliza-
tion over the number of training days (N = 135 days) and
that the sum of their values is equal to 1. Fig. 2 plots the
curves corresponding to the considered normalized weight
functions.

In Fig. 3, we represent the variation of the MSE error
with respect to the training iterations for the case of Russia
employing the three different weight functions and the LM
algorithm. It is shown that, in all cases, the LM reaches
stagnation at different minimum values, which confirms the
convergence of the model. However, these values are very
close to each other for all weight functions. Note that the
plotted MSE in this figure considers the different data sets
all together, i.e., the infected, deceased, and recovered data.
Indeed, it plots the achieved weighted objective function
expressed in (3) during the training process.

Graphically, we visualize the trained fitting of the different
observed states separately using the LM algorithm for the
different functions of the weights in Fig. 4. By observation,
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FIGURE 2. Plots of the investigated normalized weight functions.

FIGURE 3. Weighted MSE evolution during the training phase for each
weight function.

these graphs confirm that the exponential and linear weights
outperform the piecewise constant function of the weights.
Indeed, although the fitted data do not exactly fit the real data
at the beginning of the pandemic, it successfully follows it
at the latest training days, which makes the models ready to
forecast with respect to these trends.

The fitting results for each weight function using the LM
algorithm are numerically corroborated in Table 3 where
we provide the achieved average values for the different
validation metrics. The table shows that the use of expo-
nential weights allowed to obtain less error than the other

TABLE 3. Russia: Numerical validation of the LM fitting algorithm using
the different weight functions.

investigated weights in terms of all the evaluation metrics:
state-dependent, percentage-error, and relative-error metrics.
For instance, the MAE with the exponential weight provides
is around 44215 which is 51% less than the MAE obtained
with the piecewise constant weight function. In terms of R2,
that reflects the goodness of fit, we can notice that the expo-
nential function of the weights provide the highest value 0.94,
which is very close to 1, compared to the R2 achieved by the
piecewise constant weight function (i.e., R2 = 0.86). This
proves the efficiency of the fitting of the exponential weights.
Indeed, as mentioned earlier, the non-decreasing functions of
the weights allow the fitting algorithm to focus more on the
latest training days in progressive way and due to the nature
of the pandemic which starts with very small number of cases,
the fitting errors are extremely reduced for relatively high
number of infected, deceased, and recovered cases.

Finally, in Fig. 5, we plot the daily values for each training
day of the APE, RAE, and AE metrics using the exponential
function of the weights. The figure clearly illustrates the
focus of the fitting on the last days of the training. Indeed,
the SMAPE is significantly reduced for the different states
during that period. The RAE is again confirming the effi-
ciency of the fitting where the relative-error is less than 2%
for the whole training period except some particular spots as
the fitting is not exactly perfect. Finally, the AE highlights the
absolute error for each day and state. Although it may reach
the order of thousands, this error remains small compared to
the real total number of infected and recovered cases.

Throughout the rest of this section, we proceed with the
exponential function of the weights to perform the fitting
process.

B. FITTING PERFORMANCE AND VALIDATION
In this section, we present the results of the proposed
weighted fitting technique using the LM algorithm for dif-
ferent countries. Afterwards, we compare the efficiency of
the proposed fitting model to another fitting algorithm, i.e,
the BFGS.

1) THE CASES OF RUSSIA, ITALY, AND BRAZIL
We propose to provide the fitting results for several countries
to prove that our model is capable of providing accurate
fitting in many situations. Indeed, we chose Italy as one of
the first affected countries witnessing one of the highest death
rates during the first four months of the pandemic, and which
is showing now stable and much safer situation. Russia is
also a very interesting scenario to study due to its unique
spread profile (i.e., Russia witnessed a tremendous spike in
COVID-19 virus infections after a period characterized with
a low infection rate). Finally, we investigate the case of Brazil,
which is currently witnessing its spike.

The results presented in Fig. 4, Fig. 6, and Fig. 7 show that
the model can adapt the last trend of the data for all previously
mentioned countries with some minor errors. Indeed, due
to the existence of three different data sets having different
orders of magnitude and trends, the fitting algorithm may not
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FIGURE 4. Russia: Graphical validation of the LM algorithm for different weight functions.

FIGURE 5. Russia: Illustration of the values of the APE, RAE, and AE metrics versus the training days using the exponential weight function.

fit exactly all the curves but globally the fitting is effective
as confirmed by the achieved metrics presented in Table 4.
Italy is showing the weakest results among the three investi-
gated countries. Although it achieves similar R2 as Russia,
the fitting of Italy reaches around twice the MRAE value
obtainedwith Russia. It is also confirmed graphically in Fig. 6
for the infected and due its small population. Notice also the

TABLE 4. Numerical validation of the LM fitting algorithm using the
exponential weight function for Russia, Italy, and Brazil.

MAE of Italy is low compared to Russia and Brazil because
of the low number of infected cases reported as well as its
small population. The fitting of Brazil is the most accurate
as confirmed graphically and with the achieved evaluation
metrics (R2 = 0.99 and MRAE = 0.34). Minor errors are
noticed mainly during the first period of the pandemic as
tolerated by the utilized weight function.

Furthermore, in this study, we compare the performance
of the proposed fitting algorithm to the one of another fit-
ting algorithm employed in [43] where the BFGS algorithm
is used to resolve the fitting problem. In Fig. 8, we plot
an example of the fitting for the case of Russia using the
exponential weight function and BFGS algorithm. It is shown
that the BFGS partially fails in fitting all the three data sets,
especially the latest days of the infected and recovered cases.
In Table 5, we provide a performance comparison between the
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FIGURE 6. Italy: Graphical validation of the LM algorithm using the exponential weight function.

FIGURE 7. Brazil: Graphical validation of the LM algorithm using the exponential weight function.

FIGURE 8. Russia: Fitting results of the BFGS algorithm using the exponential weight function.

LM and BFGS algorithms for all the considered metrics and
the investigated countries. We notice that LM considerably
outperforms the BFGS especially in Italy and then, Russia.
However, both algorithms achieve similar results for the case
of Brazil with a certain advantage for the BFGS in terms
of MAE. In general, the LM algorithm provides much more
accurate results than the BFGS.

2) THE CASE OF USA
In this study, we consider the USA as a special case. Indeed,
unlike other countries which are controlled by a single author-
ity, the USA is composed of fifty different states. Each one of
them is governed independently of the other and in a different
manner. For example, some states are imposing the lockdown,
e.g., NY and NJ, and the stay home order at the beginning of
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FIGURE 9. USA (Phase I): Graphical validation of the LM algorithm using the exponential weight function for the first period of the pandemic
(January 22nd,2020 till June 13th,2020).

FIGURE 10. USA (Phase II): Graphical validation of the LM algorithm using the exponential weight function for the first period of the pandemic
(June 13th,2020 till July 7th,2020).

TABLE 5. Comparison between the LM and BFGS fitting algorithms using
the exponential weight function for Russia, Italy, and Brazil.

the pandemic (early March) while others do not or impose it
tardily, e.g., FL. Moreover, the Black lives matter protests on
different US states were unpredictable and their impact on the
spread can not be measured and/or characterized and hence,
this can have a huge impact on the spread of the COVID-19.
Hence, treating the US as a single entity is not appropriate and
may lead to inaccurate results due to the heterogeneity of the
states. Therefore, one possible option is to investigate each

state separately as a single homogeneous entity. However,
due to the non-availability of the data in our database that
we used with other countries, we do not include these results
in this study. In fact, we propose to deal with the USA case by
dividing the fitting period into two periods or phases so that
the model will be aware that two waves exist, one dominated
by the northeastern states, NY, NJ, and CT, during the first
four months of the pandemic and the other is dominated
by southern states such as TX, FL, and CA starting from
June 13th. In this scenario, we can obtain relatively accurate
fitting results as shown in Fig. 9 and 10 with R2 = 0.992
and R2 = 0.993, respectively, as given in Table 6. In the
latter table, we also provide the fitting results for the whole
period (Phase I and Phase II combined) where twoCOVID-19
waves are registered. As explained earlier, the fitting was not
successful with a poor R2 = 0.36. Nevertheless, along the
two periods, the model successfully fits the real data and
shows acceptable results despite the previously mentioned
characteristics of the studied country. In other words, for each
period, different parameters of the mechanistic model are
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TABLE 6. USA: Numerical validation of the LM fitting algorithm using the
exponential weight function.

estimated unlike the other studied countries in the previous
sections. Hence, for the USA, we only prove that our model
is able to fit the reported cases representing the spread for
these two periods. Otherwise, combining the two periods will
require the adoption of fitful model parameters that vary with
time, e.g., β(n) instead of constant β. This study is more
elaborate and will be the focus of our future extension of this
work.

The estimated parameters of the model of each country are
provided in Table 7. These values are used to forecast the
future evolution of the pandemic in the next section.

TABLE 7. Estimated model parameters for each investigated country.

C. EXPECTED SPREAD AND FORECASTING VALIDATION
In this section, we extrapolate the COVID-19 spread in the
studied countries using our fitted models to forecast its evo-
lution during the next period. We also discuss in details the
evolution of each state. In addition, we provide the upper and
lower bounds of the expected spread representing the worst
and best cases scenarios for these countries based on our
model. We particularly select to investigate the forecasting
results of Russia and Italy as they are already reach their
peaks unlike Brazil. The case of USA is also omitted due
to the inaccurate fitting results that we discussed the reasons
earlier. Finally, we compare the forecasting performance of
our model to the one of the RW model.

The forecasting per state, for Russia and Italy, are shown
in Figs. 11 and 12, respectively. In these figures, the total
sick represents the sum of the population of the states E ,
I , Q, and H , that are already contaminated with the virus.
As for the confirmed cases, it stands for all the reported
cases represented by the states I , H , and Q. The fitting
model based on the current spread parameters expects that
the cumulative number of infected cases will reach about

seven million cases and 250 thousands in Russia and Italy,
respectively. The forecast results for Italy show that the
infected cases are being reported as soon as the exposed
cases start to appear as it shown by evolution of the pink
(exposed cases) and light green curves (confirmed cases) of
Fig. 12. Moreover, the big gap between the confirmed cases
and the exposed cases (confirmed cases is always higher than
exposed cases) reflects that the country is efficiently identify-
ing the infected cases, which proves the effectiveness of the
prevention approach employed by this country to avoid higher
propagation of the virus. However, for Russia, Fig. 11 shows
that the number of exposed cases is more important than the
number of confirmed cases which explains the huge number
of cumulative cases that are expected to be reported by the end
of the forecast period. Nevertheless, these results may change
in practice. The local authorities, in the case of Russia, may
impose stricter policies which may limit the propagation of
the spread. Recall that our forecast are based on the real data
observed in each country and hence, the forecast will extrapo-
late the evolution of the model states based on the spread data.
Hence, if a country is not adopting an effective strategy at the
beginning of the pandemic, the estimated results might be
relatively critical as it was expected by our model for Russia.

Also, in Figs. 11 and 12, we observe that the majority
of confirmed cases are at the quarantine or hospitalized
state, i.e., either being quarantined at home (red curve) or
being quarantined at hospitals (black curve), which proves
the effectiveness of the stay home orders taken in these coun-
tries and their policies to limit the spread. However, we can
notice that, in Italy, the quarantining process starts around
45 days since the beginning of the training period, which is
around March 10th the day when the stay home order was
announced). In Russia, the lockdown starts around 75 days
(end of March) and the number of cases is expected to be
very high if no actions are taken to stop the spread. By the start
of 2021 we expect that few infected cases will be reported and
the spread will be significantly reduced for both countries.

Since our fitting model is trained during the first four
months of the pandemic spread, the forecast results may
not be accurate in practice. Indeed, several policies can be
further ordered and social distancing will be much better
applied and hence, these actions may slow down the spread.
In other scenarios, people will not conveniently apply the
COVID-19 prevention guidelines anymore, which may speed
up the propagation of the virus. Therefore, in Figs. 13 and 14,
we provide the uncertainty regions that may characterize the
COVID-19 spread in terms of number of active cases and
number of deaths. The objective is to use the parameters
estimated by our model and vary the infection rate, β, that
reflects the daily number of contaminated person that an
infected person can infect. By varying this parameter, we can
evaluate the best and worst case scenarios that may occur
for these countries. In Figs. 13 and 14, we also provide the
observed results during the seventeen days right after the
fitting period (fit/forecast split in the figure). The objective
is to show that the fitting and the resulting forecast are
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FIGURE 11. Russia: COVID-19 spread forecasting results and expected evolution of the different states based on the estimated parameters.

FIGURE 12. Italy: COVID-19 spread forecasting results and expected evolution of the different states based on the estimated parameters.

accurate and have the same trends as it is observed in reality
in terms of reported infected and deceased cases. Regarding
the expected evolution, we notice that for Italy the number
of active cases will significantly diminish and the number
of deceased persons will reach its maximum and slightly
increases. However, for Russia, if no actions are taken by the
authorities and officials, our model expects that the number
of infected cases (new cases plus active cases) will keep
increasing until reaching a peak in August and then, it will

start decreasing significantly.Moreover, the number of deaths
is expected to continue growing and slowing down starting
from September.

In the sequel, we provide two comparisons of our proposed
model with a reference model, namely the RW approach with
drift algorithm. The comparison consists of forecasting the
data for the next 31 days right after the fitting period.We com-
pare the results graphically and numerically to evaluate the
efficiency of the proposed model. This comparison targets
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FIGURE 13. Russia: Best and worst possible spread scenarios by varying the infection rate β.

FIGURE 14. Italy: Best and worst possible spread scenarios by varying the infection rate β.

only the infected and deaths states due to the lack of data for
the other states, which prevents us to build their respective
RW models.

Initially, the RW model is built using the observed data
during the fitting period. Then, it is used to forecast the evo-
lution of the number of active and deceased cases. We have
generated two random forecasting attempts that we denoted
by RW model (Test I) and RW model (Test II). In addition
to that, we have provided the forecast based on the estimated
mean (RWmean) and the forecasts based on a 75% prediction
interval, named RW upper bound and RW lower bound where
there is 75% chance that the predicted observations will fall
within their ranges.

Figs. 15 and 16 plot the forecast number of deceased
and infected cases for Russia and Italy, respectively using
our proposed model (with exponential weights) and the RW
model. In each figure, six curves are presented with different
colors: the observed data during the whole period (red), our
proposed model during the fitting and forecasting periods
(black), the RW mean (yellow), the RW model (Test I) and
(Test II) (black and brown, respectively), and finally, the 75%
prediction interval identified by the two green limits. The
curves related to the RW model are plotted during the fitting
period. The split between the fitting and forecasting periods
are indicated by the purple vertical line. For fairness reasons,
we train the models (proposed and RW) over the same fitting

13280 VOLUME 9, 2021



H. Friji et al.: Generalized Mechanistic Model for Assessing and Forecasting the Spread of the COVID-19 Pandemic

FIGURE 15. Russia: Forecast of the infected and deceased cases. Comparisons between the proposed and the RW models.

FIGURE 16. Italy: Forecast of the infected and deceased cases. Comparisons between the proposed and the RW models.

period (135 days) and investigating their prediction perfor-
mance for a forecasting period of 31 days.

The numerical results related to Figs. 15 and 16 are given
in Tables 8 and 9, respectively, where the NRMSE and
SMAPE metrics for each forecasting attempt are provided.
The results show that the RWmodel has a wide range of pos-
sible manifestations due to the huge variation of the observed
data during the fitting phase. A random attempt to forecast
the observed data may not necessary provide accurate results

TABLE 8. Russia: Numerical validation of the forecast results.

as shown in the Tables. For instance, in terms of NRMSE for
the case of Russia, our model, that provides a deterministic
forecast, achieves NRMSE values equal to 0.99 and 0.066 for
the infected and deceased, while the RW attempts are quite
far from these results as indicated in Table 8. Through these
tables, we also investigate the forecasting results using two
different weight functions: the uniform (Uni.), no weights
and the exponential (Exp.) weights. It is shown that NRMSE
and SMAPE values using the exponential weights are slightly

TABLE 9. Italy: Numerical validation of the forecast results.
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FIGURE 17. Russia: Forecast of the infected and deceased cases. Comparisons between the proposed and two versions of an SEIRD
model.

lower than the ones obtained with the uniform weight func-
tions. This result is due to the more accurate fitting obtained
with the exponential weights that guarantees a certain corre-
lation between the forecast observations and the fitted ones.

However, if we consider the mean value, which is very
representative of the RW model, we can notice that our pro-
posed model outperforms in most of the cases (e.g., infected
cases for Italy and infected and deceased cases for Russia).
In many cases, the RW model fails in accurately predicting
the observed data due to its wide prediction interval even
if the RW mean is showing accurate results. On the contrary,
the deterministic prediction of our model has efficiently pre-
dicted the future pandemic spread.

The achieved metrics given in Tables 8 and 9 clarify and
corroborate the graphical results and proves that our approach
effectively outperforms the RW model in most of the cases.

D. MODEL COMPARISON WITH THE SEIRD MODEL
In this section, we compare our proposed model to a simple
model with five states only (Susceptible, Exposed, Infected,
Recovered, Deaths) as described in [58] and defined in this
paper as the SEIRD model. The graphical results shown
in Fig. 17 present the forecasting attempt of the observed
data using our proposed model in additio to weighted and
unweighted versions of the SEIRD model. At the training
phase, we can notice that the three models perform, approx-
imately, with the same level of efficiency. On the contrary,
at the forecasting phase, we can easily notice that our model
outperforms the two versions of the SEIRD model. In fact,
our proposed model follows the trend of the observed data
during the forecasting period. Additionally, from these fig-
ures, we can deduce the effect of the weights on the forecast
performance. In fact, the forecast of the number of infected
cases proves that the weighting technique helps in improv-
ing the forecast of the observed data but it will reduce the
efficiency of the fitting. Indeed, if the model is trained to
perfectly follow the training data, then the model will over-fit
the training data and it will perform badly during the forecast.
Table 10 contains the NRMSE and SMAPE metrics, defined

TABLE 10. Russia: Numerical validation of the forecast results.

in Section III-C2, of the proposed model as well as the
weighted and unweighted versions of the SEIRD model. The
numerical results in Table 10 confirm the graphical results
and prove that the outperformance of the proposed model
compared to the two investigated versions of the SEIRD
model. For instance, in terms of NRMSE, the proposedmodel
achieves 0.032 while the SEIRD model cannot reach below
0.11 for the forecast deaths. Similar observations are noticed
for the SMAPEmetric and the forecast infected cases as well.

V. LIMITATION OF THE STUDY
In this study, we have proposed a mechanistic model for
assessing and forecasting the spread of the COVID-19 pan-
demic. The pandemic of interest is very novel and even
though it has already spread all over the world, scientists
still do not have enough knowledge to model it properly,
especially due to the lack of data and evidence about its
contamination process. In this study, we have made some
assumptions to conceive our model, which may impact its
performance. First, we have considered a closed system,
which does not distinguish between local and non-local cases.
Hence, the spread is assumed to be originated from a first
local case or a first imported case. At the time of this study,
there is no available data that provide accurate and precise
statistics about non-local cases and whether they are respon-
sible for the virus spread or not. Therefore, the model only
considers the local spread of the virus and discards any cases
imported from outside of the country of interest. The study
also assumes long-term immune memory. In other words,
cases that are recovered are assumed to be immunized against
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the virus and hence, can not be contaminated again. Indeed,
the available data set does not provide detailed information
about these scenarios and there is no strong evidence for
short-term immune memory.

Another future improvement of this study could be the
concrete consideration of asymptomatic cases [59]. In this
study, we have assumed that every case is symptomatic at
least for a short period of time, e.g., 1 day, and hence, each
infected case must pass by a quarantine state even for a
short period. Statistically, around 30% of patients who tested
positive were asymptomatic and may spread the virus. In this
study, we did not distinguish between these the asymptomatic
and symptomatic cases due to the absence of related data for
each of the investigated countries. Therefore, we have sup-
posed that the COVID-19 symptoms with different degrees
(light to severe) will appear on all the infected cases and will
force them to stay home, i.e., quarantined for at least one day
before being totally healed from the diseases.

This study is based on an ODE system with non-variant
parameters and especially a fixed infection rate β. By con-
sidering that an infected person will be placed on quarantine
before its final recovery will allow our model to learn that
an infected case in state I will not affect people daily unlike
typical SIR and SEIR models. This assumption will make
our model closer to reality by allowing it to automatically
learn that an infected person may or may not infect people
daily and will help, when needed, determine accurate basic
reproduction number values regardless of the constant param-
eters. Other works are considering a similar scenario where
recovery is only possible through quarantine can be found
in [37]. However, a more elaborate and accurate model would
consider a time-varying infection rate. In that case, more
precise results could be obtained.

Finally, our model assumes that the investigated countries
have centralized governmental systems. Hence, the human
decisions, such as border openings, lock-down, indoor ser-
vices, and mask mandates, and their impacts on the disease
spread have uniform consequences As a result, the predic-
tion of the future evolution of the pandemic within federal
countries, such as the USA, can not be accurately performed
with our model due to the fact that every state has its own
regulations and policies and hence, it is more convenient
to investigate each state separately and devise a generalized
model for the whole country.

All these assumptions have made our forecasting results
valid for a short-period of time, e.g., 30 days as shown by
our forecasting results. Our study does not claim long-term
prediction of the disease spread unless similar human factors
and management practices are maintained.

VI. CONCLUSION
In this study, we developed a mechanistic model composed of
eight states to characterize the COVID-19 spread in different
countries. An ODE system is formulated to mathematically
model the interactions between the different states. A curve
fitting using real world observed data sets is developed to

determine accurate fitting solutions and estimate the param-
eters of the ODE model. We use the LM algorithm to solve
and estimate the ODE system parameters. We have shown
that the employed algorithms outperform a reference model,
i.e., BFGS. The fitting technique is represented along with
the model that aims to endorse its forecasting results by
focusing on the last trends of the data, and hence, giving
accurate results that are on the verge of these trends. Multiple
countries with different spread trends are investigated with
the proposed work. We reveal that our model is able to fit
the real world data of different countries showing different
spread trends, namely, Russia, Brazil, Italy, andUSA.Despite
of the challenges and the various human factors, i.e., social
distancing, quarantine, wearing masks that are not directly
characterised by our model and that my affect the spread and
its evolution. It is shown that accurate forecasting results are
obtained, e.g., Italy and Russia.

The proposed model is not only one of the rarest extended
mechanistic models that include all the possible eight states
that an individual may go through during the illness cycle but
also it is the only model that employs a weighted fitting tech-
nique to follow the latest trends in addition that the proposed
model is trained on three target data sets. However, this work
can be endorsed by the employment of variable parameters
that change over the time to better fit the variations of the
data and hence, the challenges related to the case of USA can
be addressed. Moreover, once more detailed data becomes
available, it will be very interesting and challenging to extend
our model and investigate more complicated and elaborate
scenarios, e.g., considering the re-contamination of healed
cases and incoming non-local cases.
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