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ABSTRACT Solar radiation is increasingly used as a clean energy source, and photovoltaic (PV) panels that
contain solar cells (SCs) transform solar energy into electricity. The current-voltage characteristics for PV
models is nonlinear. Due to a lack of data on the manufacturer’s datasheet for PV models, there are several
unknown parameters. It is necessary to accurately design the PV systems by defining the intrinsic parameters
of the SCs. Various methods have been proposed to estimate the unknown parameters of PV cells. However,
their results are often inaccurate. In this article, a gradient-based optimizer (GBO) was applied as an efficient
and accurate methodology to estimate the parameters of SCs and PV modules. Three common SC models,
namely, single-diode models (SDMs), double-diode models (DDMs), and three-diode models (TDMs) were
used to demonstrate the capacity of the GBO to estimate the parameters of SCs. The proposedGBO algorithm
for estimating the optimal values of the parameters for various SCs models are applied on the real data of
a 55 mm diameter commercial R.T.C-France SC. Comparison between the GBO and other algorithms are
performed for the same data set. The smallest value of the error between the experimental and the simulated
data is achieved by the proposed GBO. Also, high closeness between the simulated P-V and I-V curves is
achieved by the proposed GBO compared with the experimental.

INDEX TERMS Gradient-based optimizer, photovoltaic modules, diode models, renewable energy, solar
energy.

I. INTRODUCTION
Human life is stable due to energy, and improving life requires
the development and progress of energy. As conventional
sources of energy are depleted, they cause environmental
exacerbation. Considering the above, the dependence on
renewable energy sources is inevitable because it is clean,
reduces environmental problems, exists in abundance, and
has a variety of uses [1]–[3].

The main types of renewable energy sources are solar
energy, wind energy, etc. Recently, a huge improvement in the
performance of energy generated from these sources has been
developed [4]–[6]. The use of clean and renewable energy
sources is one of the most point in the research study [7]. One
of the main renewable energy sources is the solar PV technol-
ogy, that is used in several applications such as satellites [8],
water desalination [9], cooling and heating [10]. So that the
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accurate modeling and simulation of solar cell is performed
with several techniques such as adaptive control [11], [12]
and numerical simulation [13]. Themaintenance of SC panels
is required [14].

SCs are constructed with semiconductor material of P-N
junction that has a quasi-neutral region, space-charge region,
and defect region. The losses in this region are due to the
recombination and diffusion of the charge transporter. These
losses must be considered in the development of the PV
model. A photo-generated current is expressed in the ideal
model of a PV cell. The value of the current generated from
a real PV model veers about the experimental value due to
losses in the semiconductor P-N junction. This leads to the
establishment of the PV model in SDMs [15]. This model is
simple and fast. Furthermore, the quasi-neutral region losses
can be expressed into the SDM. Meanwhile, a DDM was
applied to achieve higher accuracy. The DDM presents the
losses expressed in the SDM and the space charge region
losses. Meanwhile, a TDM was applied to achieve more
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accuracy than the SDMs and DDMs. The losses expressed
by the TDMwere defect region losses and the ones described
in the DDM [16].

To properly model the behavior of the PV modules,
the diode representations possessed some parameters that
could affect their output. They needed to be calibrated accord-
ing to the information used in the design. There are five
unknown parameters in SDMs, seven in DDMs, and nine
in TDMs. These parameters are commonly estimated in two
ways: by using metaheuristic optimization algorithms [17]
and with iterative mathematical methods [18]. These param-
eters are estimated from multiple approaches, such as the
iterative mathematical techniques that estimate five param-
eters by assuming the value of the ideality factor [18]. Also,
the LambertW-functionmethodwas applied to estimate these
parameters from the datasheet of PV cells [19], [20]. The least
squares method and the Gauss-Seidel method were used as
an iterative approach in the parameter’s extraction [21]–[24].
The complex and nonlinear optimization problem derived
from the identification of internal parameters was solved
with metaheuristic algorithms. This is possible due to the
improvement of swarm intelligence and the development of
computers [25].

Due to the nonlinearity behavior of photovoltaic models
and increasing number of parameters required to be esti-
mated, the metaheuristic algorithms are applied to achieve
high accuracy for the extracted parameters. Several opti-
mization techniques have been used for the extraction and
estimation of PV parameters. The multiple learning back-
tracking search algorithm (MLBSA) was developed to esti-
mate PV parameters with high accuracy and reliability
in [26], in which the grey wolf optimizer (GWO) and the
cuckoo search algorithm (CSA) were combined in a method
called GWOCS to extract these parameters with the aim
of achieving an appropriate balance between the explo-
ration and exploitation in [27], and an opposition-based
sine cosine approach with local search was used to iden-
tify the optimal parameters. This optimizer design was
based on the exploratory and exploitative cores of the sine
cosine algorithm (SCA) [28]. The parameters of PV cells
were also identified using a logistic chaotic JAYA algo-
rithm (LCJAYA) with high performance [29]. In the same
context, the winner-leading competitive swarm optimizer
with dynamic gaussianmutation [30] and coyote optimization
algorithm (COA) [31] are applied for extracting the photo-
voltaic parameters.

The seven unknown parameters in the DDMwere extracted
with different optimization techniques like the moth flame
algorithm and the orthogonal nelder-mead moth flame opti-
mization (NM-SOLMFO), whichwere applied to increase the
accuracy and reliability of the optimization process in [32].
PV parameters were also identified by using the teaching
learning-based and the improved teaching learning-based
optimization algorithm (ITLBO) with high reliability and
accuracy [33]. On the other hand, for TDM, some researchers
assumed the value of the ideality-factor for the second

and third diodes [34]. Then the parameters were estimated
with methods like the interval branch and the bound global
optimization algorithm [35]. Also, the simplified teach-
ing learning-based optimization (STBLO) was applied to
estimate the parameters in TDM [36]. Parameter extrac-
tion was prepared by an improved version of the whale
optimization algorithm using the opposition-based learning
(OBWOA) [37], the chaotic improved artificial bee colony
(CIABC) [38], and Harris hawk optimization (HHO) [39].

In the related literature, several metaheuristic optimiza-
tion algorithms have been applied to extract the PV param-
eters such as the traditional genetic algorithm (GA) and
its improvements [40]–[42], the differential evolution with
its generation [43]–[45], the artificial bee swarm algo-
rithms [46], the improved ant lion algorithm [47], the salp
swarm-inspired algorithm [48], [49], the bio-geography
based optimization [50], the improved cuckoo search algo-
rithm [51], the bird mating optimization [52], the hybrid bee
pollinator flower pollination algorithm [53], the bacterial for-
aging algorithm [54] and the artificial immune system [55].
To estimate the parameter of SDMs, different approaches
have been used like the boosted mutation-based Harris
hawks optimizer [56], the improved electromagnetic-like
algorithm [57], the grasshopper optimization algorithm [58],
the improved whale optimization algorithm [59], and the
shark smell optimizer [60].

MOTIVATION AND CONTRIBUTIONS
Logically, No Free Lunch (NFL) theorem [61] has proved
that there is no metaheuristic optimization technique for solv-
ing all optimization problems. According to this theorem,
the superior performance of an optimizer on a class of prob-
lems cannot guarantee the similar performance on another
class of problems. This theorem is the foundation of many
work in the literature and allows researchers in this field to
adapt the current techniques for new classes of problems.
The purpose of this study is to propose an efficient search
mechanism for estimating the unknown parameters of PV
cells. In this study, a gradient-based optimizer (GBO) was
applied to estimate the parameters of the three common SC
models, namely, single-diode model (SDM), double-diode
model (DDM), and three-diode model (TDM). The GBO
algorithm shows a strong performance of parameter opti-
mization, which has be proved in [62]. The GBO algorithm
has various advantages, such as solution accuracy, balance,
convergence speed, between analysis and exploitation and
also shows a strong performance of parameter optimization,
which has be proved in [62]. This is the foundation and
motivation of this work as well, in which we apply GBO to
solve this problem.

To summarize, the major contributions of this work are:

• The parameters of three models of PV cells were esti-
mated with a new GBO to minimize the objective
function.

• The validation of the GBO algorithm was performed by
changing the PV models (SDM, DDM, and TDM).
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• The parameters extracted from previous works and
another two optimization algorithms were used for com-
parison with the proposed GBO algorithm over the same
data set of R.T.C France solar cells.

• Statistical analysis was used to study the performance
of the proposed GBO technique compared with other
algorithms.

• The efficiency of the proposed GBO was verified by
checking the value of absolute error of the current and
power at the best root mean square.

• The P-V and I-V curves were simulated for the estimated
parameters values to graphically verify the accuracy of
the proposal.

The organization of this paper is as follows: Section II dis-
cusses the analysis of PV diode models, Section III explains
the objective function, Section IV presents an overview for
the GBO, the simulation and results are discussed in V, and
the conclusion of this paper is illustrated in Section VI.

II. ANALYSIS OF PV MODELS
Three PVmodels are analyzed in this section: SDMs, DDMs,
and TDMs. They are electrical circuits that will be described
in detail in the following subsections.

FIGURE 1. Equivalent circuit of the SDM.

A. ANALYSIS OF THE SINGLE DIODE MODEL
The equivalent circuit of the SDM is described in Figure 1.
It contains only one diode that permits the shunting of the
photogenerated current Iph. In the SDM, the total current was
computed by using the following equation:

I = Iph − Id1 − Ish (1)

where, I is the total current, Iph corresponds to the pho-
togenerated current, Id1 is the diode current and Ish is the
shunt resistor current. Since the diode was constructed from
semiconductor materials, some internal parameters can be
manipulated to increase the quality of the output values. The
Shockley diode equation helped to handle the intrinsic values
of the diode. Considering this fact, Eq.(1) is rewritten as:

I = Iph − Is1

(
e
q(V+IRs)
a1kTc − 1

)
−

(
V + IRs
Rsh

)
(2)

In Eq.(2),V is the total voltage, Is1 is the diode reverse satu-
ration current,Rsh is the shunt resistance,Rs is the series resis-
tance. a1 is the non-physical ideality factor, k = 1.3806503×
10−23(J/K ) is the Boltzmann’s constant, the variable q =
1.60217646×10−19C is the charge of the electron, finally Tc
is the temperature in Kelvin. The efficiency of the model is

provided by the outputs V and I and the unknown parameters
of the SDM are (Iph, Is1, a1, Rs, and Rsh). As is expected,
a proper configuration of such a parameter will directly affect
the output.

FIGURE 2. DDM equivalent circuit.

B. ANALYSIS OF THE DOUBLE DIODE MODEL
Another interpretation of the PV modules is the DDM. Its
equivalent circuit is described in Figure 2. The advantage of
a DDM is that it considers the loss of recombination currents
in the depletion region. Notice that the SDM does not include
this information. The total current of the DDM is computed
as follows:

I = Iph − Id1 − Id2 − Ish (3)

By using the Shockley function the Eq.(3) can be rewritten
as:

I = Iph − Is1

(
e
q(V+IRs)
a1kTc − 1

)
− Is2

(
e
q(V+IRs)
a2kTc − 1

)
−

(
V + IRs
Rsh

)
(4)

In Eq.(4), Id2 is the saturation current for the second diode.
a2 is the second diode ideality factor. As opposed to the SDM,
the DDM has seven parameters that must be estimated and
they are (Iph, Is1, a1,Rs,Rsh, Is2, and a2).

C. ANALYSIS OF THE THREE DIODE MODEL
In the TDM, an extra diode is added to the DDM to consider
and simulate the leakage current in the grain boundaries
that are present in commercial CSs [63], [64]. The TDM
equivalent circuit is described in Figure 3 and the total current
is computed as:

I = Iph − Id1 − Id2 − Id3 − Ish (5)

In Eq.(5) the Shockley function is replace for each diode.
Then the result is the following equation:

I = Iph − Is1

(
e
q(V+IRs)
a1KTc − 1

)
− Is2

(
e
q(V+IRs)
a2KTc − 1

)
− Is3

(
e
q(V+IRs)
a3KTc − 1

)
−

(
V + IRs
Rsh

)
(6)
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FIGURE 3. TDM equivalent circuit.

In Eq.(6), a3 is the third diode ideality factor, while Id3 is
the third diode saturation current. Notice that the inclusion
of a third diode also increases the number of parameter
that must be properly estimated. The nine parameters are
(Iph, Is1, a1,Rs,Rsh, Is2, a2, Is3, and a3).

III. THE OBJECTIVE FUNCTION FOR PHOTOVOLTAIC
PARAMETER ESTIMATION
The optimization algorithms are used to extract the parame-
ters of different models of PV cells. These techniques need an
objective function that permits the evaluation of the candidate
solutions. The optimization problems are defined in bounded
spaces. These boundaries are defined in Table 1.

TABLE 1. The boundaries of extracted photovoltaic parameters [26].

The root mean square error (RMSE) is the objective func-
tion and must be minimized by the optimizer technique. The
X decision variables are extracted each time the optimizer is
run. The mathematical formula to compute RMSE is defined
as follows:

J (V , I ,X ) = I − Iexp (7)

The vector of decision variables for the SDM is
X = (Iph, Is1, a1,Rs,Rsh). The vector of decision vari-
ables for the DDM is X = (Iph, Is1, a1,Rs,Rsh, Is2, a2).
The vector of decision variables for the TDM is X =

(Iph, Is1, a1,Rs,Rsh, Is2, a2, Is3, a3).

RMSE =

√√√√1/N
N∑
i=1

(J (V , I ,X ))2 (8)

where Iexp is the experimental current and N is the reading
data number.

IV. GRADIENT-BASED OPTIMIZER
A GBO [62] is based on the idea of the integration of
population-based methods with a gradient technique to solve
complex optimization problems. The GBO algorithm utilizes
Newton’smethod to control the search agent’s directionwhile
exploring the problem space. The GBO algorithm has two
basic components, including the gradient search rule and the
locale escaping operator.

A. INITIALIZATION STAGE
Like most metaheuristic algorithms, the GBO starts the
optimization process with an initial population generated
independently from uniform random distribution. Each
population agent is called a ‘‘vector’’, and the population has
a number ofN vector agents in a D-dimensional search space.
The initialization process is then performed as follows:

Xn = Xmin + rand(0, 1)× (Xmax − Xmin) (9)

where Xmin, and Xmax are the bounds of decision variables X ,
and rand(0, 1) is a random number defined in the range [0, 1].

B. GRADIENT SEARCH RULE STAGE
As mentioned previously, the GBO algorithm begins with a
random set of initial solutions and updates each agent position
depending on a gradient specified direction. To guarantee bal-
ance between exploration of significant search space regions
and exploitation to reach near optimum and global points,
a significant factor ρ1 is employed as follows:

ρ1 = 2× rand× α − α (10)

α =

∣∣∣∣β × sin
(
3π
2
+ sin

(
β ×

3π
2

))∣∣∣∣ (11)

β = βmin + (βmax − βmin)×

(
1−

( m
M

)3)2

(12)

where βmin and βmax are constant values 0.2 and 1.2, respec-
tively, m represents the current iteration number, while M
represents the total number of iterations. To balance the
exploration and exploitation processes, the parameter ρ1
changes based on the sine function α. This parameter value
changes throughout the iterations. It starts with a large value
through the first optimization iterations in order to improve
population diversity. Then, the value decreases throughout
iterations to accelerate population convergence. The param-
eter value increases throughout defined iterations within a
range [550, 750], which in turn increases solution diversity
and converges around the best obtained solution and the
exploration of more solutions. Therefore, an algorithm is
enabled to avoid local sub-regions. Thus, GSR can be deter-
mined as follows:

GSR = randn× ρ1 ×
21x × xn

(xworst − xbest + ε)
(13)

The concept of GSR provides the GBO algorithm with
random behavior across iterations, therefore, strengthen-
ing exploration behavior and escaping from local optima.
In Eq.(13), the factor 1x is defined and measures the dif-
ference between the best solution (xbest ) and a randomly
selected solution xmr1. To ensure that1x changes through iter-
ations, the parameter δ is computed by Eq.(16). Additionally,
to improve exploration, a random number (randn) is added to
this equation.

1x = rand(1 : N )× | step | (14)

step =

(
xbest − xmr1

)
+ δ

2
(15)

δ = 2× rand×
(∣∣∣∣xmr1 + xmr2 + xmr3 + xmr44

− xmn

∣∣∣∣) (16)
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where rand(1 : N ) is a vector of N random values ∈ [0, 1].
r1, r2, r3, and r4 are different integers randomly chosen from
[1, N] such that (r1 6= r2 6= r3 6= r4 6= n). step represents a
step size, which is determined by xbest and xmr1.

The direction of movement (DM) is employed to con-
verge around the area of solution xn. This term uses the best
vector and moves the current vector (xn) in the direction of
(xbest − xn). This process provide a convenient local search
tendency with a significant affect on GBO convergence. The
DM is computed with the following formula:

DM = rand × ρ2 × (xbest − xn) (17)

where, rand is a uniform distributed number within range
[0, 1], and ρ2 is a random parameter employed to modify
step size of each vector agent. The ρ2 parameter considers of
significant parameters of the GBO exploration process. The
ρ2 parameter is computed as follows:

ρ2 = 2× rand × α − α. (18)

Finally, depending on these terms GSR and DM, Eq.(19)
and Eq.(20) are used to update the current vector (xmn ) posi-
tion.

X1mn = xmn −GSR+ DM (19)

where, X1mn is the new vector generated by updating xmn .
According to Eq.(12) and Eq.(17), the X1mn can be reformu-
lated as:

X1mn = xmn − randn× ρ1 ×
21x × xmn(

ypmn − yqmn + ε
)

+ randn× ρ2 ×
(
xbest − xmn

)
(20)

where ypmn , yq
m
n are equal to yn + 1x, and the yn − 1x, yn

vector is equal to the average of the two vectors: current
solution xn and zn+1 vector. This is calculated as follows:

zn+1 = xn−randn×
21x × xn

(xworst − xbest + ε)
(21)

while xn represents the current solution vector, randn is a ran-
dom solution vector of dimension n, xworst and xbest represent
worst and best solutions, and 1x is given by Eq.(14). Based
on the previous formula, when replacing the best solution
vector xbest with the current solution vector xmn we get X2mn
the follows:

X2mn = xbest − randn× ρ1 ×
21x × xmn(

ypmn − yqmn + ε
)

+ randn× ρ2 ×
(
xmr1 − x

m
r2
)

(22)

The GBO algorithm aims to enhance exploration and
exploitation phases using Eq.(20) to improve the global
search during the exploration phase, while Eq.(22) is used
to improve the local search capability on exploitation phase.
Finally, the new solution for the next iteration is generated as
follows:

xm+1n =ra×
(
rb×X1mn +(1−rb)×X2

m
n
)
+(1−ra)×X3mn

(23)

where ra, and rb are random numbers determined in range
[0, 1], and X3mn is defined as:

X3mn = Xm+1n − ρ1× (X2mn − X1
m
n ) (24)

C. LOCAL ESCAPING OPERATOR STAGE
The Local Escaping operator (LEO) is introduced to
strengthen the performance of an optimization algorithm for
solving complex problems. The LEO can effectively update
the position of the solution. Hence, it assists an algorithm to
get out of local optima points, and speed the convergence. The
LEO uses targets to generate a new solution with superior
performance (XmLEO) several solutions (Xbest best solution,
the solutions X1mn ,X1

m
n are randomly selected from popula-

tion, Xmr1,X1
m
r2 randomly generated solutions). It effectively

updates current solutions and the process is performed based
on following scheme:
If rand < pr

XmLEO =



Xm+1n + f1
(
u1xbest − u2xmk

)
+ f2ρ1

(
u3
(
X2mn − X1

m
n
))

+ u2
(
xmr1 − x

m
r2
)
/2, if rand < 0.5

Xm+1n + f1
(
u1xbest − u2xmk

)
+ f2ρ1

(
u3
(
X2mn − X1

m
n
))

+ u2
(
xmr1 − x

m
r2
)
/2, otherwise

(25)

End
where pr is a probability value, pr = 0.5, the values f1, and
f2 are uniform distributed random numbers ∈ [−1, 1], and
u1, u2, u3 are random values generated as following:

u1 =

{
2× rand if µ1 < 0.5
1 otherwise

(26)

u2 =

{
rand if µ1 < 0.5
1 otherwise

(27)

u3 =

{
rand if µ1 < 0.5
1 otherwise

(28)

where rand represents a random number ∈ [0, 1], and µ1 is a
number in range [0, 1]. The previous equations for u1, u2, u3,
can be simply explained as follows:

u1 = L1 × 2× rand + (1− L1) (29)

u2 = L1 × rand + (1− L1) (30)

u3 = L1 × rand + (1− L1) (31)

where L1 is a binary parameter takes value 0, 1, if parameter
µ1 < 0.5, then value of L1 = 1, otherwise L1 = 0. The
solution xmk is generated as follows:

xmk =

{
xrand if µ2 < 0.5
xmp otherwise

(32)

xrand is a random generated solution according to following
formula:

xrand = Xmin + rand(0, 1)× (Xmax − Xmin) (33)
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Algorithm 1 The Pseudo Code of the Gradient-Based Optimizer
Step 1. Initialization
Assign values for parameters pr , ε, M
Generate an initial population X0 = [x0,1, x0,2, . . . , xo,D]
Evaluate the objective function value f (X0) =, n = 1, . . . ,N
Specify the best and worst solutions xmbest and x

m
worst

Step 2. Main loop
while m < M do

for n = 1 to N do
for n = 1 to D do

Select randomly r1 6= r2 6= r3 6= r4 6= n in the range of [1,N ]
Calculate the position xm+1n,i using Eq. (23)

end for
if rand< pr then F Local escaping operator

Calculate the position xmLEO using Eq. (25)
xm+1n = xmLEO

end if
Update the positions xmbest and x

m
worst

end for
m = m+ 1

end while
Step 2. Return xmbest

xmp is a random selected solution from population and µ2 is a
random number ∈ [0, 1].
Algorithm 1 describes the details pseudo-code of GBO

algorithm.

V. ANALYSIS OF RESULTS
For fair benchmarking comparison, the GBO algorithm and
the competitive algorithms have been tested with 30 indepen-
dent runs and pr is set to 0.5 (default value). As demonstrated
in [65], setting algorithm parameters to their default values is
a fair and appropriate practice.

This section presents the analysis of the parameters
extracted by the proposed GBO algorithm for various PV
models. The objective function is optimized by the GBO.
Other interesting approaches are also used for this problem,
for example, the moth flame optimization (MFO) algorithm
and cuckoo search algorithm (CSA). The performance of
GBO was validated by the comparison of its results with
other algorithms from previous work and with the CSA and
MFO. In the following section, the primary discussion drawn
from this study will be presented as well as the details of the
extracted parameters, and the best RMSE by algorithms is
performed.

The reported results are divided into three terms: the
first data is the extracted parameters of each optimization
algorithm at the best objective function (root mean square
error); the second is the value of the simulated current and
power at the parameters that achieve the best objective func-
tion extracted from the proposed GBO; then, based on the
simulated current and power and the experimental power
and current data, the absolute error for current data and the
absolute error for power data are calculated; and the final

data is the statistical analysis (minimum RMSE, mean of
RMSE, maximum RMSE and standard deviation of RMSE)
of the results extracted from all algorithms. These results are
calculated for the SDM, DDM, and TDM.

A. RESULTS USING THE SINGLE-DIODE MODEL
The comparison of the results for SDM is presented
in Table 2. This table includes the best RMSE and the
parameters extracted from each algorithm. Based on the
output data in Table 2, the RMSE of value 7.7301E-04 is
achieved by COA and the best value of RMSE (9.8602E-4)
was achieved by the GBO algorithm, together with ISCA,
NMSOLMFO, ITLBO and MLBSA. While the second best
RMSE (9.8607E-4) was achieved by GWOCS, followed by
MFO, CSA, JAYA, LCJAYA and GWO respectively. The
accuracy of the parameter valueswasmeasured by the RMSE.
The absolute error (AE) for each value of power and current
between the simulated and measured data was performed to
evaluate the quality of the results shown in Table 3. The
maximum value of AE for power was 1.462574E-03 and
this current was less than 2.5085074E-03. The values of
RMSE and AE for current and power confirm the quality
and accuracy of the extracted parameters. The P-V and I-V
curves for the SDM were based on the estimated data from
the GBO at the best RMSE which is explained in Figure 4.
In this figure, the proposed GBOwas validated by comparing
the simulation result with the experimental data of the R.T.C
France solar cell. From this figure, it was observed that the
simulation data output from the proposed GBO for SDM
aligned with the measured data. So, the performance of the
SDM based on GBO algorithm was more efficient.
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TABLE 2. The parameters estimated for single diode model at the best root mean square error (RMSE).

TABLE 3. Absolute error (AE) of single diode model at the best root mean square error using gradient-based optimizer.

B. RESULTS USING THE DOUBLE-DIODE MODEL
A comparative study of the results based on the DDM was
introduced in Table 4. It includes the parameters extracted
from each algorithm at the best RMSE. The results in Table 4,
the best RMSE value (9.8237E-4) was achieved by ISCA
algorithm, and the second best RMSE (9.8249E-4) was
achieved by ITLBO together nearly with MLBSA. The third
best RMSE (9.8258E-4) was computed from the GBO algo-
rithm, followed by GWOCS, MFO, CSA, GWO, JAYA and
LCJAYA, respectively. As for the SDM, the accuracy of
the parameters was evaluated from the RMSE. The absolute
error (AE) was also used for the current and power values in a
comparison between the measured data presented in Table 5.
The value of the AE for power was less than 1.48807E-03 and
the maximum value of AE for current was 2.55113E-03. The
values of RMSE and AE for current and power confirmed the

quality and accuracy of the estimated parameters. The P-V
and I-V curves for the DDM was based on the estimated data
from GBO at the best RMSE, as explained in Figure 5. In this
figure, the proposed GBO was validated by comparing the
simulation result with the experimental data of R.T.C France
solar cell. From this figure, it was observed that the simulation
data output from the proposed GBO for double diode model
aligned with the measured data. Thus, the performance of the
DDM based on the GBO algorithm was more efficient.

C. RESULTS USING THE THREE-DIODE MODEL
A comparative study of the results based on the TDM is
introduced in Table 6. The table shows the best RMSE and
the parameters extracted from each algorithm. From Table 6,
the optimal RMSE value (9.8249E-4) was achieved from the
OBWOAalgorithm, and the second best RMSE (9.82503E-4)
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FIGURE 4. P-V and I-V curves for single diode model based on parameters extracted from gradient based optimizer.

TABLE 4. The parameters estimated of a double diode model at the best RMSE.

was achieved from the GBO, followed by STLBO, CIABS,
MFO and CSA, respectively. Regarding the accuracy of the
parameters obtained, RMSE was used as a proper metric.
The AE was also used to verify the similarity between the
simulated data and the measured data of the same data set
used in Table 7. The value of AE for power was less than
1.485E-03 and the maximum value of AE for the current was
2.54586E-03. The values of RMSE andAE for the current and
power confirmed the quality and accuracy of the extracted
parameters. The P-V and I-V curves for the TDM were
based on the estimated data from GBO at the best RMSE,
as explained in Figure 6. In this figure, the proposed GBO
was validated by comparing the simulation result with the
experimental data of the R.T.C France solar cell. From this
figure, it was observed that the simulation data output from
the proposed GBO for three diode model aligned with the

measured data. Thus, the performance of the TDM based on
the GBO algorithm was more efficient.

D. STATISTICAL ANALYSIS
The accuracy and performance of all used algorithms are
evaluated in this subsection. This evaluation was based on the
values of RMSE for 30 independent runs of each algorithm.
Table 8 shows the statistical analysis for each algorithm in all
three PV models. The accuracy of an algorithm is indicated
by the minimum value of RMSE, whereas the mean accuracy
is reflected by the average RMSE, and the reliability of the
system is reflected by the standard deviation (SD). Based
on the results presented in Table 8, it was observed that the
proposed GBO, MLBSA, LCJAYA, and ITLBO achieved the
best accuracy and reliability in the SDM. The proposed GBO
achieved the second-best accuracy in the DDM. Meanwhile,
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FIGURE 5. P-V and I-V curves for double diode model based on parameters extracted from gradient-based optimizer.

TABLE 5. Absolute error (AE) of double diode model at the best RMSE
using gradient-based optimizer.

the proposed GBO achieved the best accuracy and reliability
in TDM.

E. ANALYSIS OF CONVERGENCE AND ROBUSTNESS
To graphically illustrate the robustness of the GBO against
other algorithms, the convergence curves and robustness

analysis are presented in this section. Figures 7, 8 and 9
explain the robustness and convergence curves of GBO,
MFO, and CSA for the SDM, DDM, and TDM, respectively.
The reliable robustness and faster convergence from these
figures were from the GBO algorithm. The GBO reached a
stable point for all PV models, and this behavior suggests
that the GBO has good convergence capabilities. Figures 7, 8
and 9 show the convergence curves of all optimization algo-
rithms for determining the parameters of PV modules for
single, double, and three diode models, respectively. It was
shown that the proposed algorithm (GBO) was the best one
because it reached the minimum (best) value of the RMSE
while the remaining algorithms did not reach to the best value
of RMSE as the GBO.

In summary, the experimental results provided the
following:
• The promising results obtained using the SDM, DDM,
and TDM strongly prove that the GBO algorithm per-
forms well in terms of RMSE, AE, and convergence
and led to the optimal solutions shown in Sections V-D
and V-E.

• The GBO algorithm showed superiority compared to
the other algorithms in terms of RMSE, as shown
in Table 2, 4 and 6.

• The GBO algorithm outperforms the other algorithms in
term of AE, as shown in Tables 3, 5 and 7.

• The convergence curves and robustness behavior pre-
sented in Figures 7, 8 and 9 revealed that the GBO algo-
rithm has better exploration and exploitation abilities
than the other algorithms.

Overall, the solution extracted from the GBO converged to
the global optima solution, and there were terms to determine
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TABLE 6. The parameters estimated for three diode model at the best RMSE.

FIGURE 6. P-V and I-V curves for three diode model based on parameters extracted from gradient-based optimizer.

the quality of the solution. These terms were the mean and
standard deviation for the 30 independent runs of the algo-
rithms. Based on these runs, the robustness of the optimum
solution was drawing like in Figures 7, 8, 9. From these
figures, it was observed that the optimum solution for each
run in nearly to each other over than other algorithms. The
value of the standard deviation for the SDM was 1.7E-10.
This value was indicated by all solutions of all runs and was
approximately equal. Thus, the optimum solution of the GBO
algorithm was converging to the global optima.

F. DISCUSSION
The purpose of this study is to propose an efficient search
mechanism for optimizing the unknown’s parameters of PV
models. The experimental analysis and comparative study
performed in earlier section suggest that proved the efficacy
of GBO compared to the counterparts. The GBO algorithm
presents certain advantages:

• The GBO is well able to perform an efficient search
on the optimization landscapes that maintain varying
difficulties and complexities. The GBO generates opti-
mization solution with better fitness values than original
and various other competitor methods. See Tables 2, 4,
and 6.

• Also, in terms of Absolute error (AE), the GBO obtained
the best AE values for each value of power and current
between the simulated and measured data is performed
to evaluate the results quality as shown in Tables 3, 5,
and 7.

• Statistically, the optimization solutions generated
by the GBO are significantly different than the
ones generated by the various other optimization
methods.

• The design of GBO is simple. Therefore, any oppor-
tunity to further enhance the algorithm is easy to
implement.
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TABLE 7. (AE) Absolute error of three diode model at the best root mean
square error using gradient-based optimizer.

FIGURE 7. The convergence and robustness curves for single diode
model.

Besides benefits, the GBO also poses some limitations as
discussed below:

• In this GBO, ρ1 is introduced as the most significant
parameter in the GBO to balance the exploration and

FIGURE 8. The convergence and robustness curves for the double diode
model.

FIGURE 9. The convergence and robustness curves for the three diode
model.

exploitation searching processes. Thus modification in
this parameter deems tricky when employed on opti-
mization problems with difficult problem landscapes
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TABLE 8. Statistical analysis of root mean square error for three photovoltaic models.

• The parameter α changes with the iteration number.
It has a large value at the early iterations to enhance
the population diversity and then its value decreases as
the iteration number increases to accelerate the conver-
gence, thus this dependent on the problem type.

• Because GBO is an optimization technique based on
randomization, its selected values may vary every time
it is run. Therefore, there is no guarantee that the values
subset selected in one run can be found in another run,
which may bring confusion for the end user.

VI. CONCLUSION AND FUTURE WORK
This paper presented a new application of the GBO to esti-
mate the parameters of three PV models. The three models
were SDM, DDM, and TDM. The main idea of this work
was to efficiently design the three PVmodels from the proper
estimation of their parameters. The single diode mathemati-
cal model was formulated as a nonlinear equation between
the current and voltage, including five unknown parameters
due to the manufacture datasheet’s shortage of data. Also,
the DDM and TDM operated like the SDM, except the num-
ber of unknown parameters in the DDM is seven and in TDM
is nine. The objective function of the extracted parameters
in the three PV model was minimizing the root mean square
error between the simulated current and the experimental
current of the R.T.C France solar cell. The proposed GBO
is a recent optimization technique employed to minimize the
objective function of the parameter extraction of PV cells
by using the SDM, DDM, and TDM. The GBO algorithm
has various advantages, such as solution accuracy, balance,
and convergence speed between analysis and exploitation.
The results achieved by the GBO were more accurate than
those achieved by most of the ten competitor algorithms.

The GBO is, thus, a good candidate for solving the optimiza-
tion problems of solar cell systems. In future work, the GBO
can be applied to identify the PV parameters multidimen-
sional diode and models, and also for calculating the current
voltage characteristics of multi-diode diodes and models.
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