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ABSTRACT Clustered multi-task learning, which aims to leverage the generalization performance over
clustered tasks, has shown an outstanding performance in various machine learning applications. In this
paper, a clustered multi-task sequence-to-sequence learning (CMSL) for autonomous vehicle systems
(AVSs) in large-scale semiconductor fabrications (fab) is proposed, where AVSs are widely used for wafer
transfers. Recently, as fabs become larger, the repositioning of idle vehicles to where they may be requested
has become a significant challenge because inefficient vehicle balancing leads to transfer delays, resulting
in production machine idleness. However, existing vehicle repositioning systems are mainly controlled by
human operators, and it is difficult for such systems to guarantee efficiency. Further, we should handle
the small data problem, which is insufficient for machine learning because of the irregular time-varying
manufacturing environments. The main purpose of this study is to examine CMSL-based predictive control
of idle vehicle repositioning to maximize machine utilization. We conducted an experimental evaluation
to compare the prediction accuracy of CMSL with existing methods. Further, a case study in a real
largescale semiconductor plant, demonstrated that the proposed predictive approach outperforms the existing
approaches in terms of transfer efficiency and machine utilization.

INDEX TERMS Clustered multi-task learning, sequence-to-sequence, vehicle repositioning, idle vehicle
balancing, automated material handling systems, overhead hoist transports.

I. INTRODUCTION
Over the past 30 years, automated material handling systems
(AMHSs) have been widely applied in semiconductor plants
to guarantee efficient, safe, and fast transportation of wafers
between facilities. AMHSs prevent particle contamination
and increase the tool utilization, resulting in high productivity
by reducing the cycle time. Autonomous vehicle systems
(AVSs), the latest version of AMHSs, aim to transfer materi-
als using overhead hoist transports (OHTs) that travel along
the railways installed on the ceiling of a fab.

Optimizing the AVS operation is a significant challenge in
a large fab where several hundreds of vehicles travel along
the railways with dozens of areas. Idle vehicle repositioning
is one of the significant control decisions in AVSs because
idle vehicle repositioning affects the unload transfer time
(UTT) for idle vehicles moving to the pickup point. Although
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the average loading in an area has been optimized at the
fab layout design stage, the transport requests for each area
can change over time owing to changes in the product mix,
and the fluctuations of the machine capability [1]. The lack
of idle vehicles compared with the transfer demands in an
area causes severe unload transfer delays, which results in
machine idleness. Fig. 1 provides two examples of areas
where, although the total number of idle vehicles is suffi-
cient, unload transfer delays occur owing to insufficient idle
vehicles. In areas k and m, the skewness value of the unload
transfer time distribution increases from week Wt−2 to Wt
although average times are almost constant.

In this paper, we propose a predictive approach to ensuring
a robust vehicle repositioning system. The transfer demand,
the number of transfer requests for an area, is predicted one-
time unit (15 min) in advance. We require a highly accurate
predictor because inaccurate prediction results in various
side effects, which include a high rate of unload transfer
delays, AMHS incapability, and local congestion, resulting in
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FIGURE 1. Example of unload transfer delay in areas m and k . These delays, which are caused by changes the transport requests for each area, bring
about the inefficiency of the production machines, resulting in production losses.

machine idleness [2], [3]. Regarding the prediction accuracy,
we should consider the overfit and underfit problems of a
prediction model for each area. To resolve this, clustered
sequence-to-sequencemulti-task learning is proposed for idle
vehicle repositioning in AVSs. Clustered multi-task learning
techniques [4] leverage the prediction accuracy by sharing
useful information between related tasks, whereas sequence-
to-sequence (Seq2Seq) techniques identify the variability
of the transfer request demands by identifying the demand
sequence information. Further, to illustrate the effectiveness
of the proposed approach, we describe a thorough explanation
of the overall procedure, which details the data preprocessing
and learning framework. For practical solutions, a real-time
version of the vehicle repositioning system was implemented
and applied to several scalable semiconductor plants.

The main contributions of this study can be summarized
as follows. We propose a clustered sequence-to-sequence
multi-task learning for autonomous vehicle systems. Clus-
tered multi-task learning aims to leverage learning effi-
ciency and prediction accuracy by sharing useful information
between related tasks. Further, sequence-to-sequence tech-
niques identify the variability of the transfer request demands
by identifying the autocorrelations of the demand requests.
Comparative studies show that in terms of prediction accu-
racy, the proposed method outperforms the representative
methods.

The remainder of this paper is organized as follows.
Sections II and III review the relevant literature and pre-
liminaries, respectively. Section IV describes the proposed
method, and Section V details the field application. Finally,
Section VI provides some concluding remarks.

II. LITERATURE REVIEW
The idle vehicle repositioning problem begins by determin-
ing the dwell positions for idle vehicles. Egbelu [5] intro-
duced the idle vehicle positioning problem to minimize the
maximum empty travel time from the home position to the
load pick-up point in a loop layout. Kim [6] proposed a

polynomial-time algorithm for idle vehicles in a loop lay-
out with the objective of minimizing the average response
time. A dynamic programming algorithm for positioning idle
AGVs in a loop layout was proposed by Gademann and van
deVelde [7]. Lee andVentura [8] also proposed a polynomial-
time algorithm based on dynamic programming for the idle
vehicle positioning problem in both multiple-vehicle uni- and
bi-directional loop layouts to minimize the mean response
time. A dynamic programming algorithm for determining an
optimal set of dwell points has been extended to a tandem-
loop multiple-vehicle AGV system by Lee [9]. However,
previous studies have only considered small-sized problems
involving a few vehicles and a single or a few loops. More-
over, because they are not based on a data-driven approach,
they are vulnerable to environmental uncertainties.

The vehicle fleet sizing problem determines the required
number of OHT vehicles in an OHT loop in a segregated
AMHS that utilizes inter- and intra-area transport systems
separately. Huang et al. [10] attempted to find the opti-
mal vehicle allocation for the inter-bay and intra-bay sys-
tems using a discrete event simulation model. They adapted
the simulation optimization, called convergent optimization,
through themost-promising-area stochastic search algorithm,
to reduce the number of necessary simulation runs to find
an optimal solution. The same problem can be obtained by
other approaches, such as that developed by Chang et al. [11],
who used the simulation sequential metamodeling method
based on functional relations between the input and output
of a simulation model, including the vehicle amount and
the corresponding transport time. The metamodels are built
to find the minimum necessary fleet size while fulfilling a
production-based process to process time constraints. Other
approaches focus on how to reduce the necessary amount of
simulation runs to find the optimal fleet size using evolu-
tionary algorithms, as by Lin and Huang [12]. Subsequently,
Lin and Huang [13] conducted a similar approach using
an optimal computing budget allocation together with par-
ticle swarm optimization to find the best combination of
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dispatching rules and the number of vehicles to operate a
photo area. However, vehicle fleet sizing methods have only
focused on determining the number of vehicles for each area,
and have not considered the dynamic repositioning of an
idle vehicle. Because OHT vehicles travel among loops in a
unified transport, a dynamic vehicle allocation problem arises
when the requirement of each loop changes over time.

To prevent congestion or idle time in each intrabay,
Lin et al. [14] proposed a zone control strategy that keeps
the number of vehicles in each intrabay between the upper
and lower limits. Their results indicate that their strategy
significantly affects the performance of AMHS. Several stud-
ies investigated whether the idle vehicle circulation policy
significantly affects the performance of the AMHS, and
recommended a circulation path across the bays to balance
the number of idle vehicles among the bays [15], [16].
Lin et al. [17] introduced a Markov decision process model
to solve the vehicle assignment problem in a dynamic man-
ner. To increase the calculation efficiency, they described
a dynamic vehicle allocation control to assign the optimal
number of vehicles to each area. Although this approach
is quite promising, the example scenario only implies two
areas.

Kiba et al. [18] investigated a minimum service policy that
assigns a minimum number of idle vehicles to bays in order
to quickly react to transport requests. This policy defines
low water marks (LWMs), which serve as a lower control
limit to define the necessary minimum number of vehicles
available per area. The study shows that the minimum service
policy is more effective than a classical strategy. Additional
high-water marks (HWM), mentioned by Jimenez et al. [19],
serve to prevent the risk of traffic jams. If the HWM value
is exceeded, the area pushes out empty vehicles to other
areas. Two strategies, area dedication and zone balancing,
are compared. The water calculation and area dynamics were
first directly addressed by Chaabane et al. [20]. Again, a
minimum service policy was used that included a degree of
freedom to reduce the number of vehicles available for empty
vehicle dispatching. LWMs are calculated based on the same
proportion as the area transport to total transport, and reduced
by the degree of freedom. This approach was extended to
include system dynamics (transport leaving versus transport
staying in the same area). However, nothingwaswritten about
themethod of vehicle exchangewhen the limits were reached.
Moreover, using a minimum service policy cannot guarantee
an outperformance when the minimum number of vehicles
is not allocated owing to a failure to predict the transport
requests of each area.

Schmaler et al. [21] introduced the possibility of available
forecast data into empty vehicle dispatching strategies for the
unified AMHS of a semiconductor manufacturing facility.
This study shows that the scenario of using only informa-
tion regarding upcoming tool events, and thus only half of
all possible future event information, performs better than
a watermark-based method. Ahn and Park [22] proposed a
rebalancing strategy for idle OHTs to reduce retrieval time

FIGURE 2. Conceptual framework of single- and multi-task learning with
neural networks where all the tasks or a subset of tasks are related.

and congestion. They discretized the fab into a number of
zones and presented rebalancing strategies for each zone
by using multi-agent reinforcement learning. However, these
approaches cannot be applied to real-world large-scale plants
because they overlook the actual specifications such as the
movement of thousands of vehicles and severe changes in the
traffic pattern. Moreover, owing to the difficulty of reinforce-
ment learning convergence and application, human interven-
tion is still essential to building well-trained models.

III. PRELIMINARIES
A. MULTI-TASK LEARNING
Multi-task learning is an emerging machine learning
approach for learning-related tasks. Fig. 2 shows the differ-
ence between single and multi-task learning settings. Multi-
task learning is used to extract and share useful information
across tasks to learn multiple tasks [23], [24]. With regard
to the mechanism for the learning effect, multi-task learn-
ing provides five advantages to leveraging the prediction
accuracy: implicit data augmentation to resolve a shortage
of training data; attention focusing to achieve robustness
against noisy data; eavesdropping, such as hints; representa-
tion bias for generalization; and regularization by introducing
an inductive bias [25], [26]. Multi-task learning has shown an
outstanding performance in various machine learning tasks,
such as speech and face recognition, language processing,
disease diagnosis, and quality prediction [27]–[31].

Moreover, beyond the merits of multi-task learning in
the training phase, the number of predictive models can be
significantly reduced. Because maintaining a high level of
accuracy for the models of whole areas is labor-intensive,
the use of multi-task learning improves the practicability of
the proposed predictive approach.

Here, to leverage the prediction accuracy of the transfer
request, we have the training dataset [X t ,Y t ]et , where et
denotes the number of samples in the t th area. In addition,
X t ∈ Rd is the d-dimensional independent variable at t ,
and Y t ∈ R1 is the dependent variable. We denote the
set of the independent variables by X = (X1, . . . ,X t ). Let
the learning parameter W = {w1, . . . ,wt } for each area.
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Equations (1) and (2) provide the probabilistic model for the
single- and multi-task models, respectively:

p(Y |f w (X)) = N (f w (X) , σ 2), (1)

where the probability model identifies the mapping function
f w from X to Y , and is defined as a Gaussian likelihood func-
tion with zero mean and noise σ . For the multi-task model,
factorization follows the set of conditional probabilities of
tasks shown in Eq. (2):

p
(
Y 1, . . . ,Y t | f W (X)

)
= p

(
Y 1
| f w

1
(X)

)
. . . p

(
Y t | f w

t
(X)

)
=

∏t

i=1
p
(
Y i | f w

i
(X)

)∏t

i=1
N
(
f w

i
(X) , (σ i)2

)
, (2)

where i is the index of the tasks. Equation (2) denotes that
the multi-task model converges to achieve high accuracy in a
balanced manner for all tasks f W . Regarding the maximum
likelihood inference, the single- and multi-tasks have the log
likelihoods shown in Equations. (3) and (4), respectively:

logN
(
f w (X) , σ 2

)
∝−

1
2σ 2

∥∥Y−f w (X)∥∥2−log σ,
(3)

log
∏t

i=1
N
(
f w

i
(X) , (σ i)2

)
∝

∑t

i=1
−

1

2(σ i)2

∥∥∥Y i−f wi(X)∥∥∥2
− log (σ 1 . . . σ i). (4)

We state the minimization of a loss function L with the
learning parametersW and σ i as follows:

argmin
W

∑t

i=1
L
(
W , σ i

)
= − log

∏t

i=1
N
(
f w (X) ,

(
σ i
)2)

∝

∑t

i=1

1

2(σ i)2
Li (W )+ log (σ 1 . . . σ t ), (5)

where Li (W ) =
∥∥∥Y i − f wi (X)∥∥∥2. In Eq. (5), we optimize

the parameterW to minimize the sum of the loss function L,
such as the mean square error (MSE), L

(
Y , Ŷ

)
=

∣∣∣Y − Ŷ ∣∣∣2.
According to Eq. (5), we have two implications. First, we

obtain a more regularized model in identifying the optimal
W ∗ that minimizes L for all tasks f W . Further, multi-task
learning forces faster and better convergence by reducing the
search space of combinations of parameters W . This is due
to finding a solution on a smaller space of representations
by sharing useful information across tasks. Second, a small
value of σ increases the contribution of L for the total losses,
whereas a large value of σ decreases the contribution of L.
Thus, the noise σ i can be seen as a weight scalar for the ith

task loss Li. Note that multi-task learning may have negative
effects on the balancing act between bias and variance. There
is a risk of underfitting to noisier tasks having a high σ i in an
attempt to minimize the total error, whereas overfitting less
noisy tasks having a low σ i [32].

FIGURE 3. Proposed clustered multi-task learning for vehicle
repositioning. To determine areas that have an unload transfer delay,
we first partitioned the areas into several groups, and then constructed
the multi-task models for each group.

In general, multi-task learning outperforms single-task
learning under the assumption that tasks are related. Because
multi-task learning reduces the sum of the loss function L
of all the tasks, the generalization performance of multi-
task models is better than that of the single-task models.
However, if the tasks are unrelated, or the features extracted
from each task may not help, we confront a negative trans-
fer, which degenerates the prediction accuracy. Thus, it is
hard to guarantee an expected performance of multi-task
models [33]. To achieve the advantages of using multi-task
learning without a negative transfer, it is necessary to apply
multi-task learning for tasks if their independent or dependent
variables have similar patterns. To resolve this, we adopt
clusteredmulti-task learning, assuming thatmultiple tasks are
partitioned into a set of clusters, as shown in Fig. 3. We use a
hard parameter sharing structure for simpler andmore explicit
multi-task learning:

B. CLUSTERING FOR MULTI-TASK LEARNING
We established clustered multi-task learning by integrat-
ing unsupervised and supervised approaches sequentially to
achieve the benefits of multi-task models. A clustering analy-
sis partitions samples by minimizing within-group variations
while maximizing between-group variations and then labels
each sample with a cluster group [34].

Most related studies that combine clustering and multi-
task learning have focused on a shared latent subspace,
where relations between multiple tasks are more effectively
learned [35]–[37]. Murugesan et al. [38] proposed incorpo-
rating co-clustering and multitask learning to learn a shared
representation with task and feature clusters. Some studies
have proposed an optimization method for multi-task learn-
ing, in that multi-task learning serves as a regularization
term to obtain model smoothness [28], [32], [39]. However,
these studies have overlooked the difficulties of interpret-
ing how clustering is reflected in the training phase. When
adopting a predictive approach in a real plant, explana-
tions/interpretations for predictions are necessary to confirm
normal predictive operations without allowing zero malfunc-
tion.Wang et al. [40] presented two-phase clusteredmultitask
learning; first, a cluster analysis was conducted in terms of the
predictions, and multi-task models were then built based on
ensemble techniques.
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FIGURE 4. Procedure of the proposed approach with clustered multi-task learning.

IV. METHOD
A. OVERVIEW
Fig. 4 shows the procedure of the proposed approach.
We gathered the data representing the traffic conditions and
transfer requests for the areas. To achieve a better prediction
accuracy, the datasets were transformed through min-max
scaling, augmentation, and log transformations. Clustering
analysis was conducted to determine the underlying hetero-
geneity within the areas. Finally, based on the clustering
results, we built a multi-task seq2seq learning model to pre-
dict the number of transfer requests in areas. We compared
two different settings: comparisons of the single- and multi-
task learning models, and comparisons of the regressive and
autoregressive models. Finally, the vehicle repositioning sys-
tem used these predictions to adjust the idle vehicle reposi-
tioning control parameters in AVSs. Four steps are described
in detail in Section IV-B to IV-H.

B. DATA DESCRIPTION
For the datasets, four months of datasets were gathered from
a real semiconductor plant. The number of observations was
approximately 11,500. The datasets include the number of
transfer requests, the average and deviation of the delivery,
waiting, unload, and load transfer times. The waiting time
refers to the time duration from the transfer request to the
vehicle assignment, whereas the load transfer time is the time
from the pickup point to the destination. In addition, the aver-
age and deviation of the flow count, speed, congestion, and
the number of unloading, loading, moving, and idle vehicles
are included. We use these datasets to achieve two goals: 1)
to identify the unload transfer delay areas and 2) to build the
predictive area models.

First, to identify the areas where the unload transfer time
is abnormally long, we use the Galton skewness coefficient
(GSC), which estimates the degree of skewness of the distri-
bution by Q1+Q3−2Q2

Q3−Q1
. The higher the GSC, the more severe

the unload transfer time delay. Fig. 5 shows the abnormal
unload transfer delayed areas when their GSCs increase over

FIGURE 5. Histograms of unload transfer times measured at five sections
for 6 weeks. The positive GSC indicates the tail on the right, meaning that
there have been frequent unload transfer delays.

FIGURE 6. Data preparation and data structure for predictive models.

the predefined threshold value 2w = 1.6 for the distribution
of areaw. The cases marked with the red squares indicate that
unload transfer delays for areas frequently occur in terms of
GSC. Indicating these delayed areas is essential to control-
ling the vehicle repositioning because we aim to minimize
transfer delays in entire areas by properly distributing idle
vehicles.

Second, we generate two different datasets based on the
online data stream. Fig. 6 shows the overall procedure from
real-time streaming data to the datasets to train the predic-
tive models. The first datasets contain multivariate data for
all areas to use regressive approaches. The second datasets
contain a series of transfer requests for an area to use autore-
gressive approaches.
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FIGURE 7. Log transformation for skewed distribution of four variables in
areas 5, 12, 13, and 17.

FIGURE 8. The effect of preprocessing with a log transformation and
scaling in terms of the prediction results. This shows that the predicted
values from preprocessing (red) are better fitted to the observed values
(blue). Herein, LSTM is used with a time step of 3 as the baseline
predictive model, and two results are compared after 700 epochs to show
both the level of fit and the convergence speed.

C. PREPROCESSING
Regarding the preprocessing of the gathered dataset, we first
convert the streaming transaction logs into area-based
datasets. This is because we focus on determining the trans-
port requests for each area. Second, for each area, we generate
independent and dependent variables. As for the indepen-
dent variables, we apply a log transformation to make a
less skewed distribution of each variable. This is because a
highly skewed distribution of a variablemay cause an underfit
for a sparse region having a few samples. To resolve the
skewness problems, a log transformation is usually used [41].
By adopting a log transformation in the training phase as
y′ = ln (1+ y), the sparse region of the learning space within
the entire distribution can be reduced by preprocessing the
log transformation.

Fig. 7 illustrates that less skewed distributions can be
obtained from the log transformation for the unload request
counts of the four areas. We then adopt min-max scaling
(using the minimal and maximal retention time) and adjusted
features on a scale from (0 to 1). Min-max scaling realizes
equal scaling of each variable. Finally, we verified the accu-
racy of the given datasets to ensure consistency of the data.
These preprocessing steps significantly improve the predic-
tion accuracy and convergence speed of the predictive models
shown in Fig. 8.

D. PREDICTIVE MODEL
This section presents a model for predicting the number of
transfer requests. Based on the predicted transfer requests for
each area, we developed a vehicle repositioning system to

autonomously distribute idle vehicle positions from exces-
sively large areas to insufficient areas. However, inaccurate
predictions cause inefficient vehicle repositioning and local
traffic congestion, and increase the production starvation,
resulting in production losses. To maximize the effectiveness
of the proposed approach and minimize side effects, a highly
accurate prediction is required. To achieve this, we propose
using four variant models, as shown in Fig. 9: i) single-
task multivariate regressive model, ii) multi-task multivariate
regressive model, iii) single-task univariate autoregressive
model, and iv) multi-task multivariate autoregressive model.
We first evaluate the predictive performance of the regression
models and time-series models. We then compare the single-
and multi-task learning models.

The first and second approaches consider multivariate
regressive models. Independent variables X contain 27 traf-
fic conditions and transfer requests for areas, whereas the
dependent variable Y is the number of transfer requests for
the areas. During the training phase, we built a multivariate
regressive model f kθ for area k as f kθ

(
X kt−1

)
= Y kt , where θ

denotes the model parameters. In addition, X kt−1 are mapped
to Y kt to predict the transfer requests after one time unit
in an area of interest. The first approach is composed of
independent models for each area. The second approach uses
multi-task learning as f k,j,m

(
X k,j,mt−1

)
= Y k,j,mt , where k, j,

and m are related areas that are adjacent in terms of loca-
tion, or where similar groups of facilities are located.

The third and fourth approaches consider autoregres-
sive models. We first build a prediction model of each
area independently for multi-step time-series forecasting,
as f k

(
Y kt−3,t−2,t−1

)
= Y kt f

k
(
Y kt−3,t−2,t−1

)
= Y kt . The

number of time steps is empirically set to three. In the
fourth approach, we propose using the multi-task multivariate
autoregressive approach as f k,j,m

(
Y k,j,mt−3,t−2,t−1

)
= Y k,j,mt ,

where areas k, j, andm are related. Here, we use a deep time-
series model as a baseline. Section IV-6 provides all details of
the variants of time-series forecasting for the third and fourth
models.

E. TIME SERIES PREDICTION
For time series modeling, Fig. 10 shows that variants of
the deep learning techniques are used for the third and
fourth models. Overall, four deep learning techniques are
considered: recurrent neural networks (RNNs), long short-
term memory (LSTM), a gated recurrent unit (GRU), and
Seq2Seq [42], [43]. An RNN has a decoder and an encoder
network, and an RNN unit is usually one with a gating
mechanism, such as an LSTM or a GRU. Seq2Seq also has
an encoder–decoder network with a state vector, where a
sequence of tokens is encoded into vectors by a recurrent
network structure [44].

Fig. 10 shows the architecture of the RNN and Seq2Seq
models. For recurrent unit cells, we can select an RNN,
an LSTM, or a GRU. We set both the number of units in
the input layer (the number of memory time steps in the

VOLUME 9, 2021 14509



S. Lee et al.: Clustered Multi-Task Sequence-to-Sequence Learning for Autonomous Vehicle Repositioning

FIGURE 9. Comparative studies for predicting the number of unload transfer requests with four
models.

FIGURE 10. Schematic representation of the RNN and Seq2Seq models.

encoder), and the number of units in the output layer (the
number of forecasting time steps in the decoder), to three.
An RNN consists of one input layer, twenty hidden layers,
and one output layer. Here, Seq2Seq consists of two recurrent
networks, an encoder and a decoder, to extract a significant
feature vector sequence. We use an empirical loss function to
train the predictive model to determine the parameters, such
as the network connection weights and vectors of the models.

In addition, we use the Nesterov-accelerated adaptive
moment estimation (Nadam) optimizer to prevent overfitting,
which guarantees a faster convergence than other gradient
descent optimizers. We empirically set the hyperparameters
and comparative algorithms as in Tables 1 and 2, respectively:

Further, regarding the number of dependent variables in
prediction, we built single- and multi-task learning models
to evaluate the effectiveness by sharing useful information
between related areas. We thus present four types of models
for comparisons using the regressive and autoregressive mod-
els and the single- and multi-task models. Further, regarding
the multi-task models, we used clustering techniques to iden-
tify the closely related tasks. Fig. 9 summarizes the given data
structure and four comparative models.

TABLE 1. Hyperparameter settings of the RNN and Seq2Seq models.

F. CLUSTERED MULTI-TASK LEARNING
Here, we adopt two-stage clustered multi-task learning to
obtain both high prediction accuracy and interpretability for
clustering results. Prior to cluster analysis, we use t-stochastic
neighbor embedding (t-SNE) to visualize the intrinsic struc-
ture of the given dataset, and explore the embedding space
based on the area in Fig. 11. Regarding a cluster analy-
sis, we conduct hierarchical and k-means clustering meth-
ods. To obtain reliable clustering results, we compared the
experimental results of the two methods with the domain
expert knowledge. The hyperparameters are empirically set
as follows: similarity measure = ward distance, distance
threshold= infinite, and silhouette index is used for selecting
the best number of clusters k∗ for k-means, and cutting
the tree for hierarchical clustering. As the final clusters,
we accept the intersections of the clusters obtained from
the results of the two methods. The intersections were
grouped into eight clusters of areas. We confirm that a
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TABLE 2. Comparative algorithms. These algorithms are used for both the
single- and multi-task approaches.

FIGURE 11. Visualization with t-Stochastic neighbor embedding for
different areas.

multi-task model is constructed based on the clustering
results. Fig. 12 shows the clustering exemplars of k-means
with a PCA-based dimensionality reduction under the exper-
imental tests for the number of clusters k .

G. PERFORMANCE EVALUATION
To evaluate the predictive performance, the dataset is divided
into training and test sets with a ratio of 8 to 2. We use
the mean absolute error (MAE) and root mean square error
(RMSE) measures for an accuracy performance. The MAE
and RMSE are calculated as follows:

Mean absolute error (MAE) =
1
n

∑n

j=1

∣∣yj − ŷj∣∣ , (6)

Root mean square error (RMSE) =

√
1
n

∑n

j=1

∣∣yj − ŷj∣∣2,
(7)

where yj and ŷj indicate the jth actual and predicted val-
ues, respectively, and n denotes the sample size. The RMSE
penalizes a high weight to large errors (yi − ŷi) because the
squared errors are averaged. Meanwhile, the MAE is easy
to understand, and is a useful statistic for comparing the
predictive performance under a quadratic loss.

H. PREDICTION RESULTS
Table 3 presents the predicted results for six significant areas
in terms of the number of unload requests with the four
comparative models described in Section IV-C. Overall, the
proposed clustered multi-task sequence-to-sequence learning
(CMSL), in which the dashed border-box indicates, shows
outperformance in most areas. Specifically, we observe that
the multi-task approach outperforms the single-task approach
in all areas. A comparison of the regressive and autoregressive
approaches shows that the autoregressive model achieves rel-
atively high accuracy. Fig. 13 shows that the proposed CMSL
predictions for the number of unload requests are properly
applied.

V. FIELD APPLICATION
A. SYSTEM CONFIGURATION
Simulations were conducted to evaluate the applicability of
the proposed method regarding the transfer performance of
AVSs. We used Python 3.7.1, and Java SE Development Kit
1.8.0_212 to implement the testbed platform. We also used
the scikit-learn Python library and Keras with TensorFlow
(an open-source library to provide low-level blocks for neural
networks) to train the learning models. We developed an
asynchronous HTTP server and client pair to manage a non-
blocking prediction messaging service between the predic-
tion system and the AVS simulator for real-time simulation.
Simulations were run on a PC with Windows 10, a 3.40 GHz
i7-6700 CPU, and 32 GB of RAM.

We built a test platform for a real-time simulation that can
address the dynamic vehicle routing problemwith the concept
drift phenomenon. Fig. 14 shows the specifications of the
proposed system containing the proposed prediction system
and AVS simulation testbed. The prediction system contains
four modules: prediction manager, model repository, model
adaptation, and change detector. The AVS testbed contains
five major modules: a traffic controller, core controller, data
collector, vehicle emulator, and simulation manager.

A real-time simulation between systems is run using the
following procedure: The data collector first gathers traffic
data. The traffic controller requests a prediction of the traffic
conditions in bottleneck sections once every 15 min. The pre-
diction manager receives the request and executes models to
predict the traffic for these sections. When the system returns
the predicted traffic information, it is sequentially reflected
in the simulator through the traffic controller, core controller,
and vehicle emulator. In detail, the core controller adjusts the
routing configuration parameters, which correspond to the
penalty costs of the sections for a route calculation. Thou-
sands of vehicle emulators are then assigned to the route with
the updated link penalties. The model adaptation with the
change detector is conducted by comparing the actual and
predicted traffic data that can be used to update the model.

B. RESULTS
Tables 4 and 5 demonstrate the effectiveness of the proposed
CMSL vehicle repositioning system in terms of the average
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FIGURE 12. Clustering experiments in terms of the number of clusters k .

TABLE 3. Prediction results with single- and multi-task multivariate regressive models. The dashed border box shows the results of the proposed CMSL
(Bold face denotes the lowest errors).

FIGURE 13. Prediction results for test datasets in terms of number of
unload requests for the 32nd and 33rd areas; the x-axis is the time
(in 15-min intervals), whereas the y-axis is the number of unload
requests.

unload request times and delays. Table 4 shows that the total
unload transfer times in the proposed systemwere reduced by
5.84%. In addition, the performance of each area among the
six key areas is better than that of the existing system, except
for area 40. Table 5 shows that the sum of all numbers of
unload transfer delays of over 120 s in the proposed system
was reduced by 43.1%. Likewise, the unload transfer delay
count of individual areas was improved. We conducted

TABLE 4. Experimental results of the existing and proposed systems
regarding the sum of waiting and unload request times.

Kolmogorov–Smirnov (KS) tests to statistically validate
whether the rank of the population means differed
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FIGURE 14. Proposed predictive framework for field application.

TABLE 5. Experimental results of the existing and proposed systems
regarding the number of abnormally long-term delay transfers over 120 s.

significantly between the existing and proposed systems.
The p-values observed for most areas were less than the
significance level α = 0.05, indicating that the performance
difference between the existing and proposed systems was
statistically significant.

These unload transfer times and delays have a signifi-
cant impact on productivity. Owing to the reduction of the
unload transfer time, the lead time required to complete the
products can be reduced. In addition, a decrease in trans-
fer delays can improve productivity because transfers may
decrease the efficiency of the production machines, impeding
the production schedules, resulting in production losses. The
results demonstrate that the proposed CMSL-based system
significantly reduces the number of long-term delay transfers.
This is because the proposed method repositions idle vehicles
based on predictive unload transfer requests. As intended,
the results show that idle vehicles are adequately placed in
an area that requests unload transfers.

VI. CONCLUDING REMARKS

This study aims to model and implement a robust vehi-
cle repositioning system using a predictive approach for
autonomous vehicle systems in a large-scale semiconduc-
tor plant. In particular, we set the target to achieve a
practical solution for autonomous vehicle systems in large-
scale semiconductor plants. We gathered the streaming data
describing dynamic manufacturing environments, and thus
analyzed the areas where the unload transfer delay occurred
because the idle vehicle was not properly placed. We pro-
posed a predictive approach for idle vehicle repositioning
to minimize unload transfer delays and maximize machine
utilization.

For the predictive models, we proposed CMSL mod-
els to obtain a better prediction accuracy with multiple
areas by considering autoregressive patterns in related areas.
We explicitly clustered similar area groups by using a
clustering analysis, and then modeled multi-task models to
leverage the prediction accuracy. The proposed model was
compared to state-of-the-art competitive algorithms andmod-
els. Experimental results from the field application showed
that the proposed system reduced the average unload transfer
times and decreased the number of unload transfer delays.
This means that our proposed model can achieve a crucial
improvement in productivity.

In future studies, we plan to extend the current studies
to control the weight for the significant levels of areas, and
build idle vehicle control modules that are more advanced
for more complex scenarios with high uncertainties, such
as traffic congestion, transfer request cancels, and pro-
duction increases or decreases. The proposed CMSL is
expected to promote the trend of adopting a predictive
approach by providing a high and robust accuracy perfor-
mance under dynamic production conditions. In addition,
lack of data is a chronic problem in real-world AMHSs.
Thus, active learning would be useful to improve learning
efficiency.
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