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ABSTRACT To solve the problems existing in traditional biochemical methods, such as complex sample
pretreatment requirements, tedious detection processes and low detection accuracies with respect to rice
species and adulteration, the volatile flavor substances of five kinds of rice are detected using headspace-gas
chromatography-ion mobility spectrometry (HGC-IMS) to effectively identify the quality of rice and adul-
terated rice. The ion migration fingerprint spectra of five kinds of rice are identified using a semi-supervised
generative adversarial network (SSGAN). We replace the output layer of the discriminator in a GAN with a
softmax classifier, thus extending the GAN to a semi-supervised GAN. We define additional category tags
for generated samples to guide the training process. Semi-supervised training is used to optimize the network
parameters, and the trained discriminant network is used for classifying HGC-IMS images. The experimental
results show that the prediction accuracy of the model reaches 98.00%, which is significantly higher than the
rates achieved by other models, such as a decision tree, a support vector machine (SVM), improved SVM
models (LS-SVM and PCA-SVM) and local geometric structure Fisher analysis (LGSFA); 98.00% is also
higher than the prediction accuracies of the VGGNet, ResNet and Fast RCNN deep learning models. The
experimental results also show that the accuracy of HGC-IMS image classification for identifying adulterated
rice reaches 97.30%, which is higher than those of traditional chromatographic or spectral methods. The
proposed method overcomes the shortcomings of some intelligent algorithms regarding the application of
ion migration spectra and is feasible for accurately predicting rice varieties and adulterated rice.

INDEX TERMS Gas chromatography-ion migration spectrometry, ion migration fingerprint spectrometry,
rice flavor substance, semi-supervised generated adversarial network.

I. INTRODUCTION
Rice is a common staple food in Asia. Different kinds of rice
have different flavors and tastes. For example, Thai fragrant
rice contains a compound called acetyl-pyrroline (2-acetyl-
1-pyrroline), which gives this rice a pleasant aroma, and Chi-
nese Wuchang rice has an aroma, sweetness and good taste.
These high-quality varieties of rice are usually expensive.
To increase export income, a few distributors in Southeast
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Asia often useVietnamese or Cambodian rice as Thai fragrant
rice (because these varieties have a similar appearance); in
mainland China, rice is usually mixed, and other ordinary
types of rice with similar appearances are used fraudulently.
The use of Wuchang rice can increase profits. Therefore,
determining the origin and variety of rice is very important
in the grain market.

At present, rice quality is determined using sensory detec-
tion, electronic noses, chromatography, or spectroscopy. Sen-
sory inspection is limited by the judgment and practical
experience of the inspectors, and this leads to inconsistency.
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Sensory inspection is generally only used for the preliminary
determination of adulteration. As a new detection method,
an electronic nose [1], [2] has shortcomings such as sensor
drift, low accuracy, and poor consistency in its results, and its
applications in the fields of food quality and safety inspection
are unsatisfactory. Chromatography [3]–[6] has been used to
detect adulterated rice, and it offers high efficiency, sensitiv-
ity, accuracy, and relative immunity to interference factors.
However, due to the presence of different rice varieties and
methods of processing rice (each rice variety has a unique
composition of starch, protein, and fatty acids), using a chro-
matograph also has certain limitations. A chromatograph is a
complicated piece of equipment that requires a professional
operator, so it is not useful for rapid field detection. Although
spectrometry [7]–[9] is fast and simple, it is difficult to
accurately characterize the quality of samples with such
techniques. Gas chromatography-mass spectrometry (GC-
MS) is widely used in the field [10]–[12], but this method
requires a sample to undergo pretreatment. GC-MS is used
to search the library of mass spectrograms of unknown com-
pounds for qualitative analysis. It has more advantages than
chromatography, but there are still many shortcomings, such
as the fact that compounds must be gasified, the operation
is complex, and the maintenance of the equipment is expen-
sive, all of which make it difficult for GC-MS to meet the
requirements of the rapid detection market. Among the above
methods, some (e.g., traditional spectroscopic methods) can
be used for nondestructive testing, but their accuracies are
low; some methods (e.g., conventional gas chromatography
(GC), gas chromatography-mass spectrometry (GC-MS), and
liquid chromatography-mass spectrometry (LC-MS)) have
high accuracy, but they cannot perform detections quickly and
nondestructively and require complex sample pretreatment
processes [13], [14]. In recent years, high-performance liq-
uid chromatography (HPLC) [15] and HPLC/MS [16], [17]
have been used to detect and study rice, and some achieve-
ments have been produced. We also hope to find a simple,
rapid, accurate and sensitive rice quality detection technol-
ogy through our research. Spectroscopy is another available
analysis technique; for example, hyperspectral images (HSIs)
and local neighborhood structure-preserving embeddings for
HSI classification (LNSPEs) could also be used. LNSPEs
can effectively reveal the internal structure and improve the
classification performance of HSI data [18]. Spatial-spectral
hypergraph discriminant analysis (SSHGDA) has an
advanced ability to distinguish features. The above methods
can be used for detecting the spectral information of rice,
combined with gas information discrimination [19].

Gas chromatography-ion migration spectrometry
(GC-IMS) is a new gas phase separation and detection tech-
nology that has been used to evaluate the taste of white
bread, the authenticity of ham [20] and the quality and
authenticity of honey [21], [22]. GC-IMS is equipped with
a static headspace sampling device, which can detect volatile
organic compounds in liquid or solid samples and is suit-
able for trace detection of volatile organic compounds. This

technology combines the advantages of the fast response of
gas chromatography and the high sensitivity of ion migration
spectroscopy, it is simple to operate, rapid and nondestruc-
tive, and it does not require sample pretreatment and has
good reproducibility. This provides a new solution for rice
adulteration and classification. At present, headspace-gas
chromatography-ion mobility spectrometry (HS-GC-IMS)
has been applied to the separation of volatile or semivolatile
compounds.

However, the existing GC-IMS software only provides a
simple principal component analysis (PCA) method for clus-
tering. If determining the types of samples using the software
is required, it is necessary to manually compare the finger-
prints of the samples for classification. Due to the limitations
of human experience and sensory perception, the method of
distinguishing rice species directly from fingerprints leads to
large classification errors and low efficiency. Therefore, it is
necessary to adopt a machine learning method.

In spectrum analysis and recognition, the algorithms that
can be used include traditional shallow neural networks (such
as an SVM) and popular deep learning methods developed in
recent years. Jacky Chan et al. [23] proposed a least squares
support vector machine (LS-SVM) method to objectively
assess Parkinson’s disease with an accuracy rate of 96.0%.
Lian et al. [24] used principal component analysis (PCA) to
analyze genetically modified corn. The dimensionality reduc-
tion in the Hertz spectrum data and the classification using an
SVM achieved good detection results, and the accuracy rate
for the identified samples was close to 92.08%. Luo et al. [25]
used PCA to reduce the dimensionality of hyperspectral
images and the LGSFA algorithm to analyze a local geometric
combination, and they achieved good classification results.
In recent years, the development of convolutional neural
networks has provided an opportunity to further improve
spectral recognition rates. Yu et al. [26] found that VGGNet
is the best model for detecting various broad-leaved weeds
in dormant Bermuda. Chen Xuejing et al. [27] used ResNet
to decode the Raman spectral-coded suspended array (SA)
to obtain type information, and the classification accuracy
of this method reached 100%. Ross Girshick [28] developed
Fast RCNN in 2015, and this method greatly improved the
speed of target detection. Li et al. [29] proposed a pedestrian
and cyclist parallel detection algorithm based on Fast RCNN
that was significantly better than other methods. The above
algorithms have achieved good results in terms of the analysis
and recognition of spectral data, but the recognition accuracy
of the image spectrum obtained by a shallow neural network
still needs to be improved, and a convolutional neural network
needs a large number of training samples to achieve high
accuracy. Due to these limiting conditions, we obtained fewer
ion mobility spectrum samples than in previous studies, and
we propose a semi-supervised GC-IMS fingerprint classifica-
tion method based on a generative adversarial network [30].
Using a small number of labeled and unlabeled samples,
the GAN discriminator network is used to output sample
category labels and provide semi-supervised classification,
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FIGURE 1. GAN flowchart.

thereby achieving the use of fewer labeled samples to improve
the classification of the GC-IMS fingerprint spectrum.

II. MODELING METHOD
A classifier model can be used for automated rise identifica-
tion from their gas phase ion migration spectra.

Many annotated natural image datasets have become avail-
able for use in deep learning and computer vision tasks.
However, in practical problems, such as image classification,
manually annotating specific images requires relevant pro-
fessional knowledge. In addition, due to the restrictions of
privacy, industry standards and the lack of information system
integration, building large-scale professional image data and
adding numerous annotations would undoubtedly consume
considerable human and material resources. A small quantity
of marked and unlabeled data can be used in this method.
A GAN discriminator network is used to output data category
labels, providing semi-supervised classification.

A. GAN
A GAN is a kind of unsupervised model based on game
theory [31], [32] that was proposed by Goodfellow et al.
in 2014. A flowchart showing the general GAN model is
shown in Fig. 1. The model includes a generator G and
discriminator D. G maps random noise with a certain distri-
bution (such as a Gaussian or uniform distribution) to a target
domain, and then the probability distribution of the real data
is studied to generate samples G(z) that follow the distribution
of the real data to the greatest extent possible [33]. Random
noise can be used to avoid encountering the mode collapse
problem. D determines whether the input sample is from the
real dataset x or the generated dataset G(z), and a probability
value D(•) for the real data is output [34]. The process of
training a GAN is essentially to train the discriminator D and
generator G. G is trained to maximize the probability of D
makingmistakes, and D is used tomaximize the accuracy rate
for discriminating between the real samples and generated
samples [35]. Therefore, training G and D is a binary min-
imax game problem with the following objective function:

J (D) = −Ex∼Pdata(x)lbD (x)− Ez∼Pz(z) [lb (1− D (G (z)))]

(1)

J (G) = −Ez∼Pz(z) [lbD (G (z))] (2)

where x ∼ Pdata (x) means that data x follows the Pdata
distribution, and z ∼ Pz (z) means that the random noise z
follows the distribution Pz.
During the training process for a GAN, the generator

strives to make the generated pictures increasingly realistic

so that the discriminator cannot distinguish between the true
and false images, and the goal of D is to try to distinguish real
pictures from those produced by the network G. This process
is similar to a two-player game, where G and D constitute a
dynamic ‘‘game process.’’ As time goes by, the generator and
the discriminator are constantly fighting, and finally, the two
networks reach a dynamic balance: the image that G gener-
ates is close to the real image, and the discriminator cannot
identify the true and false images. Therefore, the ultimate
goal of network training is to ensure the maximization of the
probability values of the G and D networks, and this objective
is in fact to make G and D achieve ‘‘Nash equilibrium’’.

B. SSGAN
The semi-supervised learning method used for a GAN is
called an SSGAN. A semi-supervised GAN is an extension
of the GAN architecture that is used to train classifier models
and utilizes both labeled and unlabeled data. We attempt to
use a semi-supervised GAN to classify GC-IMS images. For
a class K classification problem, we use the newly generated
class y = K + 1 to label the generated image samples.
Accordingly, the dimensions of the softmax classifier output
are extended fromK toK+1. In this way, the semi-supervised
training method, which combines supervised loss with a loss
function in an unsupervised GAN network [36], can provide
increased accuracy in terms of semi-supervised classification
by learning a large quantity of unlabeled sample data supple-
mented by a small quantity of labeled sample data [37]. The
SSGAN network structure is shown in Fig. 2.

FIGURE 2. Framework of an SSGAN.

Noise Z conforming to a specific distribution is input
into G to generate an image sample G(z) conforming to the
distribution of the real data to the greatest extent possible.
The generated image sample G(z) and the image sample
library are input into D, where the database sample includes
a small number of labeled samples and a large number of
unlabeled samples. D is composed of multiple convolution
layers and fully connected layers. At the beginning of the
training process, neither the G loss nor D loss converges.
Through continuous iterative training, G gradually fits the
distribution of the image sample library to generate realistic
image samples. Additionally, with the increase in the gener-
ated samples, D’s classification accuracy for input samples
also increases.

To extract increasingly deep features and increase the sta-
bility of the training process, we constrain and adjust the
network structures of G and D. For specific steps, we refer
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to the literature [38], [39]. The specific adjustments are as
follows: 1) convolution layers are used instead of pooling
layers in D, and deconvolution layers are used instead of
pooling layers in G; 2) batch normalization processing (batch
norm) is used in D and G; 3) a tanh activation function is used
in the output layer and the ReLU activation function is used in
the remaining layers; 4) the LeakyReLU activation function
is used in each layer in D [40], and the softmax function is
used in the final output layer.

G uses a 5-layer deconvolution network to upsample ran-
dom noise and generate simulation images with specific
sizes. The network parameters are shown in Fig. 3. First,
a 100-dimensional random noise vector Z is input into the
fully connected network, which is then transformed into a
three-dimensional tensor through dimension reduction. This
tensor is input into the deconvolutional layer with a 5×5 size
and a stride length of 2 in the convolution kernel. Batch norm
is executed each time deconvolution is performed. ReLU is
used as the activation function for all other layers, except for
the final output layer, which uses tanh activation. Finally, the
output layer outputs a 128 × 128 × 1 tensor that is used to
generate the image sample.

FIGURE 3. Generation network structure of the SSGAN.

D is composed of one convolutional layer and three fully
connected layers, as shown in Fig. 4. The image samples are
input into these convolutional layers with a 3×3 convolution
kernel. After each convolution, the batch norm operation
is performed with LeakyReLU as the activation function.
In contrast to the traditional ReLU activation function,
LeakyReLU maintains a small slope on the negative half
(a value of 0.2 is used in this paper) to keep the gradient from
disappearing during training. Finally, a logic vector is output
by the fully connected layer, and the category probability is
normalized with the softmax output.

This network structure model is used to build a semi-
supervised GC-IMS image classification algorithm. By com-
bining supervised and unsupervised loss training methods

FIGURE 4. Structure of the discriminator D in our SSGAN.

to adjust the network parameters, common feature matching
is used to increase the GAN’s learning ability, as measured
by its high image classification accuracy. When the model
converges, the network is used to accurately classify GC-IMS
images.

The specific training steps for the proposed SSGANmodel
are as follows:

1) Randomly sample a random vector z from the Gaus-
sian distribution and input the random vector into the
generator network G to obtain a simulated image G(z).

2) Input the labeled or unlabeled real image x and the
simulated image G(z) into the discriminator network
D in batches, and output the normalized probability
values D(x) and D[G(z)] using softmax.

3) Fixing the parameters of the generator network G, if the
real image x is not labeled, use Lunlabel as the loss
function; if the real image x is labeled, use Llabel as
the loss function; and if the input image is a simulated
image, use Lgen as the loss function. Use the Adam
gradient descent method to adjust the parameters of the
discriminator network D.

4) Fix the parameters of the discriminator network D,
select the output of the fully connected layer as themid-
dle layer feature, perform feature matching operations
on the real image x and the simulated image G(z), and
adjust the parameters of the generator network G using
feature matching.

5) Repeat steps 1)-4) until the desired number of iterations
is reached.

6) Input the sample images into the discriminator D, and
output the image category.

III. INSTRUMENT AND EXPERIMENTS
A. INSTRUMENT
A diagram of our GC-IMS instrument is shown in Fig. 5.
The IMS section introduces the molecular ion group into a
region with an applied linear electric field. In the electric
field, a constant velocity (migration rate) is obtained through
collision with gas molecules drifting in reverse and a series
of interactions, such as electric forces. IMS is similar to
mass spectrometry, but deflection in mass spectrometry is
governed by the charge-mass ratio (m/Z), while deflection
in IMS is dependent on ion mobility. Therefore, some iso-
mers can be separated in IMS as long as they have different
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FIGURE 5. Working diagram of the GC-IMS instrument.

cross-sectional collision areas. The FlavourSpecr food fla-
vor analysis and quality control system (G.A.S., Germany)
was used in the experiment. Supporting analytical software
was used to analyze samples from different angles. In the
collected data, each point in the spectrogram represented
a kind of volatile organic compound. A software plugin
(Reporter) was used to directly compare the spectral differ-
ences between samples (2D and 3D views). Fingerprint spec-
tra or differences in volatile organic compounds for different
samples were compared with another plugin (Gallery Plot).
Dynamic principal component analysis was used for sample
clustering analysis and the rapid determination of unknown
samples (Dynamic PCA plugin). The software included the
NIST and IMS databases for qualitative analyses of sub-
stances (GC×IMS Library Search), and users can expand the
database with data from standard substances. The sensitivity
of the instrument was higher than the ppbv level, and the
response time was 0.6 s.

B. THE SAMPLES
Five rice samples were collected: Luodao 998 (ld998), Nan-
jing 9108 (nj9108), Zhenghan 10 (zh10), Liannuo 1 (ln1) and
Baohan 1 (bh1). The samples were shelled and crushed, and
500 g powder samples were retained for each type of rice.
These powder samples were separated into 100 samples for
each type of rice, 70 of which were used for training the
model and 30 were used for testing. In total, 500 samples
from all five types of rice were used, of which 350 samples
were used for training and 150 samples were used for testing.
To compensate for the shortage of samples, the generated
GC-IMS image samples from G were added to the dataset,
so the training and testing sets were expanded to 3,500 and
1,500 samples, respectively.

C. TEST CONDITIONS
By directly heating them after performing headspace injec-
tion, the volatile organic components in the rice sample
can be quickly detected. The instrument can provide the
sample gas phase ion migration spectra and a fingerprint
chromatogram from volatile organic compounds, and this
clearly shows the differences between the volatile compo-
nents in each sample. This method is simple and rapid
and can be used to identify the origins of rice varieties.
The various parameters used for the analysis are shown
in Table 1.

TABLE 1. Instrument parameters.

D. TRAINING MODEL
Supervised and unsupervised losses were used to adjust the
network parameters in the discriminator to train the SSGAN
model. Specifically, in the semi-supervised training process,
D and G were trained alternately; either G or D was fixed,
while the other’s weight parameters were updated. When
training and discriminating the networks, the network model
parameters were updated by minimizing the cross-entropy
loss of the labeled sample data and the probability distribution
generated by the model. The principle of GAN confrontation
training was used to adjust the real samples without labels
and the network model parameters. When training the net-
work, feature matching was used to ensure that the generated
samples fit the distribution of the real data as closely as possi-
ble. The SSGAN network with semi-supervised classification
ability was constructed using the above joint training method.

IV. RESULTS AND DISCUSSION
A. GAS-ION MIGRATION SPECTRA OF SAMPLES
The samples (5 g) were placed in a 20 mL headspace sam-
pling bottle, incubated at 90 ◦C for 15 min, and heated
while they were oscillating. After 5 min, the aromatic com-
ponents of the rice were uniformly released, and the samples
were directly injected into the headspace (gas phase) for gas
phase ion migration spectrum analysis. A headspace sam-
pling analysis was conducted directly on the samples without
the need for complex sample pretreatment, and the volatile
components in the samples were determined after 20 min.
The differences between the samples were quickly compared
using software. The specific results are as follows:

Fig. 6(a) shows theGC-IMS spectra obtained fromfive rice
samples, and Fig. 6(b) shows the corresponding stereogram.
In Fig. 6(a), the vertical coordinate is the gas phase retention
time, and the horizontal coordinate shows the ion drift time.
The red vertical line on the left side of the plot denotes the
reaction ion peak (RIP, approximately 7.9 ms of drift time
after normalization). Each point on each side of the RIP
represents a kind of volatile organic compound. The color
represents the concentration of the substance, where white
denotes less concentration, red means higher concentration,
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FIGURE 6. Gas chromatography-ion mobility spectra of five rice samples.

and the darker the color is, the higher the concentration.
As seen from the figure above, each type of rice has a different
composition of volatile flavor substances.

B. MANUAL QUALITATIVE ANALYSIS
1) ESTABLISHING A STANDARD PRODUCT DATABASE
Prior to conducting a qualitative analysis, a database of ion
migration spectra for volatile flavor compounds in grains
should be established, namely, a corresponding database of
the gas phase retention indices and migration times. The stan-
dard database can then be used to characterize the test results.
To prevent the omission of volatile flavor compounds from
testing, we referred to the partial ion migration spectrum data
provided by the GCxIMS Library Search (G.A.S.). By testing
the rice standards, we added relevant ion migration data for
volatile flavor substances and produced the two-dimensional
map for standard ion transport shown in Fig. 7, and the
standard ion migration database is shown in Table 2. The test
and application results show that the standard database con-
tains almost all volatile flavor substances found in different
varieties of rice, and this is suitable for a qualitative analysis
of rice quality.

2) MANUAL QUALITATIVE ANALYSIS
Areas in the figure were selected for analysis, and fingerprint
maps were generated, as shown in Fig. 8.

FIGURE 7. Ion migration profile of standard substances related to volatile
flavor substances.

In Fig. 8, each pair of lines represents a sample con-
taining signal peaks from all volatile organic compounds,
and each column represents the signal from organic com-
pounds (this refers to the same substance in different sam-
ples) with the same retention and drift times. One can see
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TABLE 2. Volatile flavor substances shown in Fig. 7 and their ion migration parameters.

from the figure that there are clear differences between the
types of volatile component information in various samples.
Fig. 8 also shows that the five kinds of rice contain roughly
the same flavor substances, but the concentration of each
substance is obviously different. Nononal, octanal, heptanal,
and pentanaldehyde (in the red frame in the figure) are
most common in luodao998 and baohan1. The contents of
caproaldehyde, E-2-octenal, and E-2-heptenal (in the green
frame) in nanjing9108 are relatively high. Sample baoghan1
contains the highest contents of several kinds of acetic esters,
such as ethyl acetate, propyl acetate, and butyl acetate (in the
yellow frame). In addition, there is a characteristic substance
in nanjing9108 that is marked ‘‘32’’ by the red arrow and

has a retention index of 926.5 and a migration time of 1.475.
Through a search of the sample library, the substance may
be 2-acetyl-1-pyrrolidine (consistent retention index, but we
speculate that the substance has a ring structure based on
its migration time), which is the main aromatic component
in rice.

C. ALGORITHM OF THE SSGAN MODEL
GC-IMS images were classified by running the SSGAN on
a computer with a Tesla V100 GPU with 32 GB of video
memory, a 4-core CPU, 32 GB of RAM, and 220 GB of disk
space. A small number of labeled and unlabeled GC-IMS
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FIGURE 8. Ion migration fingerprints of the volatile organic compounds in Fig. 6.

FIGURE 9. Loss function progress. (a) Discriminator network loss and (b) generator network loss.

sample images were classified. The loss function was opti-
mized using the Adam algorithm. The learning rate was set
to 0.0001, and the momentum was set to 0.5. Each group
contained 64 samples. The changes in the loss function that
occurred over successive iterations are shown in Fig. 9.
In Fig. 9. (a), one can see that the network loss function
oscillates during the early stage of training and eventually
becomes relatively smooth. In Fig. 9. (b), the loss function in
the generator network decreases rapidly and then rises slowly.

It should be noted that we did not consider the performance
differences caused by mask changes because the image color
and depth in this article were automatically generated by the
software according to the types and concentrations of the
volatile compounds.

The SSGAN was trained on a relatively small image
dataset, and the algorithmwas combined with a convolutional
neural network (CNN) [41], the semi-supervised Ladder-
Network (LadderNetwork) [10] and PCA+SVM [42]. Eight
labeled datasets were defined with 25, 50, 100, 250, 500, and
1,000 labeled samples. Table 3 shows the average classifi-
cation accuracies for the four corresponding algorithms with
different numbers of labeled samples.

The experimental results show that the SSGAN requires
fewer annotated data than the CNN. The SSGAN only
requires 30 labeled samples to reach an accuracy of 61.367%
± 3.6%, while the CNN needs 50-250 labeled samples to
reach the same accuracy level. In comparison with the other
models, the SSGAN also achieves higher accuracy.
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TABLE 3. Average classification accuracies of models with different
numbers of labeled samples.

D. COMPARISON BETWEEN THE SSGAN AND OTHER
MODELS
To verify the classification accuracy of the SSGAN model
proposed in this paper, we compared it with an SVM,
LS-SVM, PCA-SVM, and a decision tree model. A total
of 350 samples were used for training the SSGAN. A total
of 150 samples were used to train and test the SVM, LS-SVM,
PCA-SVM, decision tree, and LGSFAmodels. A comparison
of their prediction accuracies for the five rice species on the
prediction set is shown in Table 4.

As shown in Table 4, the prediction accuracy of the SVM
model improved when combined with PCA. The prediction
accuracy provided by PCA-SVM was higher than that of the
SVM, while the prediction accuracy of the SSGAN was the
highest among all models, reaching 98.00%. The prediction
accuracies of the other models listed in Table 4 varied greatly,
but they all exhibited prediction accuracies less than 90%.
In general, a comparison of the results from the five models
clearly shows that the SSGAN provided a more accurate
prediction than those of the other models.

To compare the recognition accuracy and time consump-
tion of the SSGAN with those of some popular convolu-
tional neural network methods developed in recent years,
we selected VGGNet, ResNet and Fast RCNN for com-
parison experiments. The experimental environment settings
were as follows: a Tesla V100 GPU with 32 GB of video
memory, a 4-core CPU, 32 GB of RAM, 220 GB of disk
space, and Python version 3.7.1. The network hyperpa-
rameters were set as follows: the input image size was
128∗128, the GPU was used to accelerate the training speed
of the neural network, the adaptive moment estimation algo-
rithm (Adam) was selected as the model parameter optimizer
(optimizer), the learning rate (learning rate) was 0.001, and
the loss function adopted cross-entropy loss (cross-entropy
loss). The comparison results are shown in Table 5.

The SSGAN achieved an average accuracy of 98% in
identifying various rice strains, and this was better than those
of the three competing convolutional neural networks. This
is because the SSGAN expands the data samples to improves
recognition accuracy. Based on the time complexities of the
algorithms, the time consumption of the SSGAN for iden-
tifying a sample did not increase significantly; it was only

slightly higher than that of Fast RCNN but better than those
of the other convolutional neural networks, and the time
achieved by the SSGAN can fully meet the requirements of
practical applications.

E. COMPARISON BETWEEN HGC-IMS AND OTHER
SPECTROMETRIC METHODS
To verify the classification accuracy of HGS-IMS for
5 kinds of rice, an electronic nose (α-mos fox4000),
gas chromatography-mass spectrometry (GC-MS), liquid
chromatography-mass spectrometry (LC-MS), HPLC, and
HPLC-MS were used to test the samples, and the data were
used to form the training and test sets. The training and
test sets contained the same quantities of data as described
above. The aforementioned SSGAN model was constructed
with the training set, and the test set was used for prediction.
The prediction accuracy for the five rice species is shown
in Table 6.

Table 6 shows that the data obtained with HGS-IMS pro-
duced themodel with the highest prediction accuracy, indicat-
ing that GS-IMS can provide high-quality training data for
use in a classification model. This also indicates that HGS-
IMS, as a new organic volatile detection technology, has a
higher material recognition rate and higher reliability than
older methods.

F. IDENTIFICATION OF RICE ADULTERATION USING
HGC-IMS
Rice adulteration identification refers to the identification
of rice varieties that are different from the nominal variety
(they may be other varieties of less important rice, indica
rice, japonica rice, mold, mineral oil and artificial flavors)
or do not contain the correct chemical rice components.
It is estimated that 90% of Wuchang rice on the Chinese
market is adulterated. The identification of adulterated rice
is essentially a binary classification problem. If calculating
the amount of adulterated rice is required, multiple regression
analysis based on this method may be considered. Consider-
ing that the identification of adulteration is themost important
aspect and that there are many types of volatile substances
with different concentrations in rice, it is difficult to establish
a multiple regression analysis model, so we did not conduct
this research.

We define adulterated rice as positive and unadulterated
rice as negative. The following indices were used to measure
the identification performances of the models with respect to
adulterated rice:

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)

F1 =
2× P× R
P+ R

(5)

A =
TP+ TN

TP+ TN + FP+ FN
(6)
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TABLE 4. Prediction accuracies of various models.

TABLE 5. Comparison between the prediction accuracies and running times of various deep learning algorithms.

TABLE 6. Identification results of various methods.

TABLE 7. Confusion matrix of five kinds of rice.

Among them, TP and FP are the number of true positive
samples that were correctly and incorrectly identified, while
TN and FN represent the number of true negative samples that
were correctly and incorrectly identified, respectively. P (pre-
cision) corresponds to the proportion of real positive samples

that made up the total number of predicted positive samples.
R (recall) refers to the number of positive examples in the
sample that were predicted correctly. F1 is a harmonic mean
based on precision and recall. A larger value of F1 denotes
higher accuracy. A (accuracy) is the accuracy rate. When the
classification problem is a multipoint problem, by formula
(6), the confusionmatrix can list its accuracy rate; see Table 7.

Wuchang Daohuaxiang rice was taken as an example
to identify adulteration. Fifty-eight rice samples labeled
‘‘Wuchang Daohuaxiang’’ were obtained from a market.
Through a manual and scientific analysis, 37 cases were
found to be positive, and 21 were found to be negative. There
were 42 samples of homemade-adulterated Wuchang Dao-
huaxiang rice, including 13 positive samples and 29 negative
samples, for a total of 100 samples (50 positive and 50 neg-
ative samples). The dataset was divided into training and test
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TABLE 8. Binary classification results for the adulterated rice samples gathered with each method.

TABLE 9. confusion matrix of wuchang rice adulteration.

sets, among which 70 were training samples and 30 were
test samples. The numbers of positive and negative samples
were equal. Using the above sample sets, we compared the
performances of some conventional methods and the GC-
IMS method in terms of rice adulteration identification. The
classification results obtained by the various methods dis-
cussed in this paper are shown in Table 8.

Table 6 shows that GC-IMS provided sample data that
achieved the highest classification accuracy according to
all three indicators, followed by HPLC-MS and HPLC; the
electronic nose had the lowest accuracy and F1 value. The
F1 value of GC-IMS reached 0.973, an increase of 10.6%over
the current best HPLC-MS method. A confusion matrix can
be used to express the accuracy of the dichotomous problem
by formula (3); see Table 9.

In addition, because the GC-IMSmethod greatly simplifies
the sample preprocessing procedure, an intelligent prediction
model not only improved the prediction accuracy but also
greatly reduced the classification time. It is estimated that
using GC-IMS and the model proposed in this paper could
provide 50%-70% higher detection efficiency than existing
methods when examining rice strains and adulteration.

V. CONCLUSION
In this article, combined with an improved GAN algorithm
(SSGAN), we used GC-IMS technology to identify five types
of rice and rice adulteration. We used a small number of
labeled samples and a large number of unlabeled samples
generated by the GAN and used a semi-supervised learning
method to train an improved SSGANmodel. The recognition
accuracy of the model for the five species of rice reached
98.00% on the test set, and the recognition accuracy with
respect to adulterated rice reached 97.30%. We compared
the SSGAN model with the popular VGGNet network,
ResNet and other networks, and the results showed that the

recognition performance of the SSGANwas better than those
of these alternative models. We also compared the method
in this paper with other commonly used detection methods,
such as HPLC, and the results showed that the recognition
method of GC-IMS combined with the SSGAN proposed in
this paper is superior to the existing biochemical methods
in terms of recognition performance. Of course, the ultimate
goal of the model is to identify sample types without labels,
so we applied the model to real rice quality supervision
and achieved good recognition results based on the users’
feedback. In short, GC-IMS combined with the SSGAN can
effectively identify rice species and adulteration. In future
work, we will apply this method to the identification of other
food crops.
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