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ABSTRACT In this paper, a novel distributed predictive control (DMPC) method for multi-agent systems
based on error upper bounds is proposed. To reduce the communication burden, the error upper bound
condition between the subsystem and the neighbor subsystems is calculated by introducing the min-max
function from the local state error of neighbouring subsystems. Additionally, an improved coupling con-
straints to describe the relationship between the neighbouring subsystems is introduced. Then, the proposed
DMPC algorithm with kinds of the constraints is given, including the terminal cost, the terminal set and
the terminal controller. Furthermore, the feasibility of the proposed DMPC algorithm is analyzed and the
stability conditions of multi-agent systems are derived. Finally, a numerical example is given to verify the
effectiveness of the method.

INDEX TERMS Distributed model predictive control, multi-agent systems, error upper bound.

I. INTRODUCTION

In recent years, with more and more in-depth research on
multi-agent systems, it has been widely applied in mili-
tary operations [1], [2], transportation [3], mobile sensor
network [4], micro-grid [5] and many other fields. There-
fore, the control problem of multi-agent systems has also
become a research focus. In this scenario, Yang et al. stud-
ied the problem of consistency control of multi-agent sys-
tems [6]–[8]. In [6], [7], Yang et al. proposed a model-free
distributed control method, and a new optimal control pro-
tocols for the distributed output synchronization problem of
multi-agent systems was addressed in [8]. For the consis-
tency issues of nonlinear systems, Liang et al. addressed the
adaptive event-triggered neural control problem for nonaffine
pure-feedback nonlinear multi-agent systems with dynamic
disturbance, unmodeled dynamics, and dead-zone input [9]
and the distributed observer-based event-triggered bipartite
tracking control problem for stochastic nonlinear multi-agent
systems with input saturation [10] separately, which can
effectively reduce the communication burden. In the above
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papers, agents only exchange current information to achieve
the objectives of cooperation, but have little knowledge of
themselves and their neighbor agents in the future behav-
ior. Due to the ability to effectively deal with constraints
and enable agents to estimate the future behaviors of neigh-
bors, distributed predictive control has became a widely used
method for multi-agent systems. Wei et al. proposed a model
predictive control method [11]–[13], which used the informa-
tion between the agent systems in the future moment to solve
the control problems, it can not only get the optimal state of
the agent systems in the future, but also optimize the related
cost function. However, the constraints between multi-agent
systems are ignored. Although Zhi et al. came up with a
way to synchronously update the state of the multi-agent
systems, and set compatible constraints [14], [15], the cost
and coupling constraint between multi-agent systems was
not considered. Qian et al. [16] emphasized that each agent
updated the control input in sequence, in this way, the cost and
coupling constraint can be satisfied to a certain extent, while,
the overall amounts of communication between controllers is
quite large. Later, Jian et al. proposed a new control method
to reduce the communication workload, where entire system
only updated the state of one agent at each moment, and
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other neighborhood used feasible solutions. While, the solu-
tion obtained after updating using this method was not
optimal [17], [18].

In this work, a distributed model predictive control based
on the error upper bound for multi-agent systems is stud-
ied. The main contributions of this article are as follows:
(1) Different from [19], a local neighborhood error is adopted
to construct a cost function, and then the error upper bound
condition for the DMPC design is introduced by the min-max
function characteristics to reduce the communication burden.
(2) By utilizing the 2-norm form, the coupling constraint [20]
is improved to represent the relationship between neighbour-
ing subsystems. (3) Based on the condition related to the com-
patible constraints, the proposedDMPC algorithm guarantees
the closed-loop system is asymptotically stable.

This article is organized as follows. The problem is for-
mulated in Section II, In Section III, distributed predictive
control for multi-agent systems is given, Section IV shows
simulation examples to illustrate the effectiveness of the
obtained results. Conclusions are discussed in Section V.
Notations: Rn and Rm represent n-dimensional and

m-dimensional real space.Rn×n denote n×n-dimensional real
matrix, I1:Na is the set of integers from 1 to Na, the sequence
x(a), x(a+ 1), . . . , x(b) is denoted by x(a : b), and λmin(T ),
λmax(T ) represent the minimum and maximum eigenvalues
of the positive definite matrix T. sTQs is represented by ‖s‖2Q
for a vector s ∈ Rn and a positive definite matrix Q ∈ Rn×n.
For X ⊆ Rn, Y ⊆ Rn, X ⊕ Y = {x + y|x ∈ X , y ∈ Y } is
the Minkowski sum, and X 	 Y = {t ∈ Rn| {t} + Y ⊆ X}
is Pontryagin difference. bT , b−1 are respectively used to
represent the transpose and inverse of the matrix b.

II. PROBLEM FORMATION
Considering a multi-agent systems with multiple subsystems,
the dynamic model of the i-th (∀i ∈ I1:Na ) subsystem [21] is
as follow

xi(k + 1) = Axi(k)+ Bui(k) (1)

with xi(k) ∈ Rn and ui(k) ∈ Rm representing the state and
control input of the agent i at time k , and input constraints
ui(k) ∈ Ui, where Ui ⊆ Rm is the compact set that contains
the origin. A ∈ Rn×n and B ∈ Rn×n are constant matrices with
the appropriate dimensions.

The network topology of all agents is represented by an
undirected graph ς = (υ, ζ,A), where υ = {1, 2, . . . ,N } is
the set of agents and ζ ⊆ ((i, j) ∈ υ×υ|i 6= j} is the edge set.
The element aij of the adjacency matrixA is represented such
that aij ≥ 0⇔ (i, j) ∈ ζ . Especially, it is noted that aij = aji
always holds in an undirected graph.

In addition, assume that Ni is the set of neighbor agents
of agent i, and |Ni| is the number of neighboring agents.
If agent i and agent j are neighboring agents, then they can
communicate with each other.Therefore, the control input
ui(k) of the agent i can be described by

ui(k) = uii(k)+ K
j∈{ci,k∪{i}}

xj(k)+ K
j∈{Ni\ci,k∪{i}}

xj(k),

where Ci,k ⊆ Ni is the set of neighbor agents that cooperate
with agent i at time k , and

∣∣Ci,k ∣∣ represents the number of
agents in the set.To calculate the error upper bound, a local
error for each agent i at time k is defined as follow

δi(k) =
∑

j∈Ni
aij(xi(k)− xj(k)), (2)

where δi(k) ∈ Rn. By the new notation m(k) =

−B
∑

j∈Ni aijuj(k), B̄ = B
∑

j∈Ni aij, and combining the above
formulas (1)-(2), the dynamics of the local neighborhood
error is given by

δi(k + 1) = Aδi(k)+ B̄ui(k)+ m(k). (3)

To facilitate the DMPC design, the following assumptions
and lemmas are introduced.
Lemma 1 [22]:Assume thatW t

i andW
t
j respectively are the

state sets of age i and age j. For all t = 1, . . . ,N , ∀i ∈ I1:Na ,
the following state set relations are established

xi(k + t|k + 1)− xi(k + t|k) ∈ W t
i , (4)

X ti = X t−1i 	W t
i ,U

t
i = U t−1

i 	 KW t
j , ∀j ∈ Ni ∪ {i} .

(5)

Assumption 1 [23]: (1) Assume that terminal function
δi(k + T ) is a Lyapunov function for each agent i ∈ I1:Na ,
and Pi, Qii, Rii ∈ Rn×n are positive definite matrices, then
there is a control input ui(k + T ) such that

‖δi(k + T + 1)‖2Pi − ‖δi(k + T )‖
2
Pi

≤ −‖δi(k + T )‖2Qii − ‖ui(k + T )‖
2
Rii . (6)

(2) For i ∈ I1:Na , there exists a control input ui(τ ) such that
every error sequence δ̃i(τ ) compatible with control input ui(τ )
for all τ = k − L, . . . , k , in the sense holds

δ̃i(1+ τ ) = Ãδi(τ )+ B̄ui(τ )+ m(τ ). (7)

Remark 1: The terminal cost ‖δi(k + T )‖2Qii in (6) is
regarded as a Lyapunov function for the close-loop system,
which will gradually decrease with the system trajectory
when the system has an appropriate control input ui(k + T ).
The compatibility means that the error sequence δ̃i(τ ) and
control input ui(τ ) can work together to make dynamics
equations (7) be valid.
Assumption 2 [24], [25]: (1) For the the i-th subsystem

(1) with control input ui(k) = Kxi(k) ∈ Ui, the terminal set
X fi ⊆ Xi is a positive invariant set, if there exist all xi(k) ∈ X

f
i

such that xi(k + 1) ∈ X fi .
(2) If set x fi , x

f+1
i and1x fi are the elements in the terminal

set X fi , then the following relationship is satisfied

x fi ⊕1x
f
i ⊆ x f+1i . (8)

(3) If there exists a state xi(k) ∈ XN−1i , then ui(k) =
Kxi(k) ∈ U

N−1
i .

Assumption 3 [26]: (1) For ∀j ∈ Ci,k , ∀i ∈ I1:Na , if the ter-
minal controller ui(k+N |k) = K

∑
j∈Ni aijεi(k + N |k) is sat-

isfied, then the cost of terminal is
∑

j∈Ni aij ‖εi(k + N |k)‖
2
P,
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and terminal set is X fi =
{
xi|
∑

j∈Ni aij
∥∥εi∥∥2P ≤ ϕ}, where ϕ

is a scalar.
(2) If the system has an optimal solution at time k ,

the assumed control input at time k + 1 is defined as follow

ûi(k + t|k + 1)

=

{
u∗i (k + t|k), t = 1, . . . ,N − 1
K (x∗i (k + N |k), x

∗
j (k + N |k)), t = N

(9)

(3) For all i ∈ I1:Na , j ∈ Ci,k , there exist the terminal
control law ui(k + N |k) = K

∑
j∈Ni aijεi(k + N |k), and

terminal cost function
∑

j∈Ni aij ‖εi(k + N |k)‖
2
P such that the

following formula holds∑
j∈Ni

aij(‖εi(k + N + 1|k)‖2P − ‖εi(k + N |k)‖
2
P)

≤ −

∑
j∈Ni

aij ‖εi(k + N |k)‖2Qi − ‖ui(k + N |k)‖
2
Ri .

(10)

In this paper, by introducing a new judgment condition,
a new DMPC algorithm will be presented,and then the state
of the agents asymptotically achieve consensus. The detailed
presentation will be given in the next section.

III. DISTRIBUTED PREDICTIVE CONTROL FOR
MULTI-AGENT SYSTEMS
In this section, a new distributed predictive control algorithm
is designed by introducing an error upper bound condition
considering the influence of neighbors. Beside this, the con-
ditions for stability and feasibility are also designed. The
detailed control scheme is unfolded below.

A. ERROR UPPER BOUND CONDITION
In this subsection, the error upper bound as a judgment
condition is calculated for reducing communication cost, the
calculation method is reported as follows.

A cost function about local neighborhood error can be
defined as

Jii(δi(k), ui(k − L : k + T − 1))

=

k+T−1∑
τ=k

‖δi(τ )‖2Qii + ‖δi(k + T )‖
2
Pi +

k+T−1∑
τ=k−L

‖ui(τ )‖2Rii

(11)

where Pi, Qii and Rii are positive definite weighted matrices,
L is the length of the past horizon, and T is the length of the
future horizon. Based on (11), the optimization problem of
the form is obtained as

J∗ii (k) = max Jii
δ̃i

(̃δi,ui, ũ∗i ) = min Jii
ũi

(̃δ∗ĩδ
∗

ĩδ
∗

i ,ui, ũi) (12)

and for τ = k − L, . . . , k

δ̃i(1+ τ |k) = Ãδi(τ |k)+ B̄ui(τ )+ m(k) (13)

and for τ = k + 1, . . . , k + T − 1

δ̃i(1+ τ |k) = Ãδi(τ |k)+ B̄̃ui(τ |k)+ m(k) (14)

where δ̃i = δ̃i(k|k), δ̃̃δ̃δ∗i = δ̃
∗
i (k|k), ui = ui(k − L : k), ũi =

ũi(k + 1 : k + T − 1|k), ũ∗i = ũ∗i (k + 1 : k + T − 1|k), δ̃∗i
and ũ∗i are the corresponding optimal sequences respectively.
δ̃i(1+ τ |k) and ũi(τ |k) are denoted as predicted values of the
future states and control inputs.
Theorem 1: If the Assumption 1 is satisfied, then the fol-

lowing error upper bound condition holds

‖δi(k)‖2Qii ≤ J∗ii (L)−
k−1∑
τ=L

∥∥∥δ̂i(τ )∥∥∥2
Qii
+

k−L−1∑
τ=0

∥∥ûi(τ )∥∥2Rii
−

k∑
τ=k−L

‖ui(τ )‖2Rii (15)

Proof:With the help of [23], by letting δi(k+T ) = δ̃∗i (k+
T |k+1), there exists a control input ûi(k+T ) ∈ Ui satisfying∥∥̃δ∗i (k + T + 1|k + 1)

∥∥2
Pi
−
∥∥̃δ∗i (k + T |k + 1)

∥∥2
Pi

≤ −
∥∥̃δ∗i (k + T |k + 1)

∥∥2
Qii
−
∥∥ûi(k + T )∥∥2Rii (16)

then, it is concluded from (7) that there exists a actual state
vector δ̂i(k) satisfying δ̃∗i (k + 1|k + 1) = Aδ̂i(k) + B̄ui(k) +
m(k). Combining (7) and (12) with control input ũi(τ |k + 1)
for all τ = k + 1, . . . , k + T − 1, leads to

J∗ii (k + 1) = min
ũi

Jii(Aδ̂i(k)+ B̄ui(k)+ m(k),ui,

ũi(τ |k + 1))

where ui = ui(k−L+ 1 : k). Next, by defining ũi(τ |k+ 1) =
ũ∗i (τ |k), ũi(k + T |k + 1) = ûi(k + T ), it has

J∗ii (k + 1) ≤ Jii(Aδ̂i(k)+ B̄ui(k)+ m(k), ûi(k + T ),

ũ∗i (τ |k), ui(k−L + 1 : k)) (17)

Similarly, by setting δ̃i = δ̂i(k) for all τ = k+1, . . . , k+T−1,
it has

J∗ii (k) ≥ Jii(δ̂i(k), ui(k − L : k), ũ
∗
i (τ |k)) (18)

Furthermore, combining (17) and (18) leads to

J∗ii (k + 1)− J∗ii (k)

≤ Jii(Aδ̂i(k)+ B̄ui(k)+ m(k), ui(k−L + 1 : k),

u∗i (τ |k), ûi(k + T ))

− Jii(δ̂i(k), u∗i (τ |k), ui(k − L : k)). (19)

By substituting (11) into (19), it gives

J∗ii (k + 1)− J∗ii (k) ≤ −
∥∥∥δ̂i(k)∥∥∥2

Qii
−
∥∥ûi(k − L)∥∥2Rii (20)

and then (21) can be satisfied

J∗ii (k) ≤ J
∗
ii (L)−

k−1∑
τ=L

∥∥∥δ̂i(τ )∥∥∥2
Qii
+

k−L−1∑
τ=0

∥∥ûi(τ )∥∥2Rii (21)

In addition, by letting δ̃i = δ̃i(k), it can be concluded that

J∗ii (k) = max Jii
δ̃i

(̃δi,ui, ũ∗i ) ≥ Jii(δi(k), ui(k − L : k), 0)
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which can be changed into the following form

J∗ii (k) ≥ ‖δi(k)‖
2
Qii +

k∑
τ=k−L

‖ui(τ )‖2Rii (22)

Finally, by combining (21) and (22), the (15) is achieved and
then the proof is complete.

Different from the results of the reference [23], the error
upper bound condition (15) is introduced, related to the past
values of the cost function J∗ii (L) and control inputs ui(τ ).
Remark 2: It should be noted from (15) that the error

upper bound is considered as a judgement condition. Only
when the state error between the subsystem and its neigh-
boring subsystems violates the error upper bound condition,
the neighboring subsystems can be activated and participate
in the solution of the following DMPC algorithm, which
reduces the communication burden between the controllers
of subsystems.

B. A NEW DMPC DESIGN
Based on the above analysis of the error upper bound condi-
tion, the new DMPC scheme is proposed in this subsection.
Firstly, the cost function of state sequence xi(·|k) and an input
sequence ui( · |k) with the predictive horizon N for each agent
i is defined as

Ji(k) =
N−1∑
t=0

∑
j∈Ni

aij
∥∥xi(k + t|k)− xj(k + t|k)∥∥2Qi

+

∑
j∈Ni

aij
∥∥xi(k + N |k)− xj(k + N |k)∥∥2P

+ ‖ui(k + t|k)‖2Ri

=

N−1∑
t=0

∑
j∈Ni

aij ‖εi(k + t|k)‖2Qi + ‖ui(k + t|k)‖
2
Ri

+

∑
j∈Ni

aij ‖εi(k + N |k)‖2P

and the cost function of whole system is denoted as

J (k) =
Na∑
i=1

Ji(k) (23)

where xi( · |k) = {xi(k|k), xi(k + 1|k), . . . , xi(k + N |k)}
and ui( · |k) = {ui(k|k), ui(k + 1|k), . . . , ui(k + N |k)}. Qi,
Ri, P are positive definite weighted matrices, and εi(k + t|k)
represents the state deviation between the agent i and its
neighboring agents. In the process of solving the optimization
problem, the assumed predictive states of agents are trans-
mitted to its neighboring agents, hence, the standard DMPC
optimization problem is given by

J∗i (k) = min
ui(k+t|k)

Ji(k, xi(k), x̂j(k), ui(k)) (24)

s.t : i ∈ I1:Na , j ∈ Ci,k , t = 0, . . . ,N − 1

xi(k + t|k) ∈ X ti (25a)

ui(k + t|k) ∈ U t
i (25b)

xi(k + N |k) ∈ x
f
i ⊂ Xi (25c)∥∥x∗i (k + t|k)− x̂i(k + t|k)∥∥ ≤ ξi(k) (25d)

xi(k + t + 1|k) = Axi(k + t|k)

+ Bui(k + t|k) (25e)

X ti =
{{
X0
i

}
,
{
X1
i

}
, . . . ,

{
XN−1i

}}
⊆ Xi
(25f)

U t
i =

{{
U0
i

}
,
{
U1
i

}
, . . . ,

{
UN−1
i

}}
⊆ Ui
(25g)

X fi =
{{
x fi
}
,
{
1x fi

}
,
{
x f+1i

}}
⊆ Xi

(25h)

Qij =
∑

j∈Ni
aij

∥∥∥∥∥∥
∑

i∈ 1+|Ni|

βijεi

∥∥∥∥∥∥
2

≤ qij (25i)

Different from the reference [20] where the coupling
constraint was a simple description about the relationships
between neighbouring agents, in this paper, a new description
of the coupling constraint (25i) is constructed, which takes
the 2-norm form to make states in terminal set meet the con-
straint and which is also one of the conditions to ensure the
feasibility of the optimization problem of DMPC. However,
before solving the optimization problem (24), the issues about
terminal cost, terminal set and terminal controller should be
considered. To this end, the following theorem is given.
Theorem 2: Suppose that Assumption 3 holds. If there exist

matrices ϕ and P such that the following conditions (26-27)
are satisfied, then X fi for all agent i ∈ I1:Na is a positive
definite invariant set. And the states in the terminal set also
satisfy the coupling constraint (25i).

X ∗ ∗ ∗

AX + BY X ∗ ∗

Qi1/2X 0 I ∗
Ri1/2Y 0 0 I

 ≥ 0 (26)

ϕ = min λmin(P)×
qij

2× (1+ |Ni|)

×
∣∣βij∣∣2 (27)

Proof: Firstly, the formula (10) can be written as∑
j∈Ni

aij[εi(k + N |k)T ((A+ BK )TP(A+ BK )− P

+Qi + KTRiK )εi(k + N |k)] ≤ 0 . (28)

By letting X = P−1 > 0, Y = KX [27], and multiplying
P−1 on the left and right sides of the (28), the inequality
(26) is obtained. In this case, the terminal set is denoted as
X fi =

{
xi|
∑

j∈Ni aij
∥∥εi∥∥2P ≤ ϕ} under the corresponding

input ui(k + N |k) = K
∑

j∈Ni aijεi(k + N |k).
Furthermore, for all i ∈ {1+ |Ni|}, j ∈ Ni, based on the

ideal of the reference [19], the terminal set X fi indicates∑
j∈Ni

aij
∥∥εi∥∥2P ≤ min λmin(P)×

qij

2× (1+ |Ni|)×
∣∣βij∣∣2
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Relying on the above formulas, it has

2
∣∣βij∣∣2∑j∈Ni aij

∥∥εi∥∥2P
λmin(P)

≤
qij

1+ |Ni|

and

2
∑

j∈Ni
aij
∥∥βij × εi∥∥2 ≤ qij

1+ |Ni|

Furthermore, it gives

2
∑

i∈ 1+|Ni|

∑
j∈Ni

aij
∥∥βij × εi∥∥2 ≤ qij

Finally, the above formulas can be changed into∑
j∈Ni

aij
∥∥∥∑

i∈ 1+|Ni|
βij × εi

∥∥∥2 ≤ qij
which implies that the states in terminal set X fi satisfy the
coupling constraint. This proof is complete.

As for the optimization problem (24), the nonlinear pro-
gramming solver can be adopted, because of the nonlinear
coupling constraint (25i). In addition, different from the other
methods such as adaptive controls [28], [29] which can not
be effectively handle the kinds of the constraints, the DMPC
algorithm proposed in this paper is an online optimization
algorithm which can deal with the constraints online. Then,
the implementation of the proposed DMPC approach is
summarized as follows.

Algorithm
Require: X fi , P and K

Initialization xi(0) and k = 0
Repeat

(1): If the condition (15) is not satisfied, then
Ci,k = Ci,k ∪ {j}
(2): For t ∈ [0,N−1], calculate ûi(k+ t|k) and x̂i(k+ t|k).
(3): Send x̂i(k+ t|k) to the neighboring agents j and receive

x̂j(k + t|k) from neighboring agent j
(4): Calculate 9i(k) and ωi(k) according to (29) and (30).
(5): For ∀j ∈ Ni, and t ∈ [0,N−1], themeasured state xi(k)

is sent to the controller to solve the optimization problem(24),
and then the optimal solution ui(k) = u∗i (k|k).
(6): Otherwise Ci,k = Ci,k , then go to step (2).

Remark 3: Whether the subsystem communicates with
the neighboring subsystems is judged according to the error
upper bound condition, therefore, the assumed state informa-
tion of agent i is required to exchange with its neighbor agent
j. That is, agent i receives its own information and the relative
local information (xi, xj, xi − xj).
Remark 4: It was shown from the references [30], [31] that

the theory about the finite-time stability is usually utilized to
derive an upper limit on the system convergence time, then
the system can converge in a finite-time under the control
strategy. However, the finite-time consistency problem of
multi-agent systems is not considered, only the asymptotical
consistency problem is studied in this paper, because of some

difficult in the combination between the DMPC algorithm
and the finite-time strategy. In the future work, the pro-
posed DMPC method combining the finite-time stability will
be extended to the the consistency problem of multi-agent
systems.

C. FEASIBILITY AND STABILITY ANALYSIS
In this section, the feasibility of the above algorithm
will be verified, and then the results on the feasibil-
ity of the proposed algorithm and the closed-loop stabil-
ity of multi-agent systems are derived in the following
theorems.
Theorem 3: Suppose that Assumptions 2 and 3 hold. If the

initial state xi(0) is chosen to be a solution of the optimization
problem (24), and X fi is terminal set, then the optimization
problem admits feasible solutions for all k ≥ 0.

Proof: For t ∈ [1,N ], i ∈ I1:Na , by the fact that
Lemma 1 and state constraints in (25), it has

xi(k + t|k + 1) ∈ xi(k + t|k)⊕ ∈ W t
i .

Furthermore, together with (5), the following formulas holds

xi(k + t|k + 1) ∈ (X t−1i 	W t
i )⊕W

t
i ⊆ X t−1i ⊆ Xi.

Similarly, the following result can be obtained

xi(k + N |k + 1) ∈ XN−1i .

As for the control input at time k , it has

ui(k + t|k) = uii(k + t|k)+ K
j∈{ci,k∪{i}}

xj(k + t|k)

+ K
j∈{Ni\ci,k∪{i}}

xj(k + t|k).

At time k + 1, it can be proved that

ui(k + t|k +1) = uii(k+ t|k +1)+ K
j∈{ci,k∪{i}}

xj(k+ t|k +1)

+ K
j∈{Ni\ci,k∪{i}}

xj(k + t|k + 1).

Since ui(k + t|k) ∈ U t
i , then it follows

ui(k + t|k + 1) ∈ (U t−1
i 	 KW t

j )⊕ KW
t
j , j ∈ Ni ∪ {i}

and ui(k+ t|k+1) ∈ U t−1
i . When Assumption 2 holds, it has

ui(k + N |k + 1) ∈ UN−1
i ⊆ Ui

and

xi(k + N |k + 1) ∈ xi(k + N |k)⊕WN
i ⊆ x f+1i .

Additionally, the control input ui(k+N |k+1) ∈ Ui enforces
xi(k + N + 1|k + 1) ∈ x f+1i . By induction, the optimization
problem (24) admits feasible solutions for all k ≥ 0.
Next, the stability conditions of the closed-loop system are

analyzed. With the help of [32], the following new variables
are defined:

9i(k) = max
∥∥x̂i(k + t|k)− x̂j(k + t|k)∥∥ (29)
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which represents the maximum value of the assumed trajec-
tory deviation between agent i and neighboring agent j at
time k , and

ωi(k) = min
∥∥x̂i(k + t|k)− x̂j(k + t|k)∥∥ (30)

which represents the minimum value of the assumed trajec-
tory deviation between agent i and neighboring agent j at
time k , and

11(k) = (2(ξi(k)+9i(k))× ξj(k)+ ξ2i (k))

× ((N − 1)λmax(Qi)+ λmax(P)) (31)

12(k) = λmin(Qi)(ωi(k)− ξ2i (k)) (32)

which are presented here to ensure the stability of the sys-
tem. Then, a detailed statement for the stability results of
multi-agent systems are presented.
Theorem 4: Suppose Assumption 3 holds, if there exists a

condition 11(k) ≤ 12(k), and if optimization problem (24)
is feasible by implementing ui(k) = u∗i (k|k) at time k = 0,
then multi-agent systems are asymptotically stable.

Proof: For all t ∈ [1,N ], the control inputs ûi(k + t|k +
1) are feasible solution of (24) at time k + 1. Furthermore,
the resulting cost function is written as J̃i(k+1), and the cost
function derived from the optimal control inputs u∗i (k+ t|k+
1) is denoted as J∗i (k + 1). In that case, it can be inferred that

Na∑
i=1

J∗i (k + 1)−
Na∑
i=1

J∗i (k) ≤
Na∑
i=1

J̃i(k + 1)−
Na∑
i=1

J∗i (k)

However it has that
Na∑
i=1

J̃i(k + 1)−
Na∑
i=1

J∗i (k)

=

Na∑
i=1

N−2∑
t=0

∑
j∈Ni

aij
∥∥ε̂i(k + t + 1|k + 1)

∥∥2
Qi

+
∥∥ûi(k + t + 1|k + 1)

∥∥2
Ri
−

Na∑
i=1

∑
j∈Ni

aij
∥∥ε∗i (k|k)∥∥2Qi

+
∥∥u∗i (k|k)∥∥2Ri − Na∑

i=1

N−1∑
t=1

∑
j∈Ni

aij
∥∥ε∗i (k + t|k)∥∥2Qi

+
∥∥u∗i (k + t|k)∥∥2Ri − Na∑

i=1

∑
j∈Ni

aij
∥∥ε∗i (k + N |k)∥∥2P

+

Na∑
i=1

∑
j∈Ni

aij
∥∥ε̂i(k + N |k + 1)

∥∥2
Qi

+
∥∥ûi(k + N |k + 1)

∥∥2
Ri

+

Na∑
i=1

∑
j∈Ni

aij
∥∥ε̂i(k + N + 1|k + 1)

∥∥2
P

≤

Na∑
i=1

N−2∑
t=0

∑
j∈Ni

aij
∥∥ε̂i(k + t + 1|k + 1)

∥∥2
Qi

+
∥∥ûi(k + t + 1|k + 1)

∥∥2
Ri
−

Na∑
i=1

∑
j∈Ni

aij
∥∥ε∗i (k|k)∥∥2Qi

+
∥∥u∗i (k|k)∥∥2Ri − Na∑

i=1

N−1∑
t=1

∑
j∈Ni

aij
∥∥ε∗i (k + t|k)∥∥2Qi

+
∥∥u∗i (k + t|k)∥∥2Ri − Na∑

i=1

∑
j∈Ni

aij
∥∥ε∗i (k + N |k)∥∥2P

+

Na∑
i=1

∑
j∈Ni

aij
∥∥ε̂i(k + N |k + 1)

∥∥2
P

≤

Na∑
i=1

N−1∑
t=1

∑
j∈Ni

aij (λmax(Qi) 2
(∥∥x∗i (k + t|k)

− x̂j(k + t|k)
∥∥ + ∥∥x̂i(k + t|k)− x̂j(k + t|k)∥∥)

×

∥∥∥ε∗j (k + t|k)∥∥∥+ ∥∥∥ε∗j (k + t|k)∥∥∥2))
+

Na∑
i=1

∑
j∈Ni

aijλmin(Qi)
(∥∥x̂i(k|k)

− x̂j(k|k)
∥∥− ∥∥x∗i (k|k)− x̂j(k|k)∥∥2)

+

Na∑
i=1

∑
j∈Ni

aijλmax(P)(
∥∥∥ε∗j (k + N |k)∥∥∥2

+

∥∥∥ε∗j (k + N |k)∥∥∥ (2 (∥∥x∗i (k + N |k)− x̂j(k + N |k)∥∥
+
∥∥x̂i(k + N |k)− x̂j(k + N |k)∥∥))) (33)

Substituting (29-32) into (33), it leads to

Na∑
i=1

J∗i (k + 1)−
Na∑
i=1

J∗i (k)

≤

Na∑
i=1

∑
j∈Ni

aij (2(ξi(k) +9i(k))ξj(k)+ ξ2j (k)

× (λmax(Qi)(N − 1)+ λmax(p))− λmin(Qi)

× (ωi(k)− ξ2i (k))

≤ 0.

It is worth noting that the above results demonstrate that
the whole closed-loop system is asymptotic stability. In the
proof procedure the compatibility constraint (25d) is related
to the stability of the whole system.

IV. NUMERICAL EXAMPLE
To verify the effectiveness of the DMPC algorithm,
a multi-agent system consisting of five inverted pendulum
systems [33] is considered. The communication topology ς
among agents is shown in Fig. 1.

In Fig. 2, the mass of vehicle and pendulum represent M
and m respectively. l is the distance from the rotation point of
the pendulum to the center of gravity, x is the position of the
car, the force given to the car in the x direction is denoted as
u, and θ is the angle of the pendulum away from the vertical
direction.
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FIGURE 1. Connected topology ς .

FIGURE 2. Inverted pendulum system.

In addition, presume that the pendulum is thought as a
thin rod and its surface is smooth without friction. Therefore,
through Newton’s second law, the following kinematic model
is obtained

(M + m)
..
x+ml

..

θ cos
..

θ −ml
.

θ2 sin θ = u

ml
..
x cos θ +

4

3ml2
..

θ
− mgl sin θ = 0 (34)

where g is the acceleration due to gravity, and the state

variable z =
[
z1 z2

]T
=

[
θ

.

θ

]T
of the system is selected.

By linearizing the kinematic model (34) at the equilibrium
point, the following continuous-time system model can be
obtained that

.
z(t) =

[
0 1

3(M + m)g/l(4M + m) 0

]
z(t)

+

[
0

−3/l(4M + m)

]
u(t)

with M = 8.0kg, m = 2.0kg, l = 0.5m, g = 9.8m/s2. When
the sampling period is chosen as 1s, the discrete-time system
model (35) is derived as

x(k + 1) =
[
1.0078 0.0301
0.5202 1.0078

]
x(k)+

[
−0.0001
−0.0053

]
u(k)

(35)

In the DMPC algorithm, the terminal feedback control law
K and the weight matrix P in terminal cost from formula (26)
with Qi = I and Ri = 0.1 can be computed as

K =
[
221.8937 53.4029

]
P =

[
9105.00 2177.59
2177.59 528.54

]
Assume that the initial states are x1(0) =

[
0.6 −0.8

]T ,
x2(0) =

[
0.8 −0.712

]T , x3(0) = [
−0.378 0.641

]T ,

FIGURE 3. Control input trajectory of 5 agents.

FIGURE 4. The state trajectory of 5 agents.

x4(0) =
[
−0.715 0.496

]T , x5(0) = [
−0.156 0.64

]T , with
input constraint ui(k) ∈ Ui = {ui(k) ∈ Rm| − 110 ≤
ui(k) ≤ 110}, and the prediction horizon taken as N = 14.
The results of the experiment are presented in Figs.3-7.

Figs. 3-4 respectively show the control input and state
trajectories of the multi-agent systems. It can be seen that
when the control strategy in this paper is utilized and the
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FIGURE 5. The cost of the whole system.

FIGURE 6. The trajectory of S(x) under two different algorithms.

control input meet the constraint, the states of five agents
starting from different positions can asymptotically reach a
consistent state.

By solving the quadratic programming problem (24),
the optimal control input and optimal state is obtained, and
then the cost of the whole system computed by (23) mono-
tonically decreases to 0, which means that the control object
is achieved. The result is shown in Fig.5

In addition, for i ∈
{
Ci,k ∪ {i}

}
, the proposed DMPC algo-

rithm is compared with traditional DMPC algorithm [19] in
terms of convergence speed and optimization times. As well
as [34], a function S(x) =

∑
‖xi‖2/

∣∣{Ci,k ∪ {i}}∣∣ is defined
to represent the convergence speed. As shown in Fig.6,
the trajectories of S(x) decrease with both the algorithms in
the same predictive time domain, however, the trajectory of
S(x) under the proposed DMPC algorithm with upper error
bound converges faster.

Next, to further clarify the advantages of the proposed
control strategy, the optimization times of the optimization
problem for five agents using two algorithms are compared.

FIGURE 7. Optimization time of 5 agents under algorithm given in [19]
and algorithm in this paper.

The result from the DMPC algorithm without the error upper
condition is shown in Fig.7 (a), where each agent partici-
pates in the optimization solution through the whole predic-
tive horizon. However,the results in Fig. 7(b) indicates that
the agents only selectively participate in the optimization
solution. Obviously, there is a significant advantage in the
terms of the algorithm proposed in this paper, which also
implies a significant reduction in computation burden and
communication costs.

V. CONCLUSION
In this paper, a new DMPC scheme with an upper bound
condition is developed for the consistency of multi-agent sys-
tems. Based on neighbor agents relative information, a upper
bound condition is derived to reduce the communication
burden. Moreover, the detailed conditions on ensuring the
feasibility and closed-loop stability have been proposed
after fully considering the constraints. Finally, simula-
tion studies have verified the advantages of the proposed
algorithm.

In our future study, we will consider the applica-
tion of adaptive model predictive control in uncertain
system [28], [29].
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