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ABSTRACT Images of a nearby celestial body collected by a camera on an exploration spacecraft contain
a wealth of actionable information. This work considers how the apparent location of the observed body’s
horizon in a digital image may be used to infer the relative position, attitude, or both. When the celestial body
is a sphere, spheroid, or ellipsoid (as is the case for most large bodies in the Solar System), the projected
horizon in an image is a conic—usually an ellipse at large distances and a hyperbola at small distances. This
work develops non-iterative and analytically exact methods for every case (all combinations of unknown
state parameters and quadric shapes), completely superseding older horizon-based methods that are iterative,
approximate, or both. Some of the analytic methods presented in this work are new. Recognizing that
these developments build on techniques that may be unfamiliar to many spacecraft navigators, this work
is fashioned as a tutorial. Descriptive illustrations and numerical examples are provided to make concepts
clear and to validate the proposed algorithms.

INDEX TERMS Algebraic geometry, attitude determination, computer vision, Earth horizon sensors, optical
navigation (OPNAV), space exploration, quadrics, spacecraft navigation.

I. INTRODUCTION
Digital cameras are versatile sensors that are capable of
simultaneously supporting both scientific and engineering
objectives for space exploration missions [1]. Of special note,
the use of images from these cameras for the purpose of
spacecraft navigation—often referred to as optical navigation
(OPNAV)—has long been an important technology for space-
craft venturing beyond low Earth orbit (LEO) [2].

There are a variety of forms of OPNAV, including those
using the horizon (lit limb) of a celestial body [3]–[5], specific
features on the body’s surface (e.g., craters [6]–[8] or other
known landmarks [9]–[12]), and visual odometry [13]. This
work focuses exclusively on the problem of horizon-based
OPNAV.

We observe that the horizon-based OPNAV problem
is tightly linked to the horizon-based attitude determina-
tion problem. Although observations of Earth’s horizon in
the infrared have long been used for spacecraft attitude
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determination using Earth horizon sensors (both scanning
and staring) [14]–[17], the relationship between OPNAV and
attitude determination is rarely made. Indeed, the mathe-
matics used to solve these two horizon-based navigation
problems have been developed separately—often bearing
little obvious connection. This work provides the first
known unification of these two problems in a comprehensive
manner.

An image of a nearby celestial body provides information
about the relative position and relative attitude (sometimes
called pose) between the spacecraft and the observed celestial
body. In addition to the navigation camera, knowledge of
position and attitude can also come from a variety of dif-
ferent sources. Moreover, since translational and rotational
state estimation is sometimes separated, it is not unusual to
know one but not the other. This leads to three natural state
estimation scenarios:

1) The relative attitude is known from other sources, but
the relative position is unknown. This leads to the clas-
sic celestial OPNAV problem where images are used to
estimate relative position.
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2) The relative position is known from other sources, but
the relative attitude is unknown. This leads to two sub-
problems, depending on the frame in which the position
is known:
a) Relative position is known in a frame fixed to the

celestial body. This implies the celestial body’s
attitude is known and the spacecraft attitude is
unknown (e.g., attitude determination with an
Earth horizon sensor). Images are used to estimate
the spacecraft attitude.

b) Relative position is known in the camera frame.
This implies the spacecraft attitude is known and
the celestial body attitude is unknown (e.g., imag-
ing a celestial body with a well-known orbit but
unpredictable attitude such as the Saturnian moon
Hyperion [18]). Images are used to estimate the
celestial body’s attitude.

3) There is no prior relative state knowledge, and both
the relative attitude and relative position are unknown.
Images are used to estimate the pose between the celes-
tial body and camera.

Most large celestial bodies within the Solar System may
be modeled as spheres, spheroids, or triaxial ellipsoids. This
leads to a variety of algorithms for handling the different
state estimation scenarios when viewing celestial bodies of
different shape. The possibilities are summarized in Table 1
along with cross-references to the specific algorithms to solve
each case.

TABLE 1. Summary of the different state estimation scenarios when
imaging celestial bodies of different shape. The scenarios are grouped by
what state information is to be estimated (i.e., is unknown) and what
state information is known. The possible relative states used here
include: relative position expressed in the camera frame (rC ), relative
position expressed in the celestial body’s frame (rP ), relative attitude
between the celestial body’s frame and the camera frame (TP

C ).

This manuscript is fashioned as a tutorial. Such a pre-
sentation is motivated by widespread confusion in the con-
temporary literature about the geometry of horizon-based
navigation and the state-of-the-art in extracting navigation
information from images. The intent is to present an acces-
sible, comprehensive, and self-consistent description of the

mathematics necessary to solve these commonly encountered
navigation problems. Therefore, after developing the requi-
site preliminary tools in Sec. II, we present solutions for every
horizon-based navigation scenario listed in Table 1.

II. GEOMETRIC PRELIMINARIES
A. MODEL FOR A PROJECTIVE CAMERA
Consider a conventional camera system on a spacecraft that
is used to capture an image of a nearby celestial body. This
work focuses on projective cameras that produce a 2D dig-
ital image, sometimes called a framing camera in the space
imaging community (as opposed to a linescan or pushbroom
camera [19]). A typical framing camera suitable for space
imaging consists of a few system-level components as shown
in Fig. 1.

FIGURE 1. Major system-level components of a conventional framing
camera system viewing a celestial body.

Light baffles are used to block stray light from striking
the camera aperture and are an essential component of space
imaging systems [20], [21]. Photons arriving from directions
within the camera field-of-view (FOV) are allowed to pass
by the light baffle, are collected by the aperture of the opti-
cal assembly, and are focused onto a detector residing on
the focal plane. Multi-lens refractive optical assemblies, like
the one implied in Fig. 1, generally introduce a number of
optical aberrations [22]—with radial distortion being among
the most important for OPNAV applications. Additional geo-
metric distortions in the projected image are caused by
manufacturing imperfections and component misalignment.
Fortunately, these effects can be mostly removed with
straightforward geometric calibration techniques [23]. The
details are not discussed here (see [23] and [24] for prac-
tical examples), but starfield-based calibration can produce
corrected images that are nearly indiscernible from perfect

19820 VOLUME 9, 2021



J. A. Christian: Tutorial on Horizon-Based OPNAV and Attitude Determination With Space Imaging Systems

perspective projection (i.e., the so-called pinhole camera
model). The remainder of this article assumes that optical
distortions are removed and images are formed by perfect
perspective projection.

In the physical camera system, the detector lies inside the
camera housing on (or near) the focal plane of the optical sys-
tem. Older camera systems (e.g., the Apollo mapping/metric
camera [25]) used film to record images, whereas contem-
porary systems create a digital image with a 2D array of
photodetectors (e.g., CCD and CMOS imaging sensors [26]).
We generically refer to these detectors as focal plane arrays
(FPAs). A 2D digital image is formed by placing the mea-
sured brightness from each photodetector in the FPA into the
corresponding image pixel.

In an effort to directly model the image formation process,
early work in image-based spacecraft navigation converted
the image pixel coordinates to their physical locations on
the focal plane. It soon became apparent, however, that such
an approach is often ill-advised for three reasons. First, this
approach has caused some authors to incorrectly anchor the
camera frame to the system’s physical focal plane, which
places the system’s center of perspective at the incorrect
location for an external observer. Second, and without loss of
generality, more intuitive results may be obtained by express-
ing the problem geometry in the image plane (instead of in the
focal plane). Third, the parameters necessary to relate pixel
coordinates and dimensioned focal plane coordinates are not
observable in a system-level calibration. These ideas are now
made explicit.

1) THE PINHOLE CAMERA MODEL’s RELATION TO A
PHYSICAL CAMERA SYSTEM
A review of the spacecraft OPNAV literature reveals some
confusion about the geometry of image formation. This has
led to widespread misrepresentation of how the pinhole cam-
era model is related to a real-life camera system.

It is often convenient to represent an optical assembly
consisting of many lenses by a single thin lens. This single
thin lens, located at the optical assembly’s rear principal
plane and of the same size as the optical assembly’s entrance
pupil, provides a good approximation for many of the optical
system’s most important attributes. It makes sense, therefore,
to consider the thin lens in more detail.

Consider a thin lens as shown in Fig. 2. The optical center
of a single thin lens is the point along the optical axis where
an incoming ray of light experiences no net deflection. This
immediately gives rise to the pinhole camera model, with the
usual argument going something like this [27], [28]: Suppose
we have a thin lens that focuses light from an observed object
onto the focal plane, where we observe the center ray experi-
ences no deflection. Therefore, to model where an object will
appear on the focal plane, imagine that the lens were to shrink
to a point (or a pinhole) such that only this single undistorted
ray passes through. This simplified geometry is the pinhole
camera model.

FIGURE 2. Illustration of the reduction of a single thin lens to the pinhole
camera model.

With an optical assembly consisting of multiple lenses
(as is always the case in practice), a true pinhole location
does not exist. That is, there is no point in space through
which arriving rays of light may pass and strike the correct
location on the focal plane. The trouble is that the apparent
pinhole location outside the camera (center of entrance pupil)
is usually different from the apparent pinhole location inside
the camera (rear nodal point). This causes the focal plane
to appear to be at a different location than its true physical
location when looking through the lens. The only way to
recover the pinhole geometry is to break apart the camera and
to pretend the focal plane lies at its apparent location, which
is a distance of the effective focal length behind the center of
the entrance pupil (see Fig. 3).

Recognizing that some of these optics concepts may be
foreign to the usual spacecraft navigator, the situation for a
real camera is made explicit byway of an example. Therefore,
consider the example geometry shown in Fig. 3 for a double
Gauss lens. The top four frames show the individual lenses
outlined in dark blue, and the bottom two frames show how
this collapses to a pinhole model. While the double Gauss
lens is used in this example (it is a common compound
lens configuration for cameras), we are not suggesting that
a double Gauss lens is particularly good (or particularly bad)
for any specific OPNAV purpose.

Most optical assemblies have an aperture stop that limits
the amount of light that reaches the focal plane. If not a
separate component (as illustrated in Fig. 3), there will always
be some boundary that naturally acts as the aperture stop.
An example chief ray (a meridional ray that passes through
the center of the aperture stop) is illustrated as a solid red line
in Figs. 3(a)–(d). The entrance pupil is the image (sometimes
virtual) of the aperture stop as seen from outside the camera
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FIGURE 3. Illustration of the proper geometric reduction of an optical
assembly to a pinhole camera model. Detailed discussion of each diagram
is in the narrative. This particular example shows a double Gauss lens
focused at infinity (optical design modeled after configuration from [29]).

looking inwards; see Fig. 3(b). Likewise, the exit pupil is the
image (sometimes virtual) of the aperture stop as seen from
inside the camera looking outwards; see Fig. 3(c).

It is clear from Fig. 3(b) and Fig. 3(c) that the camera’s
center of perspective is located at the entrance pupil for an
observer outside the camera and at the exit pupil for an
observer inside the camera. It is also clear that we can’t
directly use the exit pupil for constructing the pinhole camera
model since the slope of the rays entering the optical assem-
bly are usually different from the slope of the rays exiting the
optical assembly; see Fig. 3(d). The difference in these slopes
is a result of the system’s pupil magnification, which may be
written as the ratio of pupil diameters,

mp = dxp/dep (1)

where dep is the entrance pupil diameter and dxp is the exit
pupil diameter. Since a camera’s f -number N is defined as
the ratio of focal length to entrance pupil diameter,

N = f /dep (2)

we can write the distance sxp between the exit pupil and the
focal plane as

sxp = mpf = Ndxp (3)

We note that the rear nodal point is coincident with the rear
principal point in this example, where we’ve assumed the
index of refraction is the same on both sides of the optical
assembly.

Therefore, to construct a pinhole camera model, we must
break the camera apart and accept a discontinuity across the
pinhole location as shown in Fig. 3(e)–(f). We can then create
what appears to be a pinhole camera by placing the origin at
the center of the entrance pupil and pretending the focal plane
lies a distance f behind this point. We find it useful in practice
to abstract away the inside of the camera and work entirely in
the image plane.

2) PARAMATERIZED CAMERA MODEL USING THE IMAGE
PLANE
The image plane is a mathematical construct (not correspond-
ing to any actual piece of sensor hardware) describing a planar
surface that is parallel to the focal plane and that lies in front
of the camera’s center of projection. A variety of conventions
exist, but the most popular (and most convenient) is to place
the image plane at unit depth along the camera optical axis.
Therefore, defining the camera frame’s z-axis to be coincident
with the optical axis (positive out of the camera), the focal
plane is the z = −f plane and the image plane is the z = 1
plane [see Fig. 3(f) and Fig. 4]. Following the conventions
of [23], when looking out of the camera, we also choose the
camera frame’s x-axis to be positive to the right in the image
and the y-axis to complete the right-handed system (down in
the image).

The mathematics of perspective projection are best mech-
anized by operating in projective space, denoted here as Pn.
While the concept of a projective space is quite general [30],
this tutorial only makes use of the real projective space—
where Pn may be constructed as the quotient space of
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FIGURE 4. Illustration of 3D geometry for pinhole camera model, focal
plane, and image plane. The origin of the camera frame is at the camera
center. The x- and y-directions are redrawn on the focal plane and image
plane for clarity. The ray connecting a 3D point at ξC and the camera
center is shown in red, with the three key points along this ray from
Eq. (4) shown by red dots.

Rn+1
\{0} under the equivalence relation ∼ defined as

y ∼ kz, {y, z} ∈ Rn+1
\{0}, k ∈ R\{0}

Projective space is particularly important here because points
in the image plane represent points in P2. Thus, in the special
case of P2, we find that n = 2 and that {y, z} ∈ R3. Since
the non-zero scalar k is arbitrary, we can gain some intuition
about P2 by letting z be a unit vector (a direction) in R3.
It follows that all the possible equivalent points y form a 3D
line in the direction of z that passes through (but does not
include) the origin.Wewill now explicitly connect these ideas
to the pinhole camera model.

Suppose a camera observes a point in R3 with coordinates
ξTC = [XC ,YC ,ZC ] as expressed in the camera frame. As can
be seen in Fig. 4, the ray passing through both the camera’s
center of perspective (origin of camera frame) and the point
ξC pierces the focal plane at coordinates [xF , yF ] and the
image plane at coordinates [x, y]. Moreover, we know from
the prior paragraph that every point along this ray (the red
line in Fig. 4) represents the same point in P2. Consequently,
since the three points in Fig. 4 belong to the same ray and
differ by only a scalar multiple, it follows thatxFyF

−f

 ∝
xy
1

 ∝
XCYC
ZC

 (4)

and that these three points inR3 correspond to the same point
in P2.

The proportional relationships in Eq. (4) may be converted
to equality relationships by taking ratios. The result is the
familiar pinhole camera model expressions

x = −
xF
f
=
XC
ZC

and y = −
yF
f
=
YC
ZC

(5)

The middle terms in Eq. (5) are why the image plane coor-
dinates [x, y] are sometimes called focal length normalized
coordinates. It is also sometimes convenient to interpret the
image plane coordinates as the tangent of a pair of bearing

FIGURE 5. Illustration of image plane coordinates as tangent angles
x = tanβH and y = tanβV .

angles

x = tanβH and y = tanβV (6)

which is illustrated in Fig. 5.
When given a 2D point [x, y] in the image plane, we may

easily form the corresponding point in P2 by using homoge-
neous coordinates. Specifically, if xT = [x, y] is a point’s 2D
image plane coordinate, then it may be written in homoge-
neous coordinates by appending a 1 to x to form the 3 × 1
vector x̄T = [x, y, 1]. This works out nicely since we have
conveniently chosen to place the image plane at unit depth
(the z = 1 plane) in front of the camera center. Therefore,
using Eq. (4), the pinhole camera model written in the camera
frame is simply

x̄ ∝ ξC (7)

The general situation is somewhat more complicated since
the observed 3D points are often known in a frame other than
the camera frame. Suppose, for example, that we have a 3D
point on the celestial body’s surface at location p relative to
the body’s center. If we define r as the vector from the camera
to the celestial body’s center, then

ξ = r+ p (8)

This relation, illustrated in Fig. 6, is true in any consistent
frame. Therefore keeping ξ in the camera frame, we may
consider the situation where r and p are known in a different
frame (e.g., a planet-fixed frame P),

ξC = rC + pC = TPC
(
rP + pP

)
(9)

where TPC is the attitude transformation matrix (passive inter-
pretation of a rotation [31]) that transforms a vector expressed
in frame P to that same vector expressed in frameC . Defining
the projection matrix PPC as

PPC = TPC
[
I3×3 rP

]
=
[
TPC rC

]
(10)

one may write pP in homogeneous coordinates (i.e., written
as a point in P3)

p̄P =
[
pP
1

]
(11)
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FIGURE 6. Illustration of key vectors for a spacecraft observing a point on
the surface of a celestial body.

to finally obtain

ξC = PPC p̄P (12)

Substituting this result into the pinhole camera model from
Eq. (7) we find that

x̄ ∝ ξC = PPC p̄P (13)

Thus, in general, we see the pinhole camera model describes
a mapping from P3 to P2.

3) RELATING IMAGE PLANE AND PIXEL COORDINATES
To make use of a digital image, we must be able to relate
points in an image plane to their corresponding point in
a digital image. This is straightforward to do with a sim-
ple affine transformation. While the discussion that follows
includes some discussion of geometry on the focal plane,
this is for derivation and context purposes only—the reader
is encouraged to work entirely in the image plane.

We begin by defining the u-v coordinate system in the
digital image. When looking at an image (out of the camera
and in the direction of the image plane; e.g., what you might
expect to see looking at an image on your computer screen),
we place the origin at the center of the upper-left pixel with
the u-direction to the right and the v-direction down. Thus,
by definition, integer values of [u, v] exist at pixel centers
with u corresponding to column number and v corresponding
to row number. This is shown in the right-hand frame of
Fig. 7.

As mentioned briefly before, we choose the camera frame
z-axis to be coincident with the camera optical axis and
positive pointing out of the camera. Now, without loss of

FIGURE 7. Illustration of focal plane and image plane.

generality, let the camera frame x-axis point in the same
direction as u (to the right in the image). The y-axis completes
the right-hand system (down in the image).

To construct the required conversion, first consider the
geometry on the focal plane where the FPA sensor resides.
Define the pixel coordinates of the focal plane’s principal
point (where the optical axis pierces the focal plane) to
be [up, vp].

Let µx and µy be the distance from pixel center to pixel
center (sometimes called the pixel pitch) in the x and y
directions. Using the coordinate frame arrangements from the
left-hand frame of Fig. 7, the conversion from focal plane
coordinates [xF , yF ] to pixel coordinates [u, v] is simply

u = up −
xF
µx

and v = vp −
yF
µy

(14)

This can be converted from focal plane coordinates to image
plane coordinates by substitution from Eq. (5),

u =
f
µx

x + up and v =
f
µy
y+ vp (15)

Defining dx = f /µx > 0 and dy = f /µy > 0,

u = dxx + up and v = dyy+ vp (16)

which we observe to be consistent with the image plane coor-
dinate frame conventions in the right-hand frame of Fig. 7.
Allowing for some affine shear and keeping the x-direction
and u-direction parallel to one another,

u = dxx + αy+ up and v = dyy+ vp (17)

This may be compactly rewritten in homogeneous coordi-
nates as uv

1

 =
dx α up
0 dy vp
0 0 1

xy
1

 (18)

or, more compactly,

ū = Kx̄ (19)

where ūT = [u, v, 1]. The 3×3 matrixK is called the camera
calibration matrix and describes the affine transformation
from image plane coordinates [x, y] to pixel coordinates
[u, v]. Since K is full rank, it may be inverted to find

x̄ = K−1ū (20)

Moreover, the structure of K permits simple computation of
the inverse as [5]

K−1 =


1
dx

−α

dxdy

αvp − dyup
dxdy

0
1
dy

−vp
dy

0 0 1

 (21)

Using Eq. (19) and Eq. (20), it is possible to work entirely
in the image plane, without ever needing to explicitly con-
sider the focal plane. Moreover, this makes clear that only
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FIGURE 8. Examples of celestial bodies that are well-modeled as a sphere, spheroid, or triaxial ellipsoid at the global level. All examples shown
here are real images collected by past exploration spacecraft: (a) Mercury, image CN0108893564M_RA_5 from MESSENGER spacecraft [34]; (b) Earth,
Apollo 15 image AS15-91-12343 [credit: NASA]; (c) Moon, Space Shuttle image STS128-E-9477 [credit: NASA]; (d) Mars, image from Hubble Space
Telescope [credit: NASA/J. Bell/M. Wolff]; (e) Ceres, image FC21A0034697 from Dawn spacecraft [35]; (f) Ganymede, image 3078r from Galileo
spacecraft [36]; (g) Dione, image N1626025735 from Cassini spacecraft [37]; (h) Rhea, image N1598020836 from Cassini spacecraft [37]; (i) Triton,
image C1137709_CALIB from Voyager 2 spacecraft [38], [39]; (j) Pluto, image lor_0299127143_0x630_eng from New Horizons spacecraft [40]. Original
images have been cropped.

the ratios dx = f /µx and dy = f /µy are important.
Indeed, in a typical camera calibration (e.g., Refs. [23], [32],
[33]), it is impossible to obtain numerical values for the
focal length or the pixel pitch without assuming the other is
known.

For any real imaging system, values for the camera calibra-
tion matrix K should be computed from a camera calibration
procedure. Simply computing them from vendor specifica-
tions is rarely accurate enough for practical OPNAV. The
reader interested in geometric camera calibration for a space
imaging system is directed to [23].

B. GLOBAL SHAPE OF LARGE CELESTIAL BODIES
The global shapes of the planets, dwarf planets, and many
of their moons are well-modeled as a sphere, spheroid,
or triaxial ellipsoid [41]. This fact may be qualitatively
observed by simply looking at real images of large celes-
tial bodies, such as those shown in Fig. 8. The natural ten-
dency of large bodies to take a rounded shape may also
be shown quantitatively by consideration of gravitational
potential and rotational dynamics [42]. This has been known
for some time—indeed, it was shown by Newton in the
Principia [43] that the global shape of a self-gravitating
and rotating body in hydrostatic equilibrium is an oblate
spheroid.

There are a variety of ways to mathematically represent an
ellipsoidal surface (which, in our case, describes a celestial
body’s shape). This work chooses to describe ellipsoids using
the idea of a quadric surface.

FIGURE 9. Illustration of quadric locus for a triaxial ellipsoid with
principal axis dimensions a > b > c .

1) CELESTIAL BODIES AS A QUADRIC LOCUS
Consider an ellipsoidal celestial body with principal axis
dimensions of a, b, and c, as shown in Fig. 9. A point
[X ,Y ,Z ] on the celestial body’s surface in the body’s prin-
cipal axis frame is simply

X2

a2
+
Y 2

b2
+
Z2

c2
= 1 (22)

Without loss of generality, we usually define the principal
axis frame such that a ≥ b ≥ c. A body is a sphere when
a = b = c, an oblate spheroid (i.e., an ellipse of revolution
that is spun around its minor axis) when a = b > c, and a
triaxial ellipsoid when a > b > c.
Therefore, denote the vector from the center of the celestial

body to its surface by the 3× 1 vector pT = [X ,Y ,Z ], such
that in the principal axis frame we may write

pTPAPpP = 1 (23)
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where AP is a 3× 3 diagonal matrix of full rank

AP =

1/a2 0 0
0 1/b2 0
0 0 1/c2

 (24)

and where the subscript P denotes the principal axis frame.
Using the convention a ≥ b ≥ c produces a diagonal of AP
that is sorted in ascending order and a diagonal of A−1P that is
sorted in descending order.

We may express the vector p in a frame aligned with the
camera’s coordinate frame

pC = TPCpP (25)

where, as before, TPC is the attitude transformation matrix
(passive interpretation of a rotation [31]) that transforms a
vector expressed in frame P to that same vector expressed in
frame C . Equivalently, we also have

pP = TCP pC (26)

Substitution of Eq. (26) into Eq. (23) yields

pTCT
P
CAPT

C
P pC = pTCACpC = 1 (27)

Consequently, the shape of the ellipsoidal celestial body (rel-
ative to its center) in a frame aligned with the camera frame
is given by the symmetric 3× 3 matrix AC

AC = TPCAPT
C
P (28)

This article is about cameras imaging an ellipsoidal celes-
tial body. Therefore, rather than working in R3, we find it
useful to describe the celestial body as a quadric surface in
P3. This allows us to more easily exploit some elegant results
from algebraic projective geometry [44]. Thus, moving to
projective space, write the planet-centered surface point p in
homogeneous coordinates, p̄T = [pT 1] ∈ P3.
We can now rewrite Eq. (23) in homogeneous coordinates

p̄TP

[
AP 03×1
01×3 −1

]
p̄P ≡ p̄TPQPp̄P = 0 (29)

whereQP is a 4×4 diagonal matrix of full rank that describes
the surface of the celestial body as a quadric locus. When Q
is full rank we call the set of points lying on this surface a
proper quadric locus.

Rather than writing the quadric surface in the celestial
body-centered principal axis frame P, we would like to
describe the quadric as it appears to an observer at the origin
of the camera frame C . This requires both an origin shift and
a rotation, which is easily handled by a single operation when
working in homogeneous coordinates. Therefore, recalling
the geometry of Fig. 6 and rearranging Eq. (9), we have

pP = TCP
(
ξC − rC

)
= TCP ξC − rP (30)

In homogeneous coordinates this is

p̄P =
[
TCP −rP
01×3 1

]
ξ̄C (31)

Substituting this result for p̄P in Eq. (29) leads to

ξ̄
T
C

[
TPCAPT

C
P −TPCAPrP

−rTPA
T
PT

C
P rTPAPrP − 1

]
ξ̄C

= ξ̄
T
C

[
AC −ACrC
−rTCA

T
C rTCACrC − 1

]
ξ̄C = 0 (32)

We acknowledge that AC = ATC , but we keep the transpose in
the lower left term to help emphasize the problem’s symme-
try. It follows that the celestial body’s quadric locus as seen
by the camera is given by the 4× 4 symmetric matrix of full
rank QC ,

QC =
[

AC −ACrC
−rTCA

T
C rTCACrC − 1

]
(33)

such that one may write

ξ̄
T
CQC ξ̄C = 0 (34)

2) CELESTIAL BODIES AS A QUADRIC ENVELOPE
If a proper quadric locus is the set of all points ξ̄ lying on an
ellipsoidal body’s surface, let the proper quadric envelope be
the set of all planes π that are tangent to the ellipsoidal body’s
surface. As we will see, it is sometimes easier to deal with
the quadric envelope than the quadric locus in derivations
involving projective geometry.

Given a proper quadric locusQ, the corresponding quadric
envelope is described by the adjugate matrix Q∗. To see this,
define a plane by the 4 × 1 vector π . A 3D point written in
homogeneous coordinates ξ̄ lies on the plane when

πT ξ̄ = 0 (35)

The reader may quickly verify to themself that the plane π ∝
Qξ̄ is tangent to the quadric Q at point ξ̄ .
Applying these ideas to the quadric QC and observing the

matrix to be full rank,

ξ̄C ∝ Q−1C πC (36)

Substituting this result into Eq. (34),

ξ̄
T
CQC ξ̄C = π

T
CQ
−T
C QCQ

−1
C πC = 0 (37)

which simplifies to

πTCQ
−1
C πC = 0 (38)

Using Eq. (33), we may analytically compute Q−1C to be

Q−1C =
[
A−1C − rCr

T
C −rC

−rTC −1

]
(39)

To proceed, recall that the scaling of QC and Q∗C is arbi-
trary. Moreover, recall that the adjugate Q∗C is related to the
inverse by

Q∗C = det(QC )Q
−1
C ∝ Q−1C (40)

where we have relied on the knowledge that the determinant
of QC is never nearly zero for a real celestial body

det(QC ) = det(QP) = − det(AP) = −(abc)−2 6≈ 0 (41)
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Substituting Eq. (40) into Eq. (38) yields the usual expression
for a quadric envelope

πTCQ
∗
CπC = 0 (42)

The reader will observe Eqs. (34) and (42) to be one example
of the duality between points and planes in P3.

C. CELESTIAL BODY’s TIGHTLY BOUNDING CONE AND
THE APPARENT HORIZON
Every point in an image may be thought of as a point in P2.
Thus, every image point represents a ray passing through
the origin of the camera frame. If we take the collection
of rays emanating from the camera that are tangent to the
celestial body, we get the celestial body’s tightly bounding
cone (see Fig. 10). The tightly bounding cone is an example of
a proper quadric cone which is described by a 4×4 symmetric
matrix of rank three [44].

An ellipsoid’s tightly bounding cone with apex at homoge-
neous coordinate ā is defined by the quadric cone X [45]

X ∝ (Qā) (Qā)T −
(
āTQā

)
Q (43)

Any point ξ̄ ∈ P3 that satisfies the constraint ξ̄
T
X ξ̄ = 0 lies

on this cone. This constraint and the expression in Eq. (43) is
valid in any consistent frame.

Proceed by considering the geometry in the camera frame.
Therefore, we have the proper quadric locusQC fromEq. (33)
and we choose to place the cone apex at the camera. Since
the camera is at the origin in frame C , the apex coordinate is
simply āTC = [0, 0, 0, 1] and

QC āC =
[
−ACrC

rTCACrC − 1

]
(44)

āTCQC āC = rTCACrC − 1 (45)

which directly leads to

XC ∝

[
MC 03×1
01×3 0

]
(46)

where

MC = ACrCrTCAC − (rTCACrC − 1)AC (47)

FIGURE 10. Illustration of a celestial body’s tightly bounding cone and
the conic section (apparent horizon) formed by the intersection of this
cone with the image plane.

The equation for MC can also be derived without the use of
quadrics and homogeneous coordinates, as was done in [46].

The rays belonging to the tightly bounding cone are the
rays emanating from the camera location that are tangent
to the celestial body. Thus, they are the rays that form the
apparent horizon. The intersection of this cone with the image
plane forms a conic section. This is also illustrated in Fig. 10.

D. PARAMETERIZATION OF A CONIC (HORIZON) ARC IN
AN IMAGE
The apparent horizon of an ellipsoidal celestial body in an
image forms a conic section. Thus, the shape of the horizon
arc must be a circle, ellipse, parabola, or hyperbola. In this
section we will discuss the appropriate parameterization of a
conic section for the image-based navigation problem. Later
(in Section II-E3) we discuss the constraints on when the
different horizon shapes are practically realizable.

A generic conic section is given by the implicit quadratic
equation

Ax2 + Bxy+ Cy2 + Dx + Fy+ G = 0 (48)

which describes a closed conic (i.e., a circle or an ellipse)
when B2 − 4AC < 0 and a circle when (A− C)2 + B2 = 0.

1) CONICS IN THE IMAGE PLANE
Since the image plane is conveniently placed at unit depth and
x̄T = [x, y, 1], we may write Eq. (48) as

x̄TC x̄ = 0 (49)

where the symmetric 3× 3 matrix C is given by

C =

 A B/2 D/2
B/2 C F/2
D/2 F/2 G

 (50)

The set of points x̄ satisfying Eq. (49) define the conic locus,
as illustrated in Fig. 11.
Define a line by the 3 × 1 vector `, such that a point x̄

lies on the line if `T x̄ = 0. Observe that the line ` ∝ Cx̄ is
tangent to the conic at point x̄. Since C is full rank, we find
that x̄ ∝ C−1`. Therefore.

`TC−TCC−1` = `TC−1` = 0 (51)

As with the discussion of the quadric envelope, observe that
det(C) 6≈ 0, such that Eq. (51) is the same as

`TC∗` = 0 (52)

where C∗ is the adjugate of C. The set of lines ` satisfying
Eq. (52) define the conic envelope, which is also illustrated
in Fig. 11. The reader will observe Eqs. (49) and (52) to be
one example of the duality between points and lines in P2.

2) RELATION OF IMAGE PLANE CONICS TO PIXEL SPACE
CONICS
This tutorial primarily works with conics expressed in image
plane coordinates. We denote these conics using C [for a

VOLUME 9, 2021 19827



J. A. Christian: Tutorial on Horizon-Based OPNAV and Attitude Determination With Space Imaging Systems

FIGURE 11. Illustration of a conic locus (black ellipse) and a sampling of
lines (red) belonging to the conic envelope.

conic locus, see Eq. (49)] and C∗ [for a conic envelope, see
Eq. (52)]. This convention is used without loss of generality.

It is sometimes necessary to relate the conic in image plane
coordinates to the same conic in pixel coordinates. Since we
assume a calibrated camera, the camera calibration matrix
K is known—thus we may freely move between an image
plane coordinate x̄ and a pixel coordinate ū using Eq. (19)
and Eq. (20).

To find the expression to transformation a conic between
these different coordinate systems, substitute Eq. (20) into
Eq. (49),

x̄TC x̄ = ūTK−TCK−1ū = ūTCuv ū = 0 (53)

where Cuv is a 3 × 3 matrix in the form of Eq. (50) that
describes the conic locus in pixel coordinates. Thus, we may
convert between C and Cuv using

K−TCK−1 ∝ Cuv ←→ C ∝ KTCuvK (54)

Inverting these expressions allows us to develop equivalent
relations for the conic envelope

KC∗KT
∝ C∗uv ←→ C∗ ∝ K−1C∗uvK

−T (55)

Consequently we may freely move between a conic in image
plane coordinates (described byC andC∗) and the same conic
in pixel coordinates (described by Cuv and C∗uv).

E. COMPUTING HORIZON PROJECTIONS
Computing an ellipsoidal body’s horizon arc in an image
is fundamentally a conic section problem. We now discuss
how to analytically compute the apparent horizon using both
the quadric/conic locus and the quadric/conic envelope. This
naturally leads to physical constraints on the types of horizon
arcs visible in any situation.

1) COMPUTING THE IMAGE HORIZON WITH THE QUADRIC
LOCUS
A celestial body’s tightly bounding cone may be formed by
the back projection of the horizon’s image ellipse. The back

projection of an image conic is given by [45]

X (·) ∝

[
P(·)
C

]T
CP(·)

C (56)

If we choose to operate in the camera frame, then the projec-
tion matrix of interest [see Eq. (10)] is simply

PCC =
[
I3×3 03×1

]
(57)

Thus, combining this results with the expression for XC from
Eq. (46), we find that

XC ∝

[
MC 03×1
01×3 0

]
∝

[
C 03×1

01×3 0

]
(58)

After substituting MC from Eq. (47), this produces an ana-
lytic expression for the horizon’s conic locus in an image

C ∝ MC = ACrCrTCAC − (rTCACrC − 1)AC (59)

2) COMPUTING THE IMAGE HORIZON WITH THE QUADRIC
ENVELOPE
The action of a projective camera on a quadric is most easily
written in terms of the quadric and conic envelopes [45],

C∗ ∝ P(·)
C Q
∗

(·)

[
P(·)
C

]T
(60)

Given Q∗C ∝ Q−1C from Eq. (39) and PCC from Eq. (57),
we find that

C∗ ∝ A−1C − rCr
T
C (61)

Application of the Sherman–Morrison formula produces the
expected result

C∗ ∝ A−1C − rCr
T
C = (1− rTCACrC )M

−1
C ∝ M−1C (62)

3) CONSTRAINTS ON HORIZON CONIC TYPES
In most cases, the apparent horizon arc for ellipsoidal bodies
is an ellipse at large distances (e.g., OPNAV when the entire
celestial body appears in the image) and is a hyperbola at
small distances (e.g., horizon-based attitude determination in
LEO). The specific conditions required for various horizon
shapes are now discussed.

At first, it may not be apparent how the image of a finite
body can result in an open horizon arc (e.g., a hyperbola).
We show this here by considering the simple situation of
imaging a nearly spherical celestial body. For a spherical
body we know the principal axis lengths to be a = b = c
such that AC = AP = (1/a2)I3. Therefore, from Eq. (59),
we find that

C ∝
1
a4
rCrTC −

1
a4

(rTCrC − a
2)I3 (63)

Letting rTC = [XC ,YC ,ZC ], this becomes

C ∝

a2 − Y 2
C − Z

2
C XCYC XCZC

XCYC a2 − X2
C − Z

2
C YCZC

XCZC YCZC a2 − X2
C − Y

2
C


(64)
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FIGURE 12. Limiting cases for an elliptical horizon (top) and hyperbolic
horizon (bottom) with a camera of finite FOV. Only elliptical horizon arcs
are possible for altitudes larger than the top scenario. Only hyperbolic
horizon arcs are possible for altitudes smaller than the bottom scenario.
The tightly bounding cone is shaded gray in both cases.

which, after recalling Eq. (50), leads to

A = a2 − Y 2
C − Z

2
C

B = 2XCYC (65)

C = a2 − X2
C − Z

2
C

The apparent horizon is an ellipse when B2 − 4AC < 0, so

B2 − 4AC = (2XCYC )2 − 4(a2 − Y 2
C − Z

2
C )(a

2
− X2

C − Z
2
C )

(66)

B2 − 4AC = 4(a2 − Z2
C )(r

T
CrC − a

2) < 0 (67)

Since the spacecraft must be outside the celestial body’s
sphere, we know that rTCrC > a2. Therefore, the projected
horizon arc for a spherical body will be an ellipse when

a2 − Z2
C < 0 → a2 < Z2

C (68)

This analytic result agrees with simple geometric intuition,
which may be seen in Fig. 12.

To enhance our intuitive understanding, we will consider
this geometry a little further. Continuing with the temporary
assumption of a spherical celestial body, the half angle φ of
the tightly bounding cone is given by

sinφ = a/r (69)

where r = ‖rC‖.
We seek to determine if the projected horizon arc will be an

ellipse or a hyperbola. The transition between these two cases
is a parabolic horizon, which occurs when the angle between
rC and the image plane is the same as the cone half angle φ.

For a camera with a finite FOV, there is a finite range of
altitudes where the parabolic horizon will be within the FOV.
If the distance to the celestial body is too large, a parabolic
horizon requires the body to be outside the camera FOV.
Conversely, if the distance to the celestial body is too small,
a parabolic horizon requires the body’s surface completely fill
the camera FOV. Figure 12 shows the limiting cases, which
are now considered in more detail.

Suppose the camera has a FOV of θ . The top scenario from
Fig. 12 produces the maximum range where a non-elliptical
horizon arc is possible. The angle between r and the camera
boresight, ψ , may be computed in two ways,

ψe =
π

2
− φe = φe +

θ

2
(70)

which may be solved for the limiting half-cone angle for the
specified FOV

φe =
π

4
−
θ

4
(71)

After substitution into Eq. (69), the limit on the half-cone
angle yields a limit on the distance

re = a/ sinφe = a csc
(
π

4
−
θ

4

)
(72)

This result was presented without derivation in [47]. While
correct and sufficient for OPNAV-only applications, this
constraint alone is incomplete within the larger context of
horizon-based navigation that also includes attitude determi-
nation in low-altitude orbits.

The minimum range where non-hyperbolic horizon arcs
are possible may be computed by a similar procedure. Using
the bottom scenario from Fig. 12, observe that

ψh =
π

2
− φh = φh −

θ

2
→ φh =

π

4
+
θ

4
(73)

rh = a/ sinφh = a csc
(
π

4
+
θ

4

)
(74)

The bounds of Eqs. (72) and (74) are shown graphically
in Fig. 13 using Earth as an example. The Earth limb is always
an ellipse from geostationary orbit (GEO) and is usually a
hyperbola from LEO. Similar results could be produced for
the Moon, Mars, or any other celestial body.
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FIGURE 13. The types of horizon conics that are possible at different
altitudes above a spherical Earth with radius 6,378 km. Red lines show
the altitudes of the International Space Station orbit in LEO (about
410 km) and of a geostationary orbit (about 35,800 km).

4) REMARKS ON CIRCULAR HORIZON ARCS
It should be plainly evident at this point that horizon arcs are
not generally circular—even for a spherical celestial body.
Indeed, we have already shown that spherical bodies may
produce hyperbolic horizon arcs when imaged from a low
altitude. Despite this, there seems to be a widespread miscon-
ception that assuming circular horizon arcs for OPNAV is a
good approximation and that such an approach has the benefit
of ‘‘simplicity.’’ Both claims are almost always false. The
results of this tutorial clearly show there is no justification for
the modern OPNAV practitioner to ever presuppose a circular
horizon arc.

We begin our remarks by acknowledging that spherical
bodies positioned along the camera boresight will produce
a circular horizon arc. This may be intuitively deduced by
taking a slice of a right circular cone with an image plane per-
pendicular the cone’s axis of revolution (which, in the special
case of a sphere, is also the direction from the camera to the
body center). We may also arrive at this result algebraically
by recalling that the projected conic is a circle when the
coefficients of the implicit conic equation obey the constraint
(A − C)2 + B2 = 0. For a spherical body, substitution from
Eq. (65) shows that

(A− C)2 + B2 =
(
X2
C + Y

2
C

)2
= 0 (75)

This implies that XC = 0 and YC = 0, which means the
vector from the camera to the celestial body center is rTC =
[0, 0,ZC ] and is entirety along the camera boresight direction.
Whenever the camera boresight is not pointed exactly at the
body’s center (for a sphere), the projected horizon arc will be
something other than a circle (e.g., an ellipse).

For a spherical body having ZC > a, the conic locus of the
horizon is an ellipse given by Eq. (64). Some tedious algebra

will show this horizon arc to have an ellipticity (ε = ah/bh;
ratio of semimajor ah to semiminor axis bh in image) of

ε = ah/bh =

√
r2 − a2

Z2
C − a

2
=

√
cos2 φ

cos2 ψ − sin2 φ
(76)

which produces an eccentricity e of

e2 = 1− 1/ε2 = 1−
Z2
C − a

2

r2 − a2
=

sin2 ψ
cos2 φ

(77)

where φ is the half-angle of the tightly bounding cone and
ψ is the angle between rC and the camera boresight direction.
These angle definitions are the same as illustrated in Fig. 13.
The ellipticity is oftenmore extreme for non-spherical bodies.
Moreover, we find the ellipticity of the projected horizon
(even if small) to be critical for navigation performance and
solution stability. The navigation analyst ignores this effect at
their own peril.

F. HORIZON LOCALIZATION IN A DIGITAL IMAGE
For an image of a celestial body to be useful for navigation,
wemust be capable of automatically extracting the pixel coor-
dinates of points of interest. In this work, we are interested
in points belonging to the body’s apparent horizon. Finding
these points is an image processing task.

Less than half of the apparent horizon is usable for naviga-
tion in a typical image. Except in rare special cases, images
of celestial bodies will be at non-zero phase angles and the
terminator (day/night line) will be visible. As a consequence,
part of the horizon will be illuminated (we call this the lit
limb) and part will be in shadow. Only the lit limb is useful
for navigation. A review of the example images from Fig. 8
will show the shadowed limb to be nearly undetectable (when
it is detectable, the signal-to-noise ratio is poor). Moreover,
we generally avoid using points along the lit limb near the
cusps, where the shadow of the terminator begins to encroach
on the lit horizon—the result is less than 180 deg of usable
horizon arc in almost all practical cases. Past studies show
the best localization performance is about ±70 deg from
the limb’s subsolar point (for a total of 140 deg of horizon
arc) [48].

Before proceeding further, the reader is explicitly warned
against using the entire lit limb (360 deg of arc) at very low
phase angle, even though the celestial body’s disk may quali-
tatively appear to be fully illuminated. In these cases, it is not
uncommon for the terminator to lightly shadow (or slightly
trim a few pixels off) one side of the apparent disk—even
if it is indiscernible from casual inspection by the human
analyst. The shadowed (or trimmed) horizon pixels will shift
the apparent limb location towards the center of the body and
corrupt the resulting navigation solution in a meaningful way.
Outside of a simulation environment, superior performance is
almost always achieved by restricting ourselves to only using
horizon points belonging to the lit limb.

For an airless body (e.g., Moon, Pluto), there is a
discontinuity in brightness across the lit limb. This disconti-
nuity is spread out in a digital image due to the the optical
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assembly’s point spread function and spatial quantization
by the FPA detector. Regardless, the underlying brightness
discontinuity makes limb localization for an airless body
equivalent to an edge localization problem. There are a vari-
ety of widely-available edge localization algorithms with
pixel-level performance (i.e., these algorithms identify edge
pixels), including: Sobel, Marr-Hilderth [49], Canny [50],
and many others [51]. These pixel-level methods usually
provide reasonable qualitative performance—making it pos-
sible to produce navigation solutions, compute statistics, and
write papers. In practice, however, these pixel-level edge
locations are inadequate for navigation. Horizon-based nav-
igation using fits to image limb points absolutely requires
subpixel horizon localization with contemporary (circa 2020)
imaging sensors. Good results are achievable with the partial
area effect (PAE) technique [52] and best-in-class perfor-
mance is achievable with moment-based methods [5], [53].
The reader is directed to the image processing literature for
additional details on the edge localization problem.

Regardless of the algorithm chosen, the end result is usu-
ally a set of n pixel coordinates along the celestial body’s
lit limb. We can describe this set of points in homogeneous
coordinates as {ūi}ni=1.
Finally, the reader is cautioned against making undue use

of the apparent terminator location. It is true that the termina-
tor provides a direct measurement of phase angle, sometimes
making it useful as a means of determining the direction
to the Sun [54], [55]. However, because the terminator arc
occurs where the incoming sunlight is tangent to the body’s
ellipsoidal surface, the sensitivity of terminator location to
sunlight direction is quite poor. Further, unlike the lit limb,
the terminator does not correspond to a physical disconti-
nuity that manifests as an underlying discontinuity in image
intensity. Instead, the terminator arc is a locus of points on
the interior of the celestial body’s apparent disk. Accurate
localization of the terminator in an image is difficult because
the transition from sunlight to shadow is gradual and often
occurs over a very large number of pixels. Moreover, real
bodies have texture that further complicates the fitting of
simple models to the apparent terminator intensity gradient—
specifically (1) globally varying surface albedo and (2) terrain
relief that casts long shadows near the terminator. Until new
techniques resolve these challenges, the combination of poor
sensitivity to incoming sunlight direction and poor localiza-
tion in real imagery makes the terminator a poor navigation
observable for most applications.

G. IMAGING CELESTIAL BODIES AT DIFFERENT
WAVELENGTHS
Most space imaging systems used for navigation operate in
either the visible or infrared spectrum. It is often preferable to
work in the visible spectrum since these cameras have higher
resolution FPAs, produce less noisy images, are cheaper,
and place fewer engineering requirements on the vehicle
(e.g., thermal control). Observations in the visible spectrum

work exceptionally well on airless bodies where there is a
crisp and predictable horizon line.

For a celestial body with an atmosphere (e.g., Earth,
Venus), there is not a brightness discontinuity across the lit
limb when imaged in the visible spectrum. The scattering of
sunlight in the atmosphere [56], [57] causes a gradual change
in image brightness spanning the width of the atmosphere.
Thus, in the visible spectrum, we find that the atmosphere
obscures the true horizon and creates an apparent horizon
at an unpredictable altitude above the surface. This is a
long-standing challenge for horizon-based OPNAV and the
specific issues are addressed at length elsewhere [5], [58].
The usual solution for robotic space exploration has been
to ignore bodies with atmospheres and to only use images
of airless bodies for horizon-based OPNAV, which has been
satisfactory for past missions. While there has been some
very preliminary studies of overcoming this problem for
autonomous OPNAV [59], this early work is incomplete and
suggests no specific path forward. This is an area ripe for
future research.

Past spaceflight missions have not made extensive use of
infrared images for horizon-based navigation because of (1)
their lack of availability and (2) poor performance stemming
from their comparatively low FPA resolution. For most plane-
tary exploration applications—especially to airless bodies—
visible spectrum images are preferred. Conversely, when we
must use images of Earth, sensing in the infrared becomes a
more attractive option. The Earth’s atmosphere is known to
possess a crisp horizon in the longwave infrared (LWIR) at
wavelengths of 14.0–16.3 µm. This is due to infrared radi-
ation emitted from the atmosphere’s CO2 band, which pro-
duces an apparent horizon at an altitude of about 30–50 km
[14], [15]. For these reasons, most Earth horizon sensors used
for attitude determination operate in the LWIR.

H. REMARKS ON CONIC FITTING IN AN IMAGE
Points lying on an ellipsoidal body’s horizon form a conic in
an image (see Sec. II-D). Thus, if we are able to find horizon
points in an image (see Sec. II-F), it is sometimes useful to
fit a conic to these measured horizon points. An illustrative
example is shown in Fig. 14.

Horizon arcs are usually elliptical or hyperbolic
(see Sec. II-E3), making circle fitting techniques (e.g.,
Taubin’s method [61]) inappropriate for the present applica-
tion. In the case where the spacecraft is always far away from
the observed celestial body, the horizon will always be an
ellipse (e.g., see Fig. 13) and ellipse-specific methods may be
used in these situations. Otherwise, it is better to use generic
conic fitting algorithms.

There are a variety of conic and ellipse fitting algorithms
that have been developed over the last few decades. While a
full accounting of these various methods is beyond the scope
of the present work, there are both non-iterative (e.g., [60],
[62]–[64]) and iterative methods (e.g., [65]–[67]). In the case
where a large number of horizon points are observed over sub-
stantial horizon arcs, we find very little practical difference
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FIGURE 14. Example of conic fitting to horizon points on a real image of
Triton (moon of Neptune). Pixel coordinates of points along the lit limb
are found with subpixel accuracy using the algorithm from [53]. The
‘‘semihyper’’ least squares method from [60] is used to fit an ellipse to
these image points. Left frame shows raw image from Voyager 2
spacecraft (image C1137709_CALIB, [38], [39]) with overlay of points on lit
limb (red) and best-fit conic (yellow). Right frame shows zoom-in of lit
limb so that individual subpixel horizon points may be seen (red dots).

between the best contemporary non-iterative methods (e.g.,
the ‘‘semihyper’’ least squares fit from [64] and [60]) and
the latest iterative methods. The advantages of the iterative
methods become more apparent when there are very few
horizon points or when the arc size becomes small. These
trends are supported by extensive numerical experiments
throughout the remainder of this article and are consistent
with the observations of [68].

Finally, note that all derivations in this tutorial work with
conics in image plane coordinates instead of conics in pixel
coordinates. The distinction between these two is discussed in
Sec. II-D2. Since horizon localization algorithms usually pro-
vide a set of pixel coordinates {ūi}ni=1, there are two straight-
forward ways to obtain the desired image plane conic C:
1) Transform {ūi}ni=1 to {x̄i}ni=1 using Eq. (20). Apply

a conic fitting algorithms to the points {x̄i}ni=1 and
directly obtain C.

2) Apply a conic fitting algorithms to the points {ūi}ni=1
and directly obtain Cuv. Transform Cuv to C using
Eq. (54).

Regardless of the method chosen, we may easily find the
conic in image plane coordinates. From this point forward we
assume that any ellipse fit to measured horizon points may be
written as either C (conic locus) or C∗ (conic envelope).

III. OPTICAL NAVIGATION (OPNAV) WITH A
WELL-KNOWN CELESTIAL BODY
The first of the three motivating scenarios from Sec. I is the
case where the relative camera-to-celestial body attitude is
known, but the relative position is unknown. This is exactly
the situation when navigating relative to well-known celestial
bodies and is the usual assumption for classical OPNAV. The
objective here is to solve for the unknown location of the
camera (and, hence, the location of spacecraft).

For many bodies of interest (e.g., Moon, Mars, Earth)
we have excellent knowledge of both shape and orientation.
For these well-known celestial bodies, we may obtain their

attitude relative to an inertial frame (e.g., the International
Celestial Reference Frame, ICRF [69]–[71]) from publicly
available ephemeris files (e.g., SPICE kernels [72], [73]).
Likewise, we usually know the spacecraft’s inertial attitude
through a star tracker [74], [75]. Therefore, if we know the
celestial body’s inertial attitude T IP, the spacecraft inertial
attitude T IS , and the orientation of the camera on the space-
craft TSC , we may find the relative attitude as

TPC = TSCT
I
S

(
T IP
)T
= TSCT

I
ST

P
I (78)

This approach often produces relative attitude knowledge
with errors less than a degree.

This form of horizon-based OPNAV has been used to
navigate spacecraft for over 40 years [2]. Therefore, after a
few brief historical remarks, we consider the geometry of
spacecraft localization from an observed horizon arc in a
digital image—ultimately arriving at the Christian-Robinson
algorithm.We conclude with a detailed performance compar-
ison, showing that the Christian-Robinson algorithm is both
the simplest to implement and has the best performance.

A. HISTORICAL REMARKS ON OPICAL NAVIGATION
The concept of horizon-based navigation predates spaceflight
by centuries. Early human explorers knew that the angles
between the Earth’s horizon and reference stars can be used to
determine the observer’s latitude and longitude (with the lat-
ter requiring a good way of measuring time). This was espe-
cially important for maritime exploration where there were
few other sources of navigation information. Equipped with
our geometric understanding from Sec. II-E, we recognize
that these early explorers were finding the observer location
that would place the apparent hyperbolic horizon arc in the
right orientation relative to the inertially fixed starfield. This
fact, however, was unknown to the explorers of antiquity, who
developed their own empirical models for relating apparent
star elevation measurements to observer location.

During the earliest days of space exploration, our cen-
turies of history with maritime navigation using star-horizon
measurements made horizon-based OPNAV an obvious
thing to attempt. Numerous crew-based OPNAV experiments
were performed during the Gemini, Apollo, and Skylab
programs—ultimately demonstrating the efficacy of such an
approach [76]–[80].

Concurrently with the advancement of the human space-
flight program in the 1960s, great advancements were also
made on robotic space exploration. It was immediately evi-
dent that horizon-based measurements were equally valu-
able when navigating robotic spacecraft near other celestial
bodies (e.g., Mars) as they were for crewed spacecraft near
Earth. The difference is that robotic vehicles must take hori-
zon measurements automatically with a camera (instead of
manually by an astronaut). Interplanetary OPNAV was first
demonstrated on images of Mars from the Mariner 6 and 7
missions in 1969 [81] and subsequently on Mariner 9 in
1971 [82]—paving the way for its first operational use during
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the Voyager 1 flyby of Jupiter in 1979 [83]. Image-based
OPNAVhas been used to help navigatemost subsequent outer
planet exploration mission since then (e.g., Cassini [84], New
Horizons [85]).

When an exploration spacecraft approaches a celestial
body from far away, it is common for the celestial body
to first appear as an unresolved object that subtends only a
few image pixels (or less). Because cameras cannot directly
measure depth, OPNAV algorithms at these large distances
can only produce bearing (i.e., direction) measurements to
the observed body. The task of finding this direction is
often referred to as centerfinding since the image process-
ing task is simply to find the centroid of the bright spot
formed by the celestial body [3]. We also know from before
(see Sec. II-A2) that specifying an object’s center coordinates
in an image describes a point in P2 and is equivalent to
specifying the direction to that object. In this unresolved
regime, precision OPNAV applications often require sub-
pixel corrections for the bearing bias that occurs between
the center of illumination and the celestial body’s geometric
center at non-zero phase angles. These subpixel corrections
to the celestial body center (or bearing) may be computed
analytically [86]–[88].

As the spacecraft gets closer, the celestial body will appear
larger—eventually subtending a great number of image pix-
els. Once it is sufficiently large, the shape becomes apparent
and it is possible to discern the apparent horizon. While the
term centerfinding continues to be used in this context, doing
so is often the source of confusion for two reasons. First,
the center coordinates of the ellipse describing the celestial
body’s apparent horizon does not produce a vector pointing
towards the center of the celestial body (i.e., the projection
of rC onto the image is not coincident with the center of the
horizon ellipse). Second, the word ‘‘centerfinding’’ suggests
that we need to find the center of the celestial body’s apparent
disk, when this is most certainly not the geometric quantity of
interest. Thus, while the term centerfinding is appropriate for
OPNAV with unresolved bodies, we suggest it be abandoned
if favor of different language when discussing OPNAV with
resolved bodies.

Once the body is fully resolved, most operational
horizon-based OPNAV has been accomplished using the limb
scan technique first developed for Voyager [3]. The limb scan
technique is illustrated in Fig. 15 and notionally works as
follows: Beginning with an initial guess of the body center
and size, compute the predicted 1D brightness profile along
scan lines emanating from the apparent body center. Compare
the predicted brightness profile along each scan direction to
the observed brightness profile along the same scan direction.
Then, iteratively update the relative position between the
spacecraft and the celestial body to obtain the best agree-
ment between the predicted and observed brightness profiles.
While this method has enjoyed great success over the years,
it is (1) iterative and requires an initial guess, (2) requires
a photometric model for the observed body to generate the
predicted brightness profiles, (3) not guaranteed to always

FIGURE 15. Horizon-based OPNAV with ellipsoidal celestial bodies has
historically been accomplished by minimizing the residuals between
observed and predicted brightness profiles along a collection of
one-dimensional scan lines in the image. While still widely used due to
decades of flight heritage, this technique is outdated and no longer
represents the state-of-the-art.

converge, and (4) known to produce estimates with a small
bias. All four of these undesirable attributes may be solved by
making use of the geometric results introduced in Sec. II, with
best results coming from the Christian-Robinson algorithm.
Comparative studies on historical flight data demonstrates the
efficacy of these new methods in practice [48].

B. OPNAV BY ELLIPTICAL HORIZON FITTING
The most obvious approach for horizon-based OPNAV is
to fit an ellipse to the horizon points and then relate the
cone formed by the back projection of this ellipse to the
celestial body’s tightly-bounding cone, as is done Eq. (59).
This approachwas taken in [46] and results in a procedure that
directly estimates the unknown relative position rC . Unfortu-
nately, while this certainly works, OPNAV by ellipse fitting
has comparatively poor performance in the presence of mea-
surement noise and is now an outdated method. The method
is briefly reviewed here for completeness (and for important
parallels to the algorithms in Sec. IV and Sec. V), but the
reader is strongly advised against taking this approach for
practical OPNAV. Instead, the Christian-Robinson algorithm
from Sec. III-C is almost always the better choice.

Therefore, following the insights from [46], we begin by
relating the image conic and the tightly bounding cone. This
can be done by equating either the quadric cones in P3 or
their projections in an image in P2. Either way, one obtains
the familiar relation from Eq. (59)

C ∝ MC = ACrCrTCAC − (rTCACrC − 1)AC (79)
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Right-multiplying by rC reveals that

CrC ∝ ACrCrTCACrC − (rTCACrC − 1)ACrC (80)

and the right-hand side simplifies to yield

CrC ∝ ACrC (81)

Therefore, since we know

det(AC ) = det(AP) = (abc)−2 6≈ 0 (82)

we can always compute A−1C and it becomes apparent that

rC ∝ A−1C CrC (83)

Or, after removing the arbitrary scaling,

λeC = A−1C CeC (84)

which is simply a 3×3 eigenvalue/eigenvector problem. It fol-
lows that the direction to the body center eC = rC/‖rC‖must
be one of the unit eigenvectors of the square matrix A−1C C.
The matrix A−1C C is guaranteed to be indefinite, having two
eigenvalues of one sign and one eigenvalue of the other sign.
As discussed in [46], the unit eigenvector we seek is the one
corresponding to the eigenvalue of unique sign.

To find the range r = ‖rC‖, we substitute rC = reC into
Eq. (79) along with the scaling C = λMC to find

C = λ
[
r2ACeCeTCAC − (r2eTCACeC − 1)AC

]
(85)

where λ is the eigenvalue of A−1C C having a unique sign.
Taking the trace and solving for r2 yields the result for range
from [46]:

r2 =
Tr[C]− λTr[AC ]

λeTC (ACAC − Tr[AC ]AC )eC
(86)

While this result is exact in the noise-free case, perfor-
mance degrades quickly in the presence of noise. It is better
to use the Christian-Robinson algorithm.

C. THE CHRISTIAN-ROBINSON ALGORITHM
The Christian-Robinson algorithm provides a means of
directly solving for rC from the observed horizon points
without requiring an intermediate conic fit. The idea is to
factor the celestial body’s symmetric shape matrix AC as

AC = BTB (87)

which may be used to transform the generic problem (which
is complicated) into a trivial problem. This approach was
first proposed by Christian and Robinson in [89], where we
used a Cholesky factorization to obtain B. The idea was
subsequently improved upon in [5] by use of a more natu-
ral factorization. Informed by a few years of practical use,
the idea reaches full maturity in the present discussion.

To begin, substitute Eq. (59) into Eq. (49) to find

x̄Ti
[
ACrCrTCAC − (rTCACrC − 1)AC

]
x̄i = 0 (88)

wherewe now explicitly keep track of different horizon points
x̄i by introduction of the subscript i. From here, substitute the
factorization of Eq. (87) for AC ,

x̄Ti
[
BTBrCrTCB

TB− (rTCB
TBrC − 1)BTB

]
x̄i = 0 (89)

which is simplified by pulling out a BT to the left and a B to
the right

(Bx̄i)T
[
(BrC ) (BrC )T −

(
(BrC )T (BrC )− 1

)]
(Bx̄i) = 0

(90)

Now, use the factor B to define x̄′i and r′ in a trans-
formed (primed) space,

x̄′i = Bx̄i (91)

r′ = BrC (92)

such that Eq. (90) simplifies to

x̄′Ti
[
r′r′T −

(
r′T r′ − 1

)]
x̄′i = 0 (93)

Therefore, in the transformed space, we see every problem
becomes navigation relative to a unit sphere. To make this
explicit, we can introduce the 3 × 3 identity matrix I3 in a
few locations to find

x̄′Ti
[
I3r′r′T I3 −

(
r′T I3r′ − 1

)
I3
]
x̄′i = 0 (94)

which is exactly Eq. (88) with AC = I3. From Eqs. (24)
and (28), it is clear that AC = I3 describes the unit sphere.
We briefly observe that horizon localization algorithms

natively provide measurements in pixel coordinates and not
image plane coordinates (i.e., we are given ūi instead of x̄i).
This distinction not especially important for a calibrated cam-
era, since it easy to go between the two using Eq. (19) and
Eq. (20). It is, however, computationally convenient to com-
bine the transformation from ūi to x̄i with the transformation
from x̄i to x̄′i. Thus, substituting Eq. (20) into Eq. (91),

x̄′i = Bx̄i = BK−1ūi ≡ Rūi (95)

where the combined transformation is given by the 3 × 3
matrix R

R = BK−1 (96)

Knowing that a factorization of AC = BTB transforms
every horizon-based OPNAV problem to navigation relative
to the unit sphere, the Christian-Robinson algorithm has
two components. The first component is to find the most
convenient form of B. The second component is to solve
the unit sphere navigation problem in closed form. These
components are now presented, followed by a discussion
of how they may be integrated into a solution for the fully
general horizon-based OPNAV problem.
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1) FACTORIZATION OF THE BODY SHAPE MATRIX
Consider first the celestial body’s shape matrix in the body’s
own principal axis frame, AP [see Eq. (24)]. Factorization in
this case is trivial

AP = DTD (97)

where D is the 3× 3 diagonal matrix

D =

1/a 0 0
0 1/b 0
0 0 1/c

 (98)

Substituting this result into Eq. (28) and grouping like terms

AC = TPCAPT
C
P = TPCD

TDTCP (99)

=

(
DTCP

)T
DTCP = BTB (100)

which produces the following simple expression for B

B = DTCP (101)

It is trivial to compute B from Eq. (101) in practice since
both D and TCP are known (the former since shape parame-
ters a, b, c are known and the latter since relative attitude is
assumed known in the classic OPNAV scenario).

Likewise, it is trivial to compute the combined transforma-
tion matrix R by substitution of Eq. (101) into Eq. (96)

R = DTCPK
−1 (102)

sinceD and TCP are known (as above) andK−1 is known from
Eq. (21) for a calibrated camera.

2) OPNAV WITH A UNIT SPHERE
The transformation in Eqs. (91) and (92) converts every
horizon-based OPNAV problem to navigation relative to a
unit sphere. This is true even if the celestial body is a triaxial
ellipsoidal. Simple geometry allows navigation with respect
to a unit sphere to be solved exactly.

Consider the geometry from Fig. 16. Letting r ′ = ‖r′‖,
we see that the tightly bounding cone in the transformed space
has a half angle of φ′

sinφ′ = 1/r ′ (103)

This, of course, is the same as Eq. (69), but in the transformed
space where an arbitrary ellipsoidal body has become a unit
sphere. Now, also observe that the points x̄′i are computed
from the measured horizon points [see Eq. (95)] and corre-
spond to rays lying on the the tightly bounding cone. Since
the transformed body is a sphere, the tightly bounding cone
is a right circular cone (this is not generally true for the tightly
bounding cone of an ellipsoidal body) and the angle between
the cone centerline and the horizon rays is constant. That is,

cosφ′ =
x̄′Ti r

′

‖x̄′i‖ ‖r
′‖
, ∀i (104)

It becomes convenient, therefore, to turn the transformed
observations x̄′i into unit vector directions,

s′i = x̄′i/‖x̄
′
i‖ (105)

FIGURE 16. Illustration of geometry for a navigation near a unit sphere.

Having done this, we may rewrite Eq. (104) as

1 = s′i
Tn (106)

where the new variable n is

n =
1

r ′ cosφ′
r′ =

1
cosφ′

e′ (107)

and where e′ = r′/‖r′‖ = n/‖n‖. Thus the vector n is
in the direction of r′ and has a length that is functionally
related to the distance between the camera and body center.
We will return to finding the distance in a moment. First,
however, we observe that for many transformed horizon mea-
surements x̄′i we may stack Eq. (106) for each observation in
matrix–vector notation to obtain the following linear system

Hn = 1n×1 (108)

where

H =


s′1
T

s′2
T

...

s′n
T

 (109)

This linear system may be solved for n in either the least
squares sense or the total least squares (TLS) sense [90], [91].
The TLS solution is attractive since the matrix H is noisy.

The next step is to convert n to r′. To solve, observe that

‖n‖2 = nTn =
1

cos2 φ′
=

1

1− sin2 φ′
(110)

Using Eq. (103), substitute for sin2 φ′ in the right-hand term

‖n‖2 = nTn =
1

1− 1/r ′2
=

r ′2

r ′2 − 1
(111)

Which may be solved for r ′

r ′ =

√
nTn

nTn− 1
(112)

Therefore, writing r′ in terms of r ′ and e′,

r′ = r ′e′ =
r ′

‖n‖
n (113)
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Now, recalling that ‖n‖ =
√
nTn and substituting for r ′ from

Eq. (112),

r′ =
(
nTn− 1

)−1/2
n (114)

3) RECOVERING OPNAV SOLUTION FOR A GENERIC BODY
The final step in the Christian-Robinson algorithm is to
transform r′ back to rC . This may be done by inverting the
expression from Eq. (92),

rC = B−1r′ (115)

It is possible to compute B−1 directly (i.e., without having to
invert a generic matrix) since

B−1 =
(
DTCP

)−1
= TPCD

−1 (116)

and where D−1 is trivial to compute since D is diagonal
[see Eq. (98)],

D−1 =

a 0 0
0 b 0
0 0 c

 (117)

Therefore, substituting B−1 = TPCD
−1 into Eq. (115),

rC = TPCD
−1r′ (118)

and, after substituting for r′ in terms of n from Eq. (114),

rC =
(
nTn− 1

)−1/2
TPCD

−1n (119)

which provides a direct solution for rC as a function of the
least-squares solution for n from Eq. (108).

4) SUMMARY OF CHRISTIAN-ROBINSON ALGORITHM
Despite the rather lengthy derivation, the final implementa-
tion of Christian-Robinson algorithm is very simple—often
consisting of only a few lines of code. The complete compu-
tational procedure is summarized in Algorithm 1. The reader
will note that this algorithm is non-iterative and exact under
the assumption of a pinhole camera model and an ellipsoidal
celestial body. The reader will also note that no ellipse fit is
performed in the Christian-Robinson algorithm,which results
in significant computational savings as compared to outdated
methods that attempt to explicitly fit an ellipse to points in
the image. A version of this algorithm has been selected as
part of the Orion OPNAV system that will be demonstrated
during the Artemis I mission.

D. OPNAV PERFORMANCE COMPARISON
The Christian-Robinson algorithm will always outperform
methods that first fit a conic (usually an ellipse) to the hori-
zon points and then attempt to compute the camera location
from the best-fit conic. In general, the problem with fitting
an ellipse first is that the ellipse fitting algorithms do not
constrain the fit to be a valid projection of the celestial body.
Specifically, the typical ellipse fitting algorithm admits five
degrees-of-freedom in the fit, when the OPNAVproblem only

Algorithm 1 Pseudocode for the Christian-Robinson
OPNAV algorithm

1: procedure rC = OPNAV({ūi}n1,K
−1,TCP , a, b, c)

2: compute D = diag[1/a, 1/b, 1/c] F Eq. (98)
3: compute R = DTCPK

−1
F Eq. (102)

4: for i = 1 to n do
5: x̄′i = Rūi F Eq. (95)
6: s′i = x̄′i/‖x̄

′
i‖ F Eq. (105)

7: construct H from {s′i}
n
i=1 F Eq. (109)

8: compute TLS solution for n F Eq. (108)
9: compute TPC = (TCP )

T

10: compute D−1 = diag[a, b, c] F Eq. (117)
11: compute rC F Eq. (119)
12: return rC

has three degrees-of-freedom. Thus, if we fit the ellipse first,
we try to find the camera position that produces a horizon
that is as close as possible to the observed ellipse [e.g., with
Eq. (84)]. This is generally different than (and not as good
as) solving for the camera position directly. This point is best
illustrated through a numerical example.

Consider the case of viewing the Moon (radius of about
1,737 km) from a range of 25,000 km. Suppose we image the
Moon with a camera having a 20 deg FOV and a 2, 048 ×
2, 048 pixel FPA (a 4.2 megapixel image). Let the angle
between the direction to the Moon and the camera boresight
be ψ = 8 deg. Assuming a subpixel horizon localization
algorithm (e.g., Ref. [53]), let the pixel errors on the horizon
points be σ = 0.07 pixel. Performing a 10,000-run Monte
Carlo results in the OPNAV performance statistics summa-
rized in Table 2 and Table 3. In all cases, we observe from
Table 3 that the uncertainty is orders of magnitude larger
in the direction of the observed celestial body—which, for
modest FOV cameras, is mostly along the boresight (z-axis)
direction. This is consistent with analytic OPNAV covariance
studies [92].

Looking at the data in Table 2, we see immediately that
the Christian-Robinson algorithm is better than any result
depending on a circle or ellipse fit. Some additional obser-
vations about the other algorithms are now made.

TABLE 2. OPNAV performance statistics for synthetic images of the
Moon. Statistics are computed from a 10,000-run Monte Carlo simulation,
with each algorithm operating on the same set of simulation inputs.

19836 VOLUME 9, 2021



J. A. Christian: Tutorial on Horizon-Based OPNAV and Attitude Determination With Space Imaging Systems

TABLE 3. OPNAV covariance for synthetic images of the Moon. The
root-sum-square (RSS) of these values are equivalent to the right-most
column in Table 2. Errors are expressed in the camera frame.

The problem set-up described above produces an ellipse
in the image with a semimajor axis of 412.5 pixels and a
semiminor axis of 408.5 pixels. Thus, the horizon arc is
clearly not a circle. This significant model mismatch (circle
fit of an elliptical horizon) accounts for the very large bias
in the estimate of rC when using a Taubin circle fit. The
standard deviation with a circle fit is similar to that of the
Christian-Robinson algorithm. Thus, the circle fit approach
provides estimates of rC with good precision but poor accu-
racy. Given the comparable algorithmic complexity of the
Taubin circle fit (or similar) to the ellipse fits, there is no
compelling reason to ever use a circle fit for horizon-based
OPNAV.

Observe that there is little practical difference between the
analytic ‘‘semihyper least-squares’’ solution and the more
complicated iterative solutions. This is generally the case
when we have a large number of horizon points (as we often
do when the celestial body subtends a substantial portion of
the image) with low noise (as we do with subpixel limb local-
ization). Similar observations were made by Szpak, et al.,
in [68]. Thus, if an ellipse fit must be used (not recom-
mended), the semihyper ellipse fit from [60] is likely the best
choice for onboard navigation applications.

Not quantitatively evaluated here are results from older
algorithms that iteratively solve for rC given an initial guess.
As discussed above, there are two major types of these algo-
rithms. The first is the legacy limb-scan technique that has
been used operationally for over 40 years [3]. The limb-scan
method has been shown to produce a similar standard devi-
ation to the Christian-Robinson algorithm, but is known to
have a bias in the estimate of rC [48]. The second are
whole-limb fit techniques where the horizon is reprojected
onto the image and the position rC is iteratively updated.
The iterative whole-limb fit methods use gradient-based opti-
mization methods to minimize residuals such as the distance
between the horizon and limb points [47] or the differ-
ence in the gradient across the limb boundary [4]. Experi-
ence has shown these iterative methods to produce similar
OPNAV results as the Christian-Robinson algorithm (when
they converge, which is not guaranteed), but at the expense
of considerably more algorithmic complexity. Therefore,
the Christian-Robinson algorithm is usually the preferred

method for computing rC from observations of an ellipsoidal
body’s lit limb.

IV. ATTITUDE DETERMINATION
When the relative position is known, a celestial body’s appar-
ent horizon in an image may be used to compute the relative
attitude. This is the second of the three motivating scenar-
ios from Sec. I. While this problem has been well-studied,
there seems to be some confusion on when different types
of attitude determination problems arise in practice. The fun-
damental question is which object has the unknown attitude
(the celestial body or the spacecraft) and in what frame is the
relative position known (if it is known, it will be generally be
known in the frame of the object with known attitude). These
two scenarios are now explained.
Scenario 1: For a spacecraft in Earth orbit, there are a

variety of means for determining the orbit in an Earth-fixed
frame. This may be done with ground-based tracking,
an onboard GPS receiver, or a number of other means. In such
a case, we would know the position of the spacecraft rela-
tive to the Earth’s principal axis frame. Since we know the
Earth’s attitude (both inertially and within it’s own principal
axis frame), the spacecraft must be the object with unknown
attitude if there is to be an attitude determination problem to
solve. This is exactly the problem solved by Earth horizon
sensors [14]–[17]. In this case we would know rP but have no
knowledge of TPC .
Scenario 2: When visiting a celestial body other than

Earth, we are unlikely to natively know the position vector
in the celestial body’s principal axis frame. If the position
vector from the spacecraft to the celestial body is known
from sources other than the spacecraft imaging system, it is
almost certainly known in some inertial frame (e.g., ICRF
and obtained by differencing the known orbits of the celestial
body and the spacecraft). Moreover, if a spacecraft has suc-
cessfully navigated from Earth to another celestial body, it is
reasonable to assume that the spacecraft has a means of inde-
pendently determining it’s inertial attitude (e.g., with a star
tracker). Thus, the inertial position vector may be expressed
in the camera frame because we know the attitude of the
spacecraft. If an attitude determination problem exists, then
it occurs because the celestial body’s attitude is unknown.
For these reasons, the scenario where horizon-based attitude
determination makes the most sense for interplanetary explo-
ration is when the celestial body has an unknown (or unpre-
dictable) attitude. In this case we would know rC but have no
knowledge of TPC .

These two scenarios are now discussed in more detail.
Attitude determination algorithms are developed for both
using a framework consistent with the OPNAV development
in Sec. III.

A. FINDING SPACECRAFT ATTITUDE (POSITION KNOWN
IN THE CELESTIAL BODY FRAME, P)
The first attitude determination scenario of interest is when
the the relative position is known in the celestial body’s
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principal axis frame. If the position is known the the celes-
tial body’s frame, then it is the spacecraft whose attitude is
unknown. This is most commonly the case for Earth orbiting
spacecraft and is the type of problem solved by Earth horizon
sensors.

The simplest geometry occurs when the observed body
is a perfect sphere, though the full three degree-of-freedom
attitude is not observable in this case. More interesting is the
situation when the observed body is either an oblate spheroid
or a triaxial ellipsoid. In both of these cases (spheroid and
ellipsoid) the full three degree-of-freedom attitude may deter-
mined up to a twofold ambiguity.

1) THE SPECIAL CASE OF ATTITUDE DETERMINATION WITH
A SPHERE
Suppose we know the relative position in the celestial body’s
principal axis frame, rP. When the observed celestial body is
assumed to be a sphere, the full attitude is unobservable. Since
AC = AP = a−2I3 for a spherical body, we may presume the
matrix AC is known—and, with AC known, we may use the
Christian-Robinsion algorithm (see Sec. III-C) to compute
rC . Thus, we know the relative position in both the celestial
body’s frame rP and in the camera frame rC .

Knowing a single vector in two different frames permits
determination of two components of the attitude, with rota-
tion about the vector’s direction being the one remaining
unobservable component of attitude. Rather than obtaining
an instantaneous attitude estimate, pairs of the same vector
expressed in two different frames (in this case, rP and rC
or their corresponding unit vectors eP and eC ) may be pro-
cessed within an attitude filter (e.g., a multiplicative extended
Kalman filter [93], [94]).

2) GENERIC ATTITUDE DETERMINATION WITH THE CONIC
ENVELOPE: MODENINI’s SOLUTION
Again suppose we know the relative position in the celestial
body’s principal axis frame, rP. Now, however, assume that
the observed celestial body is either a spheroid or a triaxial
ellipsoid. In this situation, recent work by Modenini [95]
suggests an elegant way of thinking about the spacecraft atti-
tude determination problem from projected horizons. Mod-
enini’s approach, however, leaves room for some algorithmic
improvements. Therefore, after a brief review of Modenini’s
solution we suggest a few minor improvements for solving
this problem.

Modenini begins with Eq. (61) and introduces a scalar α to
account for the proportionality relationship

αC∗ = A−1C − rCr
T
C (120)

Since we are considering the case where position is known in
the celestial body’s frame, we know rP and not rC . Therefore,
rewrite the right-hand side of Eq. (120) in the celestial body’s
principal axis frame,

αC∗ = TPC
(
A−1P − rPr

T
P

)
TCP (121)

To compact notation, let B∗M = A−1P − rPr
T
P to arrive at

αC∗ = TPCB
∗
MT

C
P (122)

where we note that C∗ is measured and B∗M is assumed
known. Hence, it is possible to solve for the scalar α by taking
the trace of both sides

α =
Tr
[
B∗M

]
Tr
[
C∗
] (123)

where Tr
[
B∗M

]
= Tr

[
TPCB

∗
MT

C
P

]
since TPC is an orthonormal

matrix.
With the α scalar known, we may rewrite the Eq. (122) as

αC∗TPC − T
P
CB
∗
M = 03 (124)

While this equation is exact in the absence of measurement
noise ormodeling error, the right-hand sidewill not be exactly
zero in practice. Therefore, Modenini suggests finding the
attitude TPC that minimizes the following cost function

min
TPC∈SO(3)

J (TPC ) = ‖αC
∗TPC − T

P
CB
∗
M‖

2
F (125)

where ‖ · ‖F indicates the Frobenius norm. Modenini calls
Eq. (125) a ‘‘modified orthogonal Procrustes problem,’’ and
suggests a solution based on the eigendecomposition of αC∗

and B∗M . This solution has long been known (see Sec. IV-A3)
and takes the form,

TPC = VPWT (126)

where V andW are obtained from the eigendecomposition of
the symmetric matrices αC∗ and B∗M ,

αC∗ = VD∗CV
T (127)

B∗M = WD∗BW
T (128)

and where

P =

±1 0 0
0 ±1 0
0 0 ±1

 (129)

Here, we note that D∗C = D∗B are diagonal matrices of eigen-
values, while V and W are matrices with the corresponding
unit eigenvectors as columns. The matrix P captures the fact
that each of the unit eigenvectors inV andW have ambiguous
sign.

The solution in Eq. (126) assumes that the eigenvalues of
αC∗ and B∗M (which are the same in the absence of noise)
are sorted in a consistent manner, such that their eigenvectors
forming the columns of V and W are also sorted in a con-
sistent manner. Any rigorous convention will work. We will
revisit this briefly at the end of Section IV-A4.

There are only four unique solutions to Eq. (126) that
satisfy the constraint that det[TPC ] = +1, with only two of
these four solutions placing the celestial body in front of
the camera. Thus, in general, the horizon fit of a spheroid
or triaxial ellipsoid can be used to estimate the spacecraft
attitude with a twofold ambiguity.
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3) TWO-SIDED ORTHOGONAL PROCRUSTES PROBLEMS
The spacecraft navigator is most likely familiar with the
classical (one-sided) orthogonal Procrustes problem within
the context of attitude determination from corresponding unit
vectors [33], where it is one of the well-known solutions
to Wahba’s problem [96], [97]. The one-sided orthogonal
Procrustes problem takes the form minT ‖A−TB‖2F subject
to TTT = I , and was studied as early as the 1950s [98]. The
modern approach for solving this problem uses the simpler
and more robust method developed by Schönemann in the
mid-1960s [99].

There are other types of Procrustes problems [100] and
we recognize Modenini’s cost function from Eq. (125) as
the symmetric case of a two-sided orthogonal Procrustes
problem,

min
T∈SO(3)

‖TTAT − B‖2F or min
T∈SO(3)

‖AT − TB‖2F (130)

which also has an elegant solution developed by Schönemann
[101] (published in 1968, just two years after his solution to
the one-sided orthogonal Procrustes problem). Schönemann’s
solutions (both one-sided and two-sided) are nowwell-known
and have been studied in great depth [100]. While Modenini
(in [95]) is to be commended for independently developing
the solution to this problem, claims that this solution is new
are inaccurate. The solution procedures of Schönemann and
Modenini are identical, with Schönemann’s solution predat-
ing Modenini’s by 50 years.

To reduce confusion and to remain consistent with the
larger body of work on Procrustes problems [100], [101],
the space navigation community should abandon the name
modified orthogonal Procrustes problem when referring to
this solution. We should instead use the more commonly
accepted two-sided orthogonal Procrustes problem.

4) OBSERVATIONS ON MODENINI’s SOLUTION
A few observations provide some minor efficiency
improvements to Modenini’s attitude determination solution
from [95].

The first observation is on the computation of α. While
Modenini leaves this in matrix form, we note the numerator
may be rewritten explicitly to obtain

α =
a2 + b2 + c2 − r2

Tr
[
C∗
] (131)

where, as before, r = ‖rC‖ = ‖rP‖.
More importantly, however, we observe that the computa-

tion of α is unnecessary and it may be entirely discarded from
the solution procedure. To see this explicitly, note that

αC∗ = VD∗CV
T
→ C∗ = V (α−1D∗C )V

T (132)

such that the eigenvectors V can be computed by the eigen-
decomposition of C∗ rather than αC∗. Since the scalar α
doesn’t appear anywhere else in the solution procedure, there
is no reason to ever compute it in practice. However, we must
be careful with the sign ambiguity of C∗ when bypassing

the computation of α. Since C∗ has arbitrary scale and sign,
we can choose it such that sign(det[C∗]) = sign(det[B∗M ]).
Then we can simply sort the eigenvalues in ascending or
descending order, and arrange the eigenvectors in V and W
in the same way.

Finally, we sometimes find it convenient to replace V
and W with the orthonormal matrices from a singular value
decomposition (SVD). In addition to guaranteeing that we use
orthonormal matrices in Eq. (126) by construction, the typical
SVD algorithm also automatically sorts the singular values
(which are the absolute value of the eigenvaleus in this case)
from largest to smallest. This ensures the consistent ordering
we need here without an explicit check on the sign of C∗.
The reader is reminded that while C∗ and B∗M are real sym-
metric matrices, the SVD and eigendecomposition are not
the same because the eigenvalues are of mixed sign (i.e., C∗

and B∗M are indefinite matrices). However, the columns in the
orthonormal SVD matrices differ from their corresponding
unit eigenvector only by factor of±1, which may be absorbed
into the matrix P in Eq. (126). Hence, we may exchange V
andW with the orthonormal matrices obtained from an SVD
and obtain the same solution for TPC .
To make this explicit, we may compute the SVD of C∗ and

B∗M as

C∗ = VLS∗CV
T
R (133)

B∗M = WLS∗BW
T
R (134)

where VL 6= VR and WL 6= WR. However, the difference
in these orthonormal matrices is just a sign change in one (or
more) of the columns, which we may also relate to the sorted
unit eigenvector matrices,

V = VLPVL = VRPVR (135)

W = WLPWL = WRPWR (136)

where P(·) represents a specific matrix of the form of
Eq. (129) that performs the appropriate column-by-column
sign changes. Substituting these results into Eq. (126), we see
that the SVD orthonormal matricesV (·) andW (·) may replace
the eigenvector matrices V andW to obtain

TPC = VLPWT
L (137)

where we have made use of the fact that

PVLPPTWL =

±1 0 0
0 ±1 0
0 0 ±1

 (138)

In Eq. (137), note that eitherVL orVRmay be used on the left,
while eitherWL orWR may be used on the right. Regardless
of these choices, we obtain the same eight solutions for TPC
as before (only four of which are right-handed).

5) GENERIC ATTITUDE DETERMINATION WITH THE CONIC
LOCUS
We observe that Modenini’s solution (see [95] and
Sec. IV-A2) operates on the conic envelope instead of the
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conic locus. An equivalent solution may be produced using
the conic locus, which is just as compact and easy to compute.
This is now shown.

Recall that the conic envelope solution started with
Eq. (120). To arrive at the conic locus solution, we simply
invert this relation [see Eq. (62)] to arrive at the familiar
relation from Eq. (59)

C ∝ ACrCrTCAC − (rTCACrC − 1)AC (139)

As with the conic envelope solution, rewrite the right-hand
side in the celestial body’s principal axis frame

C ∝ TPC
[
APrPrTPAP − (rTPAPrP − 1)AP

]
TCP (140)

which, lettingMP be

MP = APrPrTPAP − (rTPAPrP − 1)AP (141)

simplifies to

C ∝ TPCMPTCP (142)

The proportionality relation may be eliminated by introduc-
ing the scalar β to obtain

βC = TPCMPTCP (143)

which is identical in structure to the conic envelope expres-
sion from Eq. (122).

Therefore, following the same procedure as before,
we arrive at a two-sided orthogonal Procrustes problem

min
TPC∈SO(3)

J (TPC ) = ‖βCT
P
C − T

P
CMP‖

2
F (144)

We know that the scaling β does not matter and directly
compute the solution as

TPC = VLPWT
L (145)

where VL andWL are obtained form the SVD of C andMP

C = VLSCVT
R (146)

MP = WLSMWT
R (147)

and where P is from Eq. (129). As with the conic envelope
solution, we may also write this as an eigendecomposition.
From this point forward the conic envelope and conic locus
solutions are identical.

The similarities between the conic locus and conic enve-
lope solutions should come as no surprise, since taking the
inverse of a symmetric matrix doesn’t change its eigenvec-
tors. It is easy to see that the orthonormal matrix of eigenvec-
tors U for a n × n symmetric matrix A (no relation to planet
shape matrix) is the same as for the matrix A−1

A = UDUT
→ A−1 = UD−1UT (148)

where UUT
= In and U−1 = UT .

6) COMPARISON OF CONIC ENVELOPE AND CONIC LOCUS
ALGORITHMS
The conic envelope and conic locus solutions will always
produce the exact same numerical answer, so there is no
benefit of one over the other with regards to accuracy. The
only difference lies in the number of operations required
on a digital computer. To count the number of operations,
we begin with the assumption that the conic fitting algorithms
provide an estimate of the conic locus (i.e., they provide C
and not C∗), as is the case for every algorithm discussed
in Sec. II-H. We also assume that AP and A−1P may be pre-
computed. Under these circumstances, observe that the two
solutions are computationally identical once we have C and
MP for the conic locus or C∗ and B∗M for the conic envelope.
For the case of the conic locus, C is provided directly from

the conic fitting algorithm and we only need to computeMP.
Taking advantage of matrix symmetry and that AP is diag-
onal, we may compute MP with 15 multiplies and 6 adds.
Conversely, for the conic envelope, we must compute both
C∗ and B∗M . Taking advantage of the same matrix properties
as in the conic locus case, we may compute C∗ and B∗M
with 18 multiplies and 9 adds. Therefore, we see that the
conic locus solution provides the exact same answer as the
conic envelope solution, but achieves this result with fewer
operations on a digital computer.

We conclude by remarking that the computational advan-
tages of the conic locus approach are small and that the two
methods are essentially equivalent in practice. This is the case
since the computational costs described above are negligible
when compared to the cost of performing the ellipse fit to
find C. The primary purpose of this discussion is to dispel
the erroneous notion that the conic envelope solution is sim-
pler or more computationally efficient than the conic locus
solution—when, in fact, the reverse is true for horizon-based
attitude determination. Thus, there is no especially meaning-
ful argument to use one over the other and the reader should
feel free to choose whichever method they prefer.

7) ATTITUDE OBSERVABILITY
If the observed celestial body is a sphere, it was discussed in
Sec. IV-A1 that only two components of attitude are observ-
able. Issues of observability in this situation are straightfor-
ward and were fully discussed in Sec. IV-A1. More compli-
cated is the issue of attitude observability when imaging a
spheroid or triaxial ellipsoid, and this is the situation that is
now discussed.

Regardless of the representation of the horizon (conic
locus or conic envelope), the two-sided orthogonal Procrustes
problem presents a fourfold ambiguity. Specifically, in either
Eq. (126), Eq. (137) or Eq. (145), there are four choices of
P that provide a proper orthogonal matrix with det(TPC ) =
+1. Ensuring that TPC is a proper orthogonal matrix may be
achieved in a variety of ways. One such way is to define

P1 = diag[1, 1, 1] (149a)

P2 = diag[−1, 1, 1] (149b)
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P3 = diag[1,−1, 1] (149c)

P4 = diag[1, 1,−1] (149d)

and then compute the corresponding proper orthogonal
matrix by substituting these possibilities for P i into Eq. (126)

{TPC }i = det[VP iWT ]VP iWT , i = 1, 2, 3, 4 (150)

All four of these solutions satisfy the original two-sided
orthogonal Procrustes problem.

Only two of the four solutions in Eq. (150) will place the
celestial body in front of the camera. The process of checking
to ensure that an observed object lies in front of (and not
behind) the camera is sometimes called a cheirality test [45],
[102]. To perform such a cheirality test, we simply need to
see if the z-component of rC is positive, which occurs when

kT rC = kTTPCrP > 0 (151)

where kT = [0, 0, 1]. This results in a twofold ambiguity in
the relative attitude TPC .
It is impossible to remove this twofold ambiguity using

the horizon fit alone. Of course, disambiguation is possible
when other information exists. For example, if the direction
to the Sun is known in the camera frame (e.g., from a Sun
sensor), this could be used to remove the ambiguity. Other
forms of additional attitude information may also remove this
ambiguity.

8) ALGORITHM SUMMARY AND PERFORMANCE
COMPARISON
The conic envelope (see Sec. IV-A2) and conic locus (see
Sec. IV-A5) solutions provide identical attitude estimates.
As an example, Algorithm 2 shows pseudocode for the conic
locus method since this method is marginally more efficient
than the conic envelope method (see Sec. IV-A6). Regardless,
the implementation of these techniques is very similar.

Algorithm 2 Pseudocode for attitude determination algo-
rithm with horizon fit of a spheroid or triaxial ellipsoid.
Assume relative position is known in the celestial body’s
frame
1: procedure {TPC }

2
j=1 = AttDetP(C, rP, a, b, c)

2: compute AP = diag[1/a2, 1/b2, 1/c2] F Eq. (24)
3: computeMP F Eq. (141)
4: [VL ,SC ,VR] = svd(C) F Eq. (146)
5: [WL ,SM ,WR] = svd(MP) F Eq. (147)
6: j = 1
7: for i = 1 to 4 do
8: compute P i F Eq. (149)
9: compute T = VLP iWT

L
10: compute T = det[T ]T F Eq. (150)
11: if kTTrP > 0 then
12: record {TPC }j = T
13: j = j+ 1
14: return {TPC }

2
j=1

As an example, consider an Earth-orbiting spacecraft at
a range of 45,000 km from the planet center (just beyond
GEO). Assume that we know the relative position rP, but
do not know the relative attitude TPC . Earth is used for this
example because Earth is the only celestial body where such
a scenario is expected to occur in practice. While considering
celestial bodies other than Earth in this scenario may be of
academic interest, such numerical results are of little practical
relevance.

Suppose we image the Earth with a LWIR thermal camera.
In this example, we simulate a camera with a 20 deg FOV and
a 640× 640 pixel FPA. Such an imaging system is in-family
with commercially available LWIR cameras (circa 2020).

Let the Earth be modeled as an oblate spheroid. Since
observations are done in the infrared, we inflate the dimen-
sions of the reference ellipsoid by 40 km to account for
the apparent altitude of the CO2 band (at wavelengths
of 14.0–16.3 µm) as discussed in Sec. II-G. This produces
an Earth ellipsoid with an equatorial radius of a = b =
6, 418.1 km and a polar radius of c = 6, 396.8 km. In this
example, the Earth projects to an image ellipse with semi-
major axis of 261.81 pixels and semiminor axis of 261.05
pixels. We assume that the method from [53] is used for hori-
zon localization, producing image processing errors of about
σ = 0.07 pixel.
The attitude determination performance for this example

scenario is summarized in Table 4 and Table 5. Attitude
determination errors are found to be about 2.6 deg for all
of the ellipse fitting algorithms considered, once again sug-
gesting that the non-iterative semihyper least-squares method
from [60] is likely the most suitable for onboard navigation.
We observe the mean to be small compared to the standard
deviation. We also observe that nearly all of the attitude error
is about the camera boresight (z-axis) direction for reasons
that are discussed later (see Sec. IV-C). When interpreting
the results from Table 4 and Table 5, the reader is reminded
that different vantage points and different camera parameters
can produce drastically different performance.

To better highlight how performance changes from differ-
ent vantage points, suppose we have the same example LWIR
camera as before. Now, consider the special case where the

TABLE 4. Attitude determination (with known rP ) performance statistics
for synthetic images of the Earth in the LWIR. Attitude determination
performed using Algorithm 2. Statistics are computed from a 10,000-run
Monte Carlo simulation, with each algorithm operating on the same set of
simulation inputs.
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TABLE 5. Attitude determination (with known rP ) covariance for
synthetic images of the Earth in the LWIR. The root-sum-square (RSS) of
these values are equivalent to the right-most column in Table 4. Errors are
expressed in the camera frame.

FIGURE 17. Standard deviation of attitude error for synthetic images of
Earth in the LWIR. Statistics at each different latitude are computed from
a 2,000-run Monte Carlo simulation. Attitude determination performed
using Algorithm 2.

camera is perfectly nadir pointed (i.e., rTC = [0, 0, r]) and that
r = 45, 000 km. Let the position in the Earth’s principal axis
frame vary from a latitude of 0 deg (in the equatorial plane)
to a latitude of 90 deg (above the north pole). The resulting
attitude determination errors expressed in the camera frame
are shown in Fig. 17. We see that the cross-boresight attitude
errors (red and blue lines) are approximately constant for all
latitudes and remain small. These errors remain small and
constant in this example because (1) our ability to discern the
direction to Earth’s center remains stable for all latitudes and
(2) the Earth’s center is positioned exactly along the boresight
direction (hence, there is no projection of attitude errors about
the direction rC onto the x-axis and y-axis directions). At low
latitudes, we are able to compute the camera roll about the
boresight (direction of rC ) to within a few degrees using the
oblateness of the Earth. This is similar to what was observed
under different conditions in Table 5. At high latitudes the
Earth’s oblateness becomes less apparent, with the Earth’s

oblateness becoming completely unobservable at φ = 90 deg
(i.e., when the camera center lies on the oblate spheroid’s axis
of rotational symmetry). As the Earth’s oblateness becomes
less observable, our ability to use the oblateness to infer roll
about the camera boresight direction deteriorates (black line
in Fig. 17)—with complete loss of one degree of attitude
observability at φ = 90 deg. In this particular example,
we exceed an error of σz ≥ 10 deg when the spacecraft
position is at a latitude above ∼ 60 deg.

B. FINDING CELESTIAL BODY ATTITUDE (POSITION
KNOWN IN THE CAMERA FRAME, C)
The second attitude determination scenario of interest is when
the the relative position is known in the spacecraft camera
frame (known rC ). As discussed earlier, this situation could
arise during interplanetary exploration when visiting a celes-
tial body other than Earth.

1) ATTITUDE DETERMINATION WITH CONIC ENVELOPE
A straightforward solution exists by making use of the conic
envelope. Therefore, proceed by first first recalling Eq. (120)

αC∗ = A−1C − rCr
T
C (152)

Since it is possible to compute α from Eq. (131), we may
rearrange to find

A−1C = αC
∗
+ rCrTC (153)

Define the symmetric matrix G as

G = αC∗ + rCrTC (154)

Therefore, substituting for AC from Eq. (28), the original
conic envelope equation becomes

TPCA
−1
P TCP = αC

∗
+ rCrTC = G (155)

Now, to make things explicit, rewrite this as

G = TPCA
−1
P TCP (156)

which we observe to be of identical form as Eq. (122) and
Eq. (143). Thus, we again arrive at a two-sided orthogonal
Procrustes problem,

min
TPC∈SO(3)

J (TPC ) = ‖GT
P
C − T

P
CA
−1
P ‖

2
F (157)

Following the exact same procedure as before, we directly
compute the solution as

TPC = VPWT (158)

where P is from Eq. (129) and where V andW are obtained
from the SVD of G and A−1P

G = VSGVT (159)

A−1P = WSAWT (160)

In this case, the SVD is the same as the eigendecomposition
sinceG andA−1P are symmetric positive definite. Observe that
A−1P is diagonal by construction [see Eq. (24) for AP],

A−1P = diag[a2, b2, c2] (161)
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Thus, the matrix W is a permutation matrix when a, b, c are
unique. Under the assumption that the singular values in SA
are arranged in descending order,W does nothing more than
rearrange the diagonals ofA−1P to also be in descending order.
In the special case where a > b > c, we find that

W = I3 (162)

though other values forW are possible for spheres and oblate
spheroids or if a different ordering of a, b, c is chosen.

2) ATTITUDE OBSERVABILITY
The attitude observability is poorer when the relative position
is known in the camera frame (rC ) than when the relative
position is known in the celestial body’s frame (rP). This
may be seen by comparing the results below with those of
Sec. IV-A7.

In the case of a sphere, the relative attitude is completely
unobservable when the relative position is known in the
camera frame. This matches simple intuition, as a sphere at
a given rC may be arbitrarily rotated with no change in its
horizon’s appearance in an image.

In the case of a spheroid, we may only determine the direc-
tion of the axis of rotational symmetry. Again, this matches
intuition, as a spheroid at position rC may be arbitrarily
rotated about its axis of symmetry with no change in the
horizon’s appearance in an image. The most common case
is an oblate spheroid (a = b > c) and we assume without
loss of generality that the axis of symmetry is coincident with
the z-axis of the celestial body’s principal axis frame (thus,
the body has a principal axis length of c along the z-direction).
Denote the axis of symmetry by the unit vector w. Thus,
by construction, the axis of symmetry as expressed in the
body’s principal axis frame wP is

wP = ±k =

 0
0
±1

 (163)

The ± is used to explicitly highlight that the direction of
the axis of symmetry is unobservable. To express the axis of
symmetry in the camera frame instead of the celestial body’s
principal axis frame is trivial,

wC = TPCwP = ±T
P
Ck (164)

and, therefore,

wC = ±TPCk = ±VPW
T k (165)

When using the convention that a = b > c with c along the
z-axis direction, we know that the smallest singular value of
A−1P is unique and corresponds to the z-direction—thus con-
straining the structure of W . Taking this into consideration
and substituting forW and k in Eq. (165), the solution for the
wC becomes

wC = ±V

 · · 0
· · 0
0 0 1

00
1

 = ±Vk (166)

Thus, partitioning V by column,

V =
[
v1 v2 v3

]
(167)

we arrive at the solution

wC = ±v3 (168)

This strikingly simple relation states that the celestial body’s
axis of symmetry (for an oblate spheroid) as expressed in
the camera frame is along the direction described by the last
column of V . The reader is reminded that V comes form
the SVD of G [see Eq. (159)]. Thus, we note that all of the
observable attitude information may be computed directly
from the SVD of G, without the need to ever computeW .

In the case of a triaxial ellipsoid, we may determine the
complete attitude up to a fourfold ambiguity. Specifically, due
to possible values of P from Eq. (129), the solution from
Eq. (158) produces four unique attitudes with det[TPC ] =
+1. It also produces four results with det[TPC ] = −1, but
these are discarded since they describe left-handed coordinate
systems. Thus using the conventions leading toW = I3 from
Eq. (162), the four solutions are

{TPC }i = det[VP i]VP i i = 1, 2, 3, 4 (169)

where P i is given by Eq. (149). All four of these attitude esti-
mates are equally plausible, and it is impossible to determine
which of these are correct from only the apparent horizon in
a single image.

3) ALGORITHM SUMMARY AND PERFORMANCE
COMPARISON
The developments from the previous subsections result
in Algorithm 3 for attitude determination with an oblate
spheroid and in Algorithm 4 for attitude determination with a
triaxial ellipsoid. These algorithms are simple to implement
in only a few lines of code.

Algorithm 3 Pseudocode for attitude determination algo-
rithm with horizon fit of an oblate spheroid. Assume relative
position is known in the camera frame
1: procedure wC = AttDetC_ObSp(C∗, rC , a, c)
2: compute A−1P = diag[a2, a2, c2] F Eq. (161)
3: compute r = ‖rC‖
4: compute α F Eq. (131)
5: compute G = αC∗ + rCrTC F Eq. (154)
6: [V ,SG,V ] = svd(G) F Eq. (159)
7: compute wC = v3 F Eq. (168)
8: return wC

Solving an attitude determination problem when the rel-
ative position is known in the camera frame (known rC )
makes the most sense within the context of interplanetary
exploration. As an example, consider the dwarf planet Ceres.
We may model Ceres as an oblate spheroid with an equatorial
radius of a = 482.1 km and a polar radius of c = 445.9 km.
Ceres is chosen here because it is an oblate spheroid with no
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Algorithm 4 Pseudocode for attitude determination algo-
rithm with horizon fit of a triaxial ellipspod. Assume relative
position is known in the camera frame

1: procedure {TPC }
4
i=1 = AttDetC_El(C∗, rC , a, b, c)

2: compute A−1P = diag[a2, b2, c2] F Eq. (161)
3: compute r = ‖rC‖
4: compute α F Eq. (131)
5: compute G = αC∗ + rCrTC F Eq. (154)
6: [V ,SG,V ] = svd(G) F Eq. (159)
7: for i = 1 to 4 do
8: compute P i F Eq. (149)
9: compute {TPC }i = det[VP i]VP i F Eq. (169)

10: return {TPC }
4
i=1

atmosphere and because it has been used as the case study in
many recent papers on this topic (e.g., Ref. [95]).

Since Ceres is an airless body, we may use a
high-resolution camera that operates in the visible spectrum.
Therefore, assume a similar imaging system as from the
OPNAV example: 20 deg FOV camera, 2, 048× 2, 048 pixel
FPA, and horizon localization with σ = 0.07 pixel. Under the
conditions in this example, Ceres projects to an image ellipse
with semimajor axis of 285.82 pixels and semiminor axis of
267.47 pixels.

Attitude determination results from a 10,000-run Monte
Carlo analysis are summarized in Table 6. Because Ceres is
an oblate spheroid, we may only compute the direction of
the axis of symmetry in the camera frame (wC ). The results
in Table 6 show the statistics for the error in this unit vector
direction, which we find to be about 1.6 deg in this particular
case. As before, the reader is reminded that different vantage
points and different camera parameters can produce drasti-
cally different attitude determination performance.

TABLE 6. Attitude determination (with known rC ) performance statistics
for synthetic images of the dwarf planet Ceres. Results indicate errors in
the direction of the oblate spheroid axis of symmetry, wC . Attitude
determination performed using Algorithm 3. Statistics are computed from
a 10,000-run Monte Carlo simulation, with each algorithm operating on
the same set of simulation inputs.

C. COMPARISON OF ATTITUDE DETERMINATION
PERFORMANCE IN DIFFERENT FRAMES
The distinction about the frame in which the relative position
is known (i.e., do we know rP or rC ) may not seem partic-
ularly important at first glance. Indeed, many authors have

not made clear which of these is known in their analyses and
some have even confounded knowledge of the two. We now
show the distinction between knowledge of rP and rC to
be of critical importance and show that these two situations
describe fundamentally different geometric problems. This is
best accomplished by an example.

Consider attitude determination of Miamis (see Fig. 18).
One of the moons of Saturn, Miamis makes an interesting
test case as one of the Solar System’s smallest ellipsoidal
bodies. Using shape models developed from Cassini obser-
vations [103], we approximate Mimas as a triaxial ellipsoid
with principal axis dimensions a = 207.8 km, b = 196.7 km,
and c = 190.6 km.

FIGURE 18. Images of Saturn’s moon Miamis collected by the Cassini
spacecraft’s Imaging Science Subsystem. Raw images are available
from [37].

Since Miamis is an airless body, assume the same visi-
ble spectrum imaging system as from the OPNAV example:
20 deg FOV camera, 2, 048× 2, 048 pixel FPA, and horizon
localization with σ = 0.07 pixel. Under the conditions in this
example, Miamis projects to an image ellipse with semimajor
axis of 162.72 pixels and semiminor axis of 152.29 pixels.

Numerical results from a 10,000-run Monte Carlo anal-
ysis are shown in Table 7 for the case when rP is known.
Numerical results from the sameMonte Carlo runs are shown
in Table 8 for the case when rC is known.
It is immediately evident that the attitude determination

is about two orders of magnitude better when the relative
position is known in the celestial body frame P instead of
in the camera frame C . Such a large difference may seem
counter-intuitive since both problems start with the same
initial equation, with the only difference being the frame
in which r is known. They key to understanding this it to
recognize that the image fundamentally contains information
about the direction to the celestial body in the camera frame
(i.e., eC = rC/‖rC‖), such that knowing rP from external
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TABLE 7. Attitude determination (with known rP ) covariance for
synthetic images of the Saturnian moon Miamis. Attitude determination
performed using Algorithm 2. Errors are expressed in the camera frame.
Statistics are computed from a 10,000-run Monte Carlo simulation, with
each algorithm operating on the same set of simulation inputs.

sources provides extra attitude information while knowing rC
does not. Moreover, we note that horizon fitting produces an
image ellipse that is more sensitive to the location of the body
in the image than to the orientation of the ellipse in the image.
This is especially true as the ellipticity of the image ellipse
becomes smaller. Therefore, the most observable attribute
from a horizon fit loosely corresponds to knowledge of eC .
If rP is known, then eP = rP/‖rP‖ is known. By knowing

a unit vector in two different frames (e.g., given eP and
measure eC ) we may compute the two components of attitude
that take this vector in one frame onto itself in the other
frame. There is no attitude information for rotations about the
direction of that unit vector. Attitude information about this
unit vector directionmust come from another source—which,
in this case, is the apparent orientation the elliptical horizon
in the image.

Consequently, knowing rP allows us to obtain an excellent
estimate of the two components of attitude that rotate rP
onto rC . Rotation about the direction to the celestial body
comes from the orientation of the projected horizon, which
is much less observable. Thus, recognizing that rC is mostly
along the boresight (camera z-axis) direction for a modest
FOV camera, we understand why the attitude errors in Table 7
are much smaller in the camera x-axis and y-axis directions
than in the z-axis direction. We remind the reader that such an
explicit mechanization of the geometry is not necessary and
is implicitly carried out by the more compact mathematics in
Algorithm 4.

When we only know rC (and not rP) from external sources,
all components of the attitudemust be inferred from the shape
of the projected image ellipse. Since this is less observable
than the location of the ellipse (especially for bodies that
are nearly spherical), we find substantially worse attitude
determination performance in these cases. Hence the larger
attitude errors in Table 8 (as compared to Table 7).

V. OPTICAL NAVIGATION (OPNAV) WITH A BODY OF
UNKNOWN ATTITUDE
The last of the three motivating scenarios from Sec. I is
the case where we collect an image of a nearby celes-
tial body with unknown relative position and unknown rel-
ative attitude. It is impossible to reconstruct the full six

TABLE 8. Attitude determination (with known rC ) covariance for
synthetic images of the Saturnian moon Miamis. Attitude determination
performed using Algorithm 4. Errors are expressed in the camera frame.
Statistics are computed from a 10,000-run Monte Carlo simulation, with
each algorithm operating on the same set of simulation inputs.

degree-of-freedom relative state from a single image of a
celestial body modeled as a proper quadric surface (sphere,
spheroid, or triaxial ellipsoid). This fact becomes clear when
we recall that the horizon arc for such bodies appears as
a conic section in an image—and conics only have five
degrees-of-freedom. At most we may recover five compo-
nents of the relative state, though we recover less than five
degrees-of-freedom in many cases due to degeneracies (or
near degeneracies) in the celestial body’s global shape.

In the case of a spherical celestial body (a = b = c),
the body’s tightly bounding cone is the same for all attitudes.
We observe that AC = AP = a−2I3 for any attitude TPC
and conclude that it is impossible extract relative attitude
information from just the horizon when the relative position
is also unknown. While the relative attitude of a sphere is
completely unobservable, we may unambiguously estimate
the relative position in the camera frame rC . It is impossi-
ble to transform this result into rP since the attitude of the
celestial body remains unknown. The best way to solve for
rC in practice is with the Christian-Robinson algorithm from
Sec. III-C.

Many celestial bodies in the Solar System are well-
modeled as oblate spheroids (e.g., a = b > c). In this
case, it is often possible to find a five degree-of-freedom pose
solution. Some preliminary work for this case was recently
presented by Modenini in [104]. Unfortunately, though the-
oretically sound and an important contribution, the results
of [104] rely on unnecessary geometric constructs and do
not consider the frames in which the OPNAV measurements
most natively exist. This complicates the solution, obscures
otherwise straightforward geometric results, and prevents the
algorithm’s extension to the case of a triaxial ellipsoid. In this
tutorial we present a new way of solving the problem of pose
estimation with an oblate spheroid. Here, we suggest that an
easier way to represent the pose measurement is with the rela-
tive position in the camera frame rC and the unit vector along
the oblate spheroid’s axis of revolution direction. Specifying
only the direction of the spheroid’s axis of revolution provides
two degrees-of-freedom in attitude, allowing the body to spin
about this axis (a rotation which is clearly unobservable from
only the horizon projection). It is impossible to unambigu-
ously transform this result into rP, since the complete attitude
of the celestial body is unobservable.
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In the case of a sphere and spheroid, the repeated dimen-
sion of one (or more) of the celestial body’s principal axis
lengths isolates the missing degree(s)-of-freedom in pose to
just the attitude. This allows us to directly estimate the relative
position rC and, in the case of a spheroid, also estimate the
celestial body’s axis of revolution. For the case of a generic
triaxial ellipsoid (a 6= b 6= c), each axis length is unique and
themissing degree-of-freedom now contains elements of both
the position and the attitude. The possible pose estimates now
lie along a one-dimensional manifold in a six-dimensional
state space.

The solution for celestial bodies of all quadric shapes
begins with the expression for the conic envelope from
Eq. (61)

C∗ ∝ A−1C − rCr
T
C (170)

which we turn into an equality relation by introducing the
scaling α,

αC∗ = A−1C − rCr
T
C (171)

The reader will recognize this as the same starting point for
the conic envelope solution for the horizon-based attitude
determination problem [see Eqs. (120) and (152)].

What follows is a detailed discussion of the solution proce-
dure for celestial bodies of all proper quadric shapes. While
the discussion is lengthy, the resulting algorithms for pose
estimation are simple to implement and are summarized in
Section V-E.

A. BOUNDS ON SCALE FACTOR FROM THE RANK-ONE
UPDATE OF A DIAGONAL MATRIX
The scale factor α in Eq. (171) cannot be computed via
Eq. (131) since the range r = ‖rP‖ = ‖rC‖ is unknown.
A different approach is required here, where we instead seek
the bounds of possible values for α. Bounds on the scale
factor α may be found using constraints that arise from the
known eigenvalues of C∗ and AP. One straightforward way
to arrive at these bounds is to rewrite Eq. (171) as a rank-one
update of a diagonal matrix. This may be achieved by
diagonalizing either C∗ or AP.
We first consider the constraints arising from the diago-

nalization of C∗. Define {λi}3i=1 to be the three eigenvalues
of C∗. Now, taking the eigendecomposition of αC∗, we find
that

αC∗ = αV3VT (172)

where the matrices 3 and V are

3 = diag[λ1, λ2, λ3] and V =
[
v1 v2 v3

]
(173)

Since the sign of C∗ is arbitrary and one of its eigenvalues
has unique sign, choose the sign of C∗ such that the sorted
eigenvalues are λ1 ≥ λ2 > 0 > λ3. This convention may
be enforced by ensuring that det[C∗] < 0. The vector vi is
the unit eigenvector corresponding to the eigenvalue λi. Now,

substituting the eigendecomposition of αC∗ into Eq. (171)
yields

αV3VT
= A−1C − rCr

T
C (174)

which may be rewritten as

VTA−1C V = α3+ rλrTλ (175)

where

rλ = VT rC =

rλ1rλ2
rλ3

 (176)

We observe that the eigenvalues of the left-hand side of
Eq. (175) are unchanged by the orthonormal matrix V ,

eig[VTA−1C V ] = eig[A−1C ] = eig[A−1P ] = {di}3i=1 (177)

where the three eigenvalues of A−1P are sorted in descending
order, d1 ≥ d2 ≥ d3 > 0. Consequently,

{di}3i=1 = eig[α3+ rλrTλ ] (178)

We observe the right-hand side of Eq. (178) to be the eigen-
values for a rank-one update of a diagonal matrix. Therefore,
applying the well-known result fromGolub [105], we find the
bounds on the eigenvalues to be

αλ1 + r2 ≥ d1 ≥ αλ1 ≥ d2 ≥ αλ2 ≥ d3 ≥ αλ3 (179)

where r = ‖rC‖ = ‖rλ‖. Diagonalization of C∗ provides
the upper-bound in the chain of inequalities. We will return
to this intermediate (and not yet fully simplified) result in a
moment.
The lower-bound may be found by the diagonalization

of A−1P . To proceed, take the inverse of Eq. (28)

A−1C = TPCA
−1
P TCP (180)

which, after substitution into Eq. (171) yields

αC∗ = TPC
(
A−1P − rPr

T
P

)
TCP (181)

It follows that that

{αλi}
3
i=1 = eig

[
αC∗

]
= eig

[
A−1P − rPr

T
P

]
(182)

Since A−1P is a diagonal matrix, we recognize the right-hand
side of Eq. (182) to be another case of a rank-one update of
a diagonal matrix. Thus, once again applying the results of
Golub [105] to this problem, we find that

d1 ≥ αλ1 ≥ d2 ≥ αλ2 ≥ d3 ≥ αλ3 ≥ d3 − r2 (183)

which is identical to Eq. (179), but with the lower bound
specified (instead of the upper bound).
Without loss of generality, define the principal axis frame

of the celestial body with d1 = a2 along the x-direction,
d2 = b2 along the y-direction, and d3 = c2 along the
z-direction. Thus, as required, {di}3i=1 is a sorted list of
a2, b2, c2. It follows directly that d3 = c2 > 0. We also
know that d3 − r2 = c2 − r2 ≤ 0 since the camera must be
outside the celestial body. Moreover, recall that our choice of
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det[C∗] < 0 ensures that the eigenvalue of unique sign is λ3
and that this eigenvalue is negative. It follows that α > 0 and
that αλ3 < 0. Therefore, combining Eq. (179) and Eq. (183),
replacing d1, d2, d3 with a2, b2, c2, and incorporating the
supplemental inequalities, the generic result becomes

αλ1+r2≥a2≥αλ1≥b2≥αλ2 ≥ c2 > 0 ≥ αλ3 ≥ c2 − r2

(184)

Because a, b, c are known (since the body shape is known)
and λ1, λ2, λ3 are computed from the observed conic enve-
lope C∗, this chain of inequalities provides constraints on the
possible values of the scale factor α. We remind the reader
that α and r are the only unknowns in these inequalities.

B. FINDING SCALE FACTOR FOR DIFFERENT SHAPES
The key to solving the five degree-of-freedom pose problem
is finding the unknown scale α. This is easily done for a
sphere and spheroid using the inequalities from Eq. (184).
The situation is more complicated for a triaxial ellipsoid.

1) SPHERE
For a sphere, a = b = c > 0 such that di = a2 for i = 1, 2, 3.
Therefore, the eigenvalue inequality becomes

αλ1+r2≥a2≥αλ1≥a2≥αλ2≥a2>0 ≥ αλ3 ≥ a2 − r2

(185)

From which we immediately conclude that

a2 = αλ1 = αλ2 6= αλ3 (186)

and that

α = a2/λ1 = a2/λ2 (187)

In the presence of measurement noise, we often find that
λ1 6= λ2. When this is the case, we may compute α as the
average value

α =
2a2

λ1 + λ2
(188)

2) OBLATE SPHEROID
For an oblate spheroid, a = b > c > 0 such that di = a2 for
i = 1, 2. Therefore, the eigenvalue inequality becomes

αλ1+r2≥a2≥αλ1≥a2≥αλ2≥c2 > 0 ≥ αλ3 ≥ c2 − r2

(189)

Using the same approach as for a sphere, we conclude that

a2 = αλ1 (190)

which may be solved for α

α = a2/λ1 (191)

3) TRIAXIAL ELLIPSOID
For an oblate spheroid, a > b > c > 0 and the eigenvalue
inequality becomes

αλ1+r2≥a2≥αλ1≥b2≥αλ2≥c2 > 0≥αλ3 ≥ c2 − r2

(192)

No simplifications are possible. At best, one may determine
a range of possible values for α ∈ [αmin, αmax], where

αmin = max
[
b2

λ1
,
c2

λ2

]
(193)

αmax = min
[
a2

λ1
,
b2

λ2

]
(194)

As we will see, each selection of α will lead to a different
pose. This produces a one-dimensional manifold of pose
values that may be parameterized by the scalar α.

C. COMPUTING POSE FROM A HORIZON PROJECTION
Assuming the scale factor α is known (unique for a sphere and
spheroid, a range of values for an ellipsoid), we wish to com-
pute the pose of the celestial body. To do this, we first estimate
rC and then compute the relative attitude using the appropri-
ate attitude determination algorithm from Section IV-B.

To obtain a solution for rC , return to the diagonalized conic
envelope equation from Eq. (175):

VTA−1C V = α3+ rλrTλ (195)

where V and 3 are from Eq. (173) and where rλ is from
Eq. (176). As discussed by Golub [105], this rank-one update
of a diagonal matrix obeys the constraint

1+
n∑
i=1

r2λi
αλi − dj

= 0 (196)

Expanding the summation, we have

r2λ1
dj − αλ1

+
r2λ2

dj − αλ2
+

r2λ3
dj − αλ3

= 1 (197)

where α, {λi}3i=1, and {dj}
3
j=1 are all known. This may be used

to solve for rλ. SinceV is known and invertable, a solution for
rλ leads directly to a solution for rC . The procedure is slightly
different for an oblate spheroid and for a triaxial ellipsoid, and
the details are now presented. The sphere is a special case and
is presented last.

1) OBLATE SPHEROID
For an oblate spheroid, we have a = b > c, which leads to
the following two equations:

r2λ1
a2 − αλ1

+
r2λ2

a2 − αλ2
+

r2λ3
a2 − αλ3

= 1 (198)

r2λ1
c2 − αλ1

+
r2λ2

c2 − αλ2
+

r2λ3
c2 − αλ3

= 1 (199)

The first term in Eq. (198) would generally be problematic
since a2 = αλ1 [see Eq. (190)] for an oblate spheroid.
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Fortunately, we observe that rλ1 = 0 in this situation and the
first term vanishes. Therefore, we only have

r2λ2
a2 − αλ2

+
r2λ3

a2 − αλ3
= 1 (200)

r2λ2
c2 − αλ2

+
r2λ3

c2 − αλ3
= 1 (201)

which may be used to construct a linear system
1

a2 − αλ2

1
a2 − αλ3

1
c2 − αλ2

1
c2 − αλ3

 ρ = 12×1 (202)

where

ρ =

[
ρ1
ρ2

]
=

[
r2λ2
r2λ3

]
(203)

Since this is a simple 2× 2 system, it may be solved analyti-
cally for ρ

ρ =
1

α(λ2 − λ3)

[
−(c2 − αλ2)(a2 − αλ2)
(c2 − αλ3)(a2 − αλ3)

]
(204)

After substitution for α from Eq. (191), this may be further
simplified to

ρ =
a2λ1
λ2 − λ3

[
−((c/a)2 − λ2/λ1)(1− λ2/λ1)
((c/a)2 − λ3/λ1)(1− λ3/λ1)

]
(205)

Therefore, we may solve for rC as

rC = Vrλ = V

 0
±
√
ρ1

±
√
ρ2

 (206)

There are four possible choices for the signs of the terms in rλ.
Two of these will produce relative positions with the observed
celestial body in front of the camera. Either of these solutions
perfectly satisfies the observed data and result in a twofold
ambiguity.

A simple way to enforce this cheirality test and to find the
two correct solutions is to define r′C1

and r′C2
as

r′C1
= V

 0
√
ρ1
√
ρ2

 and r′C2
= V

 0
−
√
ρ1

√
ρ2

 (207)

and then compute the two solutions as

{rC }i = sign[kT r′Ci ] r
′
Ci , i = 1, 2 (208)

where kT = [0, 0, 1].
Once we have the two possible solutions for rC , we may

find the spheroid’s axis of revolution in the camera frame wC
by following the procedure in Sec. IV-B (and as codified in
Algorithm 3).

This provides the fully general solution to the five degree-
of-freedom pose problem with an oblate spheroid. It com-
pletely avoids creation of the arbitrary geometric constructs
used in [104]. It also avoids the cubic solution required in

Modenini’s derivation, as well as the complicated trigono-
metric solutions shown in [104]. Here, we have reduced the
solution to computing the eigenvalues/eigenvectors of C∗,
which permit a direct analytic solution for rC and wC .

2) TRIAXIAL ELLIPSOID
For a triaxial ellipsoid, we have a > b > c, which leads to
the following three equations:

r2λ1
a2 − αλ1

+
r2λ2

a2 − αλ2
+

r2λ3
a2 − αλ3

= 1 (209)

r2λ1
b2 − αλ1

+
r2λ2

b2 − αλ2
+

r2λ3
b2 − αλ3

= 1 (210)

r2λ1
c2 − αλ1

+
r2λ2

c2 − αλ2
+

r2λ3
c2 − αλ3

= 1 (211)

The scalar α is chosen somewhere between αmin and αmax ,
with each choice for α producing a solution at a different
range. This produces a one-dimensional manifold of possible
pose solutions in the six degree-of-freedom state space.

Using the same procedure as for the spheroid, we stack the
equations above to form a linear system,

1
a2 − αλ1

1
a2 − αλ2

1
a2 − αλ3

1
b2 − αλ1

1
b2 − αλ2

1
b2 − αλ3

1
c2 − αλ1

1
c2 − αλ2

1
c2 − αλ3

 ρ = 13×1 (212)

where

ρ =

ρ1ρ2
ρ3

 =
r2λ1r2λ2
r2λ3

 (213)

Since the 3× 3 matrix in Eq. (212) is full rank, we may solve
for ρ directly. Therefore, with ρ known

rC = Vrλ = V

±√ρ1±
√
ρ2

±
√
ρ3

 (214)

only four of which will produce an estimate with the celestial
body in front of the camera (i.e., positive z-component of rC ).
We may find the four solutions using a similar procedure as
for the oblate spheroid. First compute the four intermediate
results

r′C1
= V

√ρ1√ρ2
√
ρ3

 , r′C2
= V

−√ρ1√
ρ2
√
ρ3

 (215a)

r′C3
= V

 √ρ1−
√
ρ2

√
ρ3

 , r′C4
= V

−√ρ1−
√
ρ2

√
ρ3

 (215b)

which permit the four solutions to be found by

{rC }i = sign[kT r′Ci ] r
′
Ci , i = 1, 2, 3, 4 (216)

where kT = [0, 0, 1].
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With these four possible values of rC known, we may
compute the relative attitude TPC following the procedure in
Sec. IV-B (and as codified in Algorithm 4). For a triaxial
ellipsoid, there are four possible attitudes for each position
rC—leading to a total of 4 × 4 = 16 possible solutions.
Alternatively, these 16 solutions correspond to eight different
values of rP, with two possible attitudes at each unique loca-
tion. All 16 of these solutions (either 4×4 = 16 in the camera
frame or 8 × 2 = 16 in the celestial body frame) perfectly
satisfy the original problem. It is impossible to distinguish
between these equivalent solutions without additional infor-
mation. Moreover, each of these 16 solutions belongs to its
own 1D manifold as α varies between αmin and αmax .

3) SPHERE
While a similar approach may be taken for a sphere,
we observe that this is an unwise choice in practice. If the
celestial body is spherical, we can solve for rC with the
Christian-Robinson algorithm—and this solution will be bet-
ter than what is achieved by estimating rC from the horizon
fit C. There is no need to discuss solutions for TPC or rP, since
neither of these can be found for a spherical body.

D. RELATIONSHIP BETWEEN SCALE FACTOR AND RANGE
It is also possible to independently compute the range without
computing the full relative position. It is important to stress
that we never have to do this in order to compute pose. The
present discussion is included purely for geometric insight
and academic interest.

Beginning with the assumption that the scale factor α is
known, it is possible to solve directly for the unknown range.
This may be achieved by taking the trace of both sides of
Eq. (171)

αTr
[
C∗
]
= Tr

[
A−1C

]
− Tr

[
rCrTC

]
(217)

which becomes

α (λ1 + λ2 + λ3) = a2 + b2 + c2 − r2 (218)

This is exactly the same as Eq. (131) after some trivial rear-
rangement. Directly solving for r2, we obtain

r2 = a2 + b2 + c2 − α (λ1 + λ2 + λ3) (219)

Simple analytic expressions may be found for the range in the
case of a sphere and spheroid. These are now derived.

1) SPHERE
For a sphere, we know that

a2 = b2 = c2 = αλ1 = αλ2

Thus, substituting these relations into Eq. (219),

r2=a2+a2+a2 −
(
a2 + a2 + αλ3

)
= a2 − αλ3 (220)

which is easy to solve for r ,

r =
√
a2 − αλ3 (221)

Since α = a2/λ1 for a sphere, this becomes

r = a
√
1− λ3/λ1 (222)

2) OBLATE SPHEROID
For an oblate spheroid, we know that

a2 = b2 = αλ1 (223)

Thus, substituting these relations into Eq. (219),

r2 = a2 + a2 + c2 −
(
a2 + αλ2 + αλ3

)
= a2 + c2 − αλ2 − αλ3 (224)

Now, substituting α = a2/λ1 from Eq. (191)

r2 = a2 + c2 − a2
λ2

λ1
− a2

λ3

λ1
(225)

r2 = a2
(
1+

c2

a2
−
λ2

λ1
−
λ3

λ1

)
(226)

While working with the ratio c/a is easy enough, reference
spheroids for celestial bodies are often defined in terms of
their flattening, f , which is defined as [42]

f =
a− c
a
= 1−

c
a

(227)

Thus, it is trivial to rewrite our expression for r directly
in terms of the flattening parameter that is more commonly
reported for shape models

r2 = a2
(
2+ f 2 − 2f −

λ2

λ1
−
λ3

λ1

)
(228)

Since it is guaranteed that r > 0, we have either

r = a

√
1+

c2

a2
−
λ2

λ1
−
λ3

λ1
(229)

or

r = a

√
2+ f 2 − 2f −

λ2

λ1
−
λ3

λ1
(230)

As a final aside, we note that (in contrast to [104]) there is
no need to explicitly transform into a local-horizontal/local-
vertical (LVLH) frame or to explicitly keep track of latitude
in these derivations.

3) TRIAXIAL ELLIPSOID
In the case of a triaxial ellipsoid, the original result from
Eq. (219) does not simplify in general. Therefore, the range
is computed as

r =
√
a2 + b2 + c2 − α (λ1 + λ2 + λ3) (231)

We note the explicit dependence on the scale factor α.
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E. ALGORITHM SUMMARY
The results above may be assembled into straightforward
algorithms for horizon-based pose estimation. The solution
for an oblate spheroid is given in Algorithm 5, while the
solution for a triaxial ellipsoid is given in Algorithm 6. The
efficacy of these two algorithms are best demonstrated by an
example.

For the case of an oblate spheroid, once again consider
the example of Ceres as imaged by a spacecraft at a range
of 10,000 km. We assume the same visible spectrum camera
as in other examples. Under the conditions in this exam-
ple, Ceres projects to an image ellipse with semimajor
axis of 285.58 pixels and semiminor axis of 282.75 pixels.
Results from a 10,000-runMonte Carlo simulation are shown
in Tables 9–12. Table 9 and Table 10 show performance
statistics for the position component of the pose solution.
Table 11 and Table 12 show performance statistics for the
attitude component of the pose solution.

As expected, position estimation is worst along the camera
boresight direction. There does not appear to be a strong
preference in the direction of largest error for the orientation
of the celestial body’s axis of symmetry. These trends in
covariance shape are similar to the position-only solution
fromSec. III and the attitude-only solution for a spheroid with
known rC from Sec. IV-B.

Algorithm 5 Pseudocode for pose algorithm with horizon fit
of an oblate spheroid
1: procedure [{rC }, {wC }] = Pose_ObSp(C∗, a, c)
2: if det[C∗] > 0 then
3: C∗ = −C∗

4: compute [3,V ] = eig[C∗] F Eq. (173)
5: compute ρ F Eq. (205)
6: for i = 1 to 2 do
7: compute r′Ci F Eq. (207)
8: compute {rC }i F Eq. (208)
9: compute {wC }i F Algorithm 3

10: return {rC }2i=1, {wC }
2
i=1

Algorithm 6 Pseudocode for pose algorithm with horizon fit
of a triaxial ellipsoid

1: procedure [{rC }, {TPC }] = Pose_El(C∗, a, b, c)
2: if det[C∗] > 0 then
3: C∗ = −C∗

4: compute [3,V ] = eig[C∗] F Eq. (173)
5: compute αmin and αmax F Eqs. (193) & (194)
6: choose α ∈ [αmin, αmax]
7: compute ρ F Eq. (212)
8: for i = 1 to 4 do
9: compute r′Ci F Eq. (215)

10: compute {rC }i F Eq. (216)
11: compute {{TPC }

4
j=1}i F Algorithm 4

12: return {rC }4i=1, {{T
P
C }

4
j=1}

4
i=1

TABLE 9. Pose estimation performance statistics (position component)
for synthetic images of the dwarf planet Ceres. Pose estimation
performed using Algorithm 5. Statistics are computed from a 10,000-run
Monte Carlo simulation, with each algorithm operating on the same set of
simulation inputs.

TABLE 10. Pose estimation covariance (position component) for
synthetic images of the dwarf planet Ceres. The root-sum-square (RSS) of
these values are equivalent to the right-most column in Table 9. Errors are
expressed in the camera frame.

TABLE 11. Pose estimation performance statistics (attitude component)
for synthetic images of the dwarf planet Ceres. Results indicate errors in
the direction of the oblate spheroid axis of symmetry, wC . Pose
estimation performed using Algorithm 5. Statistics are computed from a
10,000-run Monte Carlo simulation, with each algorithm operating on the
same set of simulation inputs.

TABLE 12. Pose estimation covariance (attitude component) for synthetic
images of the dwarf planet Ceres. The root-sum-square (RSS) of these
values are equivalent to the right-most column in Table 11. Errors are
expressed in the camera frame.
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FIGURE 19. Visualization of 1D manifold of solutions for a triaxial
ellipsoid using synthetic images of Miamis. The red, green, blue, and black
markers show the projection of the four noise-free solutions for rC onto
the image, with arrows indicating the progression along the manifold as α
varies from αmin to αmax . The gray markers show the results from
10 Monte Carlo runs with a limb localization error of σ = 0.07 pixel.
Gridlines show pixel boundaries. Results produced using Algorithm 6.

For the case of a triaxial ellipsoid, consider synthetic
images of Miamis from a range of 4,000 km using the same
visible spectrum camera as in other examples. Under the
conditions in this particular example, Miamis projects to
an image ellipse with semimajor axis of 291.39 pixels and
semiminor axis of 286.91 pixels. It is difficult tomeaningfully
display perturbations of the 16 possible 1D manifolds in
six degree-of-freedom state space. Instead, consider only the
projection of rC onto the image plane. We can track the
evolution of the bearing to the body center in pixel space as
the scale factor α goes from αmin to αmax . These results are
shown in Fig. 19. The range from the camera to the center
of Miamis varies from 3,940.6 km to 4,000.2 km over this
range of α. We can see that it is possible for the apparent
direction to the body to change by a few pixels, depending on
(1) the choice of α and (2) which of the four solutions of rC
is selected. The magnitude of this effect will be different for
different viewing geometries ofMiamis or for observations of
other celestial bodies. In some situations these variations may
be small enough to neglect, but (as this example highlights)
this is not always the case.

VI. CONCLUSION
The apparent horizon of a celestial body in digital image may
be used for spacecraft navigation. Since most large celestial
bodies are well-modeled at the global level by a sphere,
spheroid, or triaxial ellipsoid, the horizon projects to a conic
in the image. Depending on the specific body and viewing
geometry, the horizon arc may appear as a circle, ellipse,
parabola, or hyperbola. This work shows how the projected
conic (usually an ellipse) may be used to estimate the relative

position, relative attitude, or both. Algorithms are presented
for all three of these state estimation scenarios and for all
three body shapes (sphere, spheroid, triaxial ellipsoid). This
work is the first time that all of these closely related problems
have been studied in a holistic manner and within a common
mathematical framework.
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