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ABSTRACT Steady-state responses (SSRs), evoked by various patterns of periodic stimuli, comprise an
important category of evoked potentials. To explore the neural generators of SSRs, a unified framework
solving the inverse problem for a single subject or integrating multiple subjects is indispensable. Inspired by
the phenomenon that the oscillation frequency of an SSR follows that of the periodic stimulus, we consider
the problem of source localization for SSRs using the Fourier components at the stimulation frequency
instead of directly using the waveform in this paper. The multi-channel electroencephalogram (EEG) Fourier
components at the stimulation frequency is shown to equal multiplying the lead field matrix (LFM) by
a complex-valued vector that contains the amplitudes and phases of sources in the cortex, contaminated
by spontaneous EEG and electrical noise. This complex-valued inverse problem is further solved in the
framework of sparse Bayesian learning, where the non-stationarity of spontaneous EEG among epochs is
considered, and the joint sparsity of complex-valued source component vectors is modeled and utilized
to improve the source localization performance. Expectation-maximization (EM) is employed to give the
ultimate SSR source localization algorithm. By the proposed method, not only a single subject’s SSR source
localization can be achieved, but also the common locations of a certain type of SSR integrating multiple
subjects can be given, even when the electrode layout or number of electrodes varies among subjects. The
validity and superior performance of the proposed method was verified by simulations compared with other
methods. Real SSR stimulation/recording experiments were also performed, where the electric generators
of 40-Hz auditory steady-state responses (ASSRs) by various stimulation patterns were investigated.

INDEX TERMS Electroencephalogram (EEG), joint sparsity, steady-state response (SSR), source localiza-
tion, sparse Bayesian learning.

I. INTRODUCTION
Electroencephalogram (EEG) measurements collected on
scalp can reflect the neuronal electric activities inside the
brain and thus has numerous applications in clinical diag-
nosis and prognosis, psychological assessment, cognitive
research, etc. Compared with spontaneous EEG signals,
evoked responses yielded superior performances in many
applications, e.g. they showed higher specificity and sensi-
tivity in assessing cerebral function for comatose patients [1].
Evoked responses are aroused by a certain pattern of stimu-
lation and can be categorized into transient evoked potentials
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and steady-state responses (SSRs). The presentation fre-
quency of SSR stimulation is much higher than that of
transient evoked potential stimulation. Being different from
transient evoked potentials with a set of peaks and troughs in
the waveform as latent components, the SSR has the form of
sinusoidal signal, which has the same oscillation frequency
as periodic stimulus [2]. It was conjectured that SSRs may
be generated by the superimposition of transient evoked
responses by each cycle of stimulation, while some incon-
sistent relationship is still shown to exist between transient
evoked responses and SSRs [3].

It can be observed that SSRs focus their energy on their
corresponding stimulus frequency, and they are believed to
have higher signal-to-noise ratio (SNR) [4]. Hence, it is easy
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to evaluate and analyze the SSRs in the frequency domain
by Fourier analysis [2]. The SSRs commonly include audi-
tory steady-state response (ASSR) [5], steady-state visual
evoked potential (SSVEP) [6], and steady-state somatosen-
sory evoked potential (SSSEP) [7], and they have been
widely studied nowadays. E.g., ASSRs have been used in
hearing test, anesthesia monitoring, neurological assessment
and coma prognosis [8]. In brain computer interfaces (BCI),
SSVEPs were used to build a ‘‘speller’’ device that transfers
the neural activities to control signals [9], [10], and to solve
the problem that prolonged visual attention is prone to induce
visual fatigue, SSSEPs are also applied in BCI nowadays as
they rely on the somatosensory nervous system instead [7].
Due to the wide usage of SSRs, there is a persistent interest
in investigating the neural generators of them, and for patients
it is also useful to study the relationship between the disease
and location changes of neural generators of SSRs.

After decades of study, many methods for EEG or magne-
toencephalogram (MEG) source localization, also known as
solving the inverse problem, have been developed. Accord-
ing to the used source models, they can be classified into
two categories: methods based on the equivalent current
dipole (ECD) model [11] and methods based on the dis-
tributed source model [12]. The application of distributed
source model has been prevalent in recent years, as it does
not need any preliminary assumption or estimation of the
number of the active sources like the ECD model and usu-
ally achieves better localization accuracy and resolution.
In the distributed source model, the suspected dipoles was
defined at the predetermined locations represented by dense
groups of volumetric grids within the head volume, lead-
ing to a severe underdetermined problem [12]. To make
the ill-posed problem solvable, regularization schemes were
introduced in various linear distributed solutions. `2-norm
was used in minimum norm estimation (MNE) [13], and
the current density estimated by MNE was further used and
standardized by its variance in standardized low resolution
brain electromagnetic tomography (sLORETA) [14]. In [15],
an inverse method named vector based spatial-temporal anal-
ysis using a `1-minimum-norm (VESTAL) was proposed.
Linearly constrained minimum variance (LCMV) beamform-
ing [16], though not specifically classified into distributed
source model based methods, can still use a spatial filter
in the distributed source model. In fact, solving the inverse
problem, by minimizing the model matching error along with
the regularization term, can be unified into the framework of
Bayesian inference [17], where appropriate assumptions of
prior distributions and practical parameter inference meth-
ods have been paid much attention. Friston et al. showed
the general idea to apply the empirical Bayesian framework
in processing neuroimaging data [18]. The advantage of
Bayesian inference is that the regularization is easily modeled
by a prior distribution and the unknown variables can be
inferred from the data. Costa et al. developed a hierarchical
Bayesian model whose robustness is enhanced by an intro-
duced multivariate Bernoulli Laplacian structured sparsity

prior [19]. Block sparse Bayesian learning considering the
inner block structure was in introduced in [20]. Chen et al.
applied the multi-trial priors and structural information in a
Bayesian model to enhance the extraction of somatosensory
evoked potential [21].

Some aforementioned source localization methods have
also been applied in locating the neural generators of
SSRs. We take the ASSR inverse methods for example.
Herdman et al. treated the real and imaginary response
components at the stimulation frequency as independent
samples and used brain electric source analysis (BESA)
for ASSR source localization [22]. Reyes et al. used PET-
independent low-resolution electroencephalographic tomog-
raphy (LORETA) as well as PET-weighted LORETA and
MNE to study the source locations of 40-Hz ASSR [23].
Poulsen et al. used the BESA to study the age-related
changes in neural generators of ASSR [24]. The ASSR
source localization was also studied by applying LCMV
method in MEG data in [25]. In [26], Farahani et al. devel-
oped a method employing independent component anal-
ysis (ICA) and fitting an ECD model to the projection
weights of the independent components, to reconstruct the
ASSR sources. Generally, these inverse methods applied in
SSR inverse problem were originally designed for transient
evoked potentials, and the input data are the EEG wave-
forms after narrowband filtering and epoch-wise averaging.
However, directly applying these methods in SSR source
localizationmay confront some performance degradation: the
SSR sources have the sinusoidal form with unknown and
probably distinct amplitudes and phases, hence the peaks
in waveforms of sources may not synchronize, leading to
probably imbalanced estimates of sources at a specified
point in time.

Considering the property of SSRs that they have focused
energy around the stimulus frequency, we can solve the
inverse problem utilizing the multi-channel Fourier compo-
nents at the stimulus frequency. The analysis on frequency
domain has already been applied in inverse solutions of
brain rhythms [27]–[29]. In [27], LORETA was employed
to investigate the electric source distribution differences of
the theta band, the alpha band, and the beta band in the
cortex during psychometrically matched verbal and spatial
cognitive tasks. LORETA was also used to study the cor-
relation between Alzheimer’s disease severity and electric
generators of brain rhythms [28]. In [29], an improved
version of sLORETA named swLORETA, was used to
explore the neural generators of brain rhythms related to
motor imagery. These methods may have the drawbacks
that follow. Firstly, the existing inverse methods were only
roughly applied in the multi-channel Fourier components,
while a rigorous signal model was not established. Secondly,
the cross-spectral matrices at a certain frequency estimated
using multi-epoch data were essential in these methods,
while the non-stationarity of spontaneous EEG among epochs
would deteriorate the cross-spectral matrix estimation. Lastly,
the comprehensive inverse solution integrating multiple
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subjects was only obtained by simple averaging, without the
consideration of individual difference.

In this paper, we consider the problem of source local-
ization for SSRs using the Fourier components at the stim-
ulation frequency instead of directly using the waveform.
The signal model of multi-channel EEG Fourier components
is given, based on which a Bayesian model for the inverse
problem is established. In this established Bayesian model,
the non-stationarity of spontaneous EEG among epochs is
considered, and a sparse support vector expressing the joint
sparsity of complex-valued source component vectors among
epochs is also involved. The parameters in this Bayesian
model is estimated by a data-driven iterative procedure real-
ized by expectation maximization (EM), leading to a sparse
Bayesian learning (SBL) algorithm. In the outputs of the
proposed method, the sparse support vector gives the final
ASSR source locations integrating multiple epochs, and the
automatic derivation of variances of spontaneous EEG plus
electrical noise in all epochs eliminates the adverse effect
of EEG non-stationarity. Furthermore, the proposed method
can easily give the comprehensive SSR inverse solution inte-
grating multiple subjects, even when the electrode layout or
number of electrodes varies among subjects. Both simulation
comparisons and real SSR stimulation/recording experiments
are carried out to illustrate the efficiency of the proposed
method.

The reminder of this paper is organized as follows:
Section II describes the signal model of the Fourier com-
ponents of data recorded by multiple electrodes. Section III
gives the hierarchical Bayesian model corresponding to
the inverse problem to be solved. Section IV provides the
sparse Bayesian learning method in SSR source localization.
Section V describes the experiments carried out for perfor-
mance verification. Section VI gives the conclusion.

II. SIGNAL MODEL
When a certain pattern of periodic stimulation is exerted
on a subject, several sinusoidal dipole sources would be
evoked at particular positions in the subject’s cortex. These
sinusoidal source signals have the identical frequency, which
equals the stimulus frequency f0, while they may have dis-
tinct amplitudes and phases. If K sinusoidal source signals
s1 (t) , s2 (t) , . . . , sK (t) are simultaneously generated
and keep stationary in a certain period of time, they can be
represented as

sk (t) = aksin (2π f0t + ϕk) , k = 1, 2, . . . , K , (1)

where ak and ϕk represent the amplitude and the phase of
sk (t), respectively. They can be further represented as

sk (t)=
ak
2
ejϕk ej2π f0t −

ak
2
e−jϕk e−j2π f0t , k = 1, 2, . . . , K .

(2)

For long stimulation and EEG recording, we can assume
that the amplitude of sk (t) remain constant in a short while
defined as an epoch, and may be variant or invariant among

epochs. Under this assumption, if the total recording is
divided into L epochs, the kth source signal embedded in the
lth epoch can be represented by

sk, l (t) = s̃k, lej2π f0t +
_sk, le−j2π f0t , (3)

where s̃k, l and
_sk, l represent the complex weights corre-

sponding to the components ej2π f0t and e−j2π f0t , respectively.
It can be found that s̃k, l contains the information of amplitude
and phase of the kth sinusoidal source signal in the lth epoch.

EEGmeasurements are generated when neuronal activities
are transmitted through a real head model to the surface of
scalp, where the head model can usually be divided into
several layers with different electrical conductivities, e.g. the
classical four layers including the cortex, cerebrospinal fluid
(CSF), skull and scalp. Such a head model, mapping the
neuronal activities in the cortex to scalp electrodes, com-
monly leads to a lead field matrix (LFM) L0, constructed by
finite element method (FEM) or boundary element method
(BEM). IfM -electrode layout is used in EEG recording, when
a certain type of periodic stimulation is given to evoke the
corresponding SSR, the EEG measurements at these elec-
trodes in the lth epoch can be arranged in a vector form and
represented as

xl (t) =
K∑
k=1

L0 (rk)ψksk,l (t)+ ξl (t)+ nl (t) . (4)

where L0 (rk) is an M × 3 LFM for the kth source located
at rk , the 3-element vectorψk represents the current orienta-
tion of the kth dipole source, and ξl (t) and nl (t) represent
the simultaneously recorded spontaneous EEG and electrical
noise in the lth epoch, respectively. In fact, ξl (t) can also be
denoted by mapping the neuronal activities to scalp surface
through LFM. However, we aim at localizing the SSR related
neuronal activities in this study, hence the spontaneous EEG
will be deemed as interference.

When only the neuronal activities in the cortex are
concerned, the model of EEG measurements in (4)
can be further simplified, as the sources are mainly
generated by the coherent activation of thousands of
pyramidal neurons which are vertical to the cortex sur-
face [12]. Now that ψ1, ψ2, · · · , ψK are given by
ψ (r1) , ψ (r2) , · · · , ψ (rK ), respectively, (4) can be
transformed to

xl (t) = Lsl (t)+ ξl (t)+ nl (t) . (5)

where the column of newly constructed LFM L correspond-
ing to the kth source is given by L [:, k] = L (rk) ,
L0 (rk)ψ (rk), the signal waveform vector is formed by
sl (t) ,

[
s1, l (t) , s2, l (t) , · · · , sK , l (t)

]T, and (·)T denotes
the transpose. Substituting (3) into (5), we have

xl (t) = Ls̃lej2π f0t + L_s le−j2π f0t + ξl (t)+ nl (t) , (6)

where s̃l =
[
s̃1, l, s̃2, l, · · · , s̃K , l

]T and
_s l =[

_s1, l,
_s2, l, · · · ,

_sK , l
]T
.
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If some time-frequency analysis, e.g. fast Fourier transform
(FFT), is applied to the EEG records in the lth epoch, the
Fourier components at f0 can be derived, represented by

x̃l = Ls̃l + ξ̃l + ñl, l = 1, 2, · · · , L, (7)

where ξ̃l and ñl denote the Fourier components of ξl (t)
and nl (t) at f0, respectively. In this study, we assume that,
s̃l can be variant or invariant among epochs, and ñl always
obeys a complex Gaussian distribution with a fixed variance
σ 2
n , i.e. ñl ∼ CN

(
0, σ 2

n I
)
, where I is identity matrix. The

spontaneous EEG component vector ξ̃l is also assumed to be
complex Gaussian distributed. According to the reality that
the spontaneous EEG is non-stationary, the corresponding
variance σ 2

l may be variant among epochs, i.e.

ξ̃l ∼ CN
(
0, σ 2

l I
)
, l = 1, 2, · · · , L, (8)

where σ 2
l is a positive random variable. For example,

a Gamma distributed σ 2
l makes ξ̃l K-distributed.

III. HIERARCHICAL BAYESIAN MODEL
In this paper, we aim at solving the inverse problem for SSRs
modeled in (7) in the framework of SBL. Recall that in (7), ξ̃l
and ñl are assumed to be complex Gaussian distributed with
random variance and fixed variance, respectively. It is easy
to find that el , ξ̃l + ñl ∼ CN

(
0,
(
σ 2
l + σ

2
n
)
I
)
, as ξ̃l and

ñl are independent of each other. If γl , σ 2
l + σ

2
n and s̃l are

given, the conditional distribution of x̃l can be represented as

p
(
x̃l
∣∣Ls̃l, γl ) = CN

(
x̃l
∣∣Ls̃l, γlI)

=
1

πMγMl
exp

[
−

(
x̃l−Ls̃l

)H (x̃l−Ls̃l)
γl

]
, (9)

where (·)H denotes the conjugate transpose.
In real applications, uncertainty in the LFM L usually

could not be neglected. Sometimes this uncertainty comes
from imprecise solution of the forward problem, while at
other times it may be caused by individual differences among
subjects’ head models. To consider this issue, we assume that
there exists some perturbations in L, defined as1L, and then
we have

x̃l = (L+1L) s̃l + el
= Ls̃l+

(
1Ls̃l+el

)
=Ls̃l+e′l, l = 1, 2, · · · , L, (10)

where e′l , 1Ls̃l + el . If the entries of the perturbation
matrix 1L are independent of each other and have identi-
cal Gaussian distributions: 1L [m, k] ∼ N

(
0, σ 2

LP

)
, it is

easily to derive that 1Ls̃l ∼ CN
(
0,
∑K

k=1

∣∣s̃k, l ∣∣2 σ 2
LPI
)

and hence e′l ∼ CN
(
0,
(∑K

k=1

∣∣s̃k, l ∣∣2 σ 2
LP + σ

2
l + σ

2
n

)
I
)
.

Recalling the conditional distribution of x̃l in (9), we find that
the uncertainty in the LFMcan be absorbed into γl , whichwill
be estimated in our inverse solution method to be proposed.

The data derived from L epochs can be arranged as
X =

[
x̃1, x̃2, · · · , x̃L

]
. As x̃m

∣∣s̃m, γm is independent of

x̃n
∣∣s̃n, γn as long as m 6= n, the conditional distribution of

X can be given by

p (X |LS,γ )

=

L∏
l=1

p
(
x̃l
∣∣Ls̃l, γl ) = L∏

l=1

CN
(
x̃l
∣∣Ls̃l, γlI)

=

L∏
l=1

1

πMγMl
exp

[
−

(
x̃l − Ls̃l

)H (x̃l − Ls̃l
)

γl

]
, (11)

where S =
[
s̃1, s̃2, · · · , s̃L

]
and γ = [γ1, γ2, · · · , γL]T.

As the locations of SSR sources are unknown at present,
the whole range of cortex should be inspected. If the whole
cortex is divided into N tessellation elements located at r̃1,
r̃2, · · · , r̃N spanning the whole cortex, an extended LFM
L̃=

[
L0
(
r̃1
)
ψ
(
r̃1
)
, L0

(
r̃2
)
ψ
(
r̃2
)
, · · · , L0

(
r̃N
)
ψ
(
r̃N
)]

can be built. Generally, only a small portion of cortex
would be activated during the cyclic stimulation for evoking
SSRs. In this context, we have LS = L̃W, where an N × L
row-sparse matrixW is defined.W [n, :] = S [k, :] if r̃n = rk
where rk ∈ {r1, r2, · · · , rK }, otherwise W [n, :] is filled
with all zeros. As long as r̃1, r̃2, · · · , r̃N are predefined, L̃
can be determined beforehand. Now the conditional distribu-
tion of X in (11) can be transformed as

p (X |W,γ )

=

L∏
l=1

p
(
x̃l |wl, γl

)
=

L∏
l=1

CN
(
x̃l
∣∣∣L̃wl, γlI

)

=

L∏
l=1

1

πMγMl
exp

−
(
x̃l − L̃wl

)H (
x̃l − L̃wl

)
γl

,(12)
where wl is the lth column ofW.

The row-sparsity of W is due to the fact that the loca-
tions of sources for a certain type of SSR would not change
greatly among epochs. In this paper, the joint sparsity among
columns ofW is manifested by modeling that the columns of
W obey the same complex Gaussian distribution, i.e.

p (wl |α ) = CN (wl |0, diag (α) ) , l = 1, 2, · · · , L, (13)

where the N × 1 vector α is the common variance vector.
A larger entry ofα implies that some source is more probable
to locate at the corresponding position. As wl |α is indepen-
dent of wl′ |α as long as l 6= l ′, the conditional distribution
ofW is represented as

p (W |α ) =
L∏
l=1

p (wl |α ) =

L∏
l=1

CN (wl |0, diag (α) )

=

L∏
l=1

N∏
n=1

1
παn

exp(−

∣∣wn,l ∣∣2
αn

) , (14)

where wn,l is the (n, l)th entry of W. In reality, the subjects’
states may vary with time, so the identical distribution shared
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by all columns of W seems not conforming to realistic sce-
narios. However, the distribution provided by (13) is only
the prior distribution of wl , while a more reliable statistical
modeling of wl is given by its posterior distribution, which
will be discussed below. It can be noticed that, in fact α
plays the role of controlling the row sparsity ofW, and hence
if α is correctly obtained, the locations of sources can also
be given.

In (12) and (14), γ and α are deemed as random vari-
able vectors. In the following analyses, they will be treated
as parameters instead, and then p (X |W,γ ) in (12) and
p (W |α ) in (14) are replaced by p (X |W; γ ) and p (W;α),
respectively. Derivation of these parameters will be the objec-
tives of Bayesian inference. Here we choose to estimate the
sum of σ 2

l and σ 2
n , i.e. γl , rather than each one of them.

A. BAYESIAN NETWORK FOR A SINGLE SUBJECT
For a single subject, the joint distribution p (X,W; α,γ) can
be represented by the product of the conditional distributions
p (X |W; γ ) and p (W;α), i.e.

p (X,W; α,γ) = p (X |W; γ ) p (W;α) , (15)

where W would be deemed as a latent variable matrix in
the Bayesian inference. The directed acyclic graph (DAG)
for this hierarchical Bayesian model is shown in Fig. 1. This
simple single-subject model was considered in our previous
work [30]. However, the method proposed in [30] cannot
handle any multi-subject data, and had unsatisfactory per-
formance in many scenarios as the multithreaded iterative
parameter update procedure described next in this paper was
not employed.

FIGURE 1. DAG of the Bayesian model for a single subject.

B. BAYESIAN NETWORK FOR MULTIPLE SUBJECTS
To exploit the common neural generators of a certain type
of SSR, stimulation experiments were usually carried out
on multiple subjects. The SBL provides us a convenient
way to recover such common source locations by combin-
ing data of multiple subjects. If H subjects participated in
the SSR experiments, their data matrices derived at f0 are
X1, X2, · · · , XH , where Xh is the data matrix of the
hth subject and it consists of Lh epochs. Similarly, W ,
[W1, W2, · · · , WH ] and γ ,

[
γT1 , γ

T
2 , · · · , γ

T
H

]T
are

also defined. The common location information for SSR

among subjects can be modeled by the row-sparsity of W,
which is shared amongW1,W2, · · · , andWH , i.e.

p (W;α) =
H∏
h=1

p (Wh;α) =

H∏
h=1

Lh∏
lh=1

p
(
wh,lh;α

)

=

H∏
h=1

Lh∏
lh=1

CN
(
wh,lh |0, diag (α)

)
(16)

where α is used to control the same row-sparse support
for W1, W2, · · · , and WH . Besides, it is easy to find that
p (X1, X2, · · · , XH |W; γ ) =

∏H
h=1 p

(
Xh
∣∣Wh; γh

)
,

as Xh1

∣∣Wh1; γ h1
is independent of Xh2

∣∣Wh2; γ h2
if h1 6=

h2. We can easily find p (X1, X2, · · · , XH ,W; α,γ) =
p (X1, X2, · · · , XH |W; γ ) p (W;α), which has the sim-
ilar formulation as (16) for the single-subject model. In fact,
the single-subject model is the special case of multi-subject
model when H = 1. This viewpoint can also be discovered
form DAG for the hierarchical Bayesian model of multiple
subjects shown in Fig. 2. This model can be further extended
to the scenario that various electrode layouts or even various
number of electrodes are probably applied for different sub-
jects. When the same mesh is used to sample the cortex, the
subjects can build their own extended LFMs: L̃1, L̃2, · · · , and
L̃H , where the dimension of L̃h is Mh × N . Now we have

p (X1, X2, · · · , XH |W;γ )

=

H∏
h=1

Lh∏
lh=1

p
(
x̃h, lh

∣∣wh, lh; γh, lh
)

=

H∏
h=1

Lh∏
lh=1

CN
(
x̃h, lh

∣∣∣L̃hwh, lh , γh, lhI
)
, (17)

where x̃h, lh and wh, lh are the lhth column of Xh and Wh,
respectively, and γh, lh is the lhth entry of γh.

FIGURE 2. DAG of the Bayesian model for multiple subjects.

IV. SPARSE BAYESIAN LEARNING
Based on the Bayesian model established above, expectation-
maximization (EM) is used to derive the parameters α and
γ in this paper. To give a unified solution, we consider the
scenario involving multiple subjects (H subjects), and for
single-subject scenario we only need to let H = 1.
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The posterior distribution of latent variable matrices
p (W |X1, X2, · · · , XH ; α,γ ) is the premise of applying
EM. Based on Bayes’ rule, when the SSR recordings col-
lected from the hth subject have Lh epochs, we have

p
(
wh,lh

∣∣x̃h,lh; α,γ)
= CN

(
wh,lh

∣∣µh,lh ,6h,lh
)
,

h = 1, 2, · · · , H , lh = 1, 2, · · · , Lh, (18)

where µh,lh = γ−1h,lh6h,lh L̃
H
h x̃h,lh , 6h,lh = (3−1 +

γ−1h,lhL̃
H
h L̃h)

−1, and 3 = diag (α). As wh,lh

∣∣x̃h,lh; α,γ is

independent of wh′, l′h

∣∣∣x̃h′, l′h; α,γ when h 6= h′ or lh 6= l ′h,
we further have

p (W |X1, X2, · · · , XH ; α,γ )

=

H∏
h=1

Lh∏
lh=1

p
(
wh,lh

∣∣x̃h,lh; α,γ). (19)

According to the established Bayesian model, estimation
of the parameter vectors α and γ should be given by(

α̂, γ̂
)
= argmax

α,γ
log p (X1, X2, · · · , XH ; α,γ) . (20)

Instead of such a direct optimization, in the procedure
of EM, α and γ are learned iteratively by maximizing
a tight lower bound of log p (X1, X2, · · · , XH ; α,γ).
If terms irrelevant to α and γ are ignored, this tight
lower bound corresponds to a function Q (α, γ), given
by the expectation of log p (X1, X2, · · · , XH ,W; α,γ)
under p (W |X1, X2, · · · , XH ; α,γ ), shown by the proof
in Appendix A. The objective function Q (α, γ) is further
expressed as

Q (α, γ)

= Ep(W|X1, X2, ··· , XH ; α,γ )[
log p (X1, X2, · · · , XH ,W; α,γ)

]
= Q (α)+ Q (γ) , (21)

where we have (22) and (23), as shown at the bottom of the
next page, and (·)∗, Re (·) and tr (·) denote the conjugate
operation, the real part and the trace of a matrix, respectively.
Now the task turns to maximizing Q (α, γ) with respect to
the corresponding parameter vector.

It can be found that Q (α) and Q (γ) are independent of γ
and α, respectively. By making the derivative of Q (α) with
respect to α equal 0, we have the solution of α given by

αn =

H∑
h=1

Lh∑
lh=1

6h,lh [n, n]+ µh,lh [n]µh,lh [n]
∗

H∑
h=1

Lh

,

n = 1, 2, · · · ,N . (24)

Similarly, let the derivative of Q (γ) with respect to γ
equal 0, and then we have (25), as shown at the bottom of
the next page.

In the proposed SBL algorithm, α and γ are updated
iteratively. When some initialization is set, the convergence
of iteration is guaranteed, as proved by Appendix A. Though
Q (α, γ) can grow larger and converge ultimately, its cor-
responding lower bound of log p (X1, X2, · · · , XH ; α,γ)
cannot be guaranteed to be close enough to the maxi-
mum of log p (X1, X2, · · · , XH ; α,γ) using an arbitrary
initialization. To address this issue, we make the itera-
tion procedure multithreaded, where each thread has dif-
ferent parameter initialization. The ultimate estimation of
α and γ are given by the thread that achieves the largest
Q (α, γ). In this paper, the initializations of α and γ are
given by

αinit =

H∑
h=1

Lh∑
lh=1

ρ∗h,lh � ρh,lh/

H∑
h=1

Lh, (26)

γinit, h,lh =
(
x̃h,lh − L̃hρh,lh

)H (
x̃h,lh − L̃hρh,lh

)
/Mh,(27)

where� denotes Hadamard product, ‖·‖F denotes Frobenius
norm, and ρh,lh is given by one of D = 4 choices:

ρ1h,lh =
√
N L̃H

h x̃h,lh/
∥∥∥L̃H

h L̃h
∥∥∥
F
, or

ρ2h,lh = L̃H
h x̃h,lh/

∥∥∥L̃H
h

∥∥∥
F
, or

ρ3h,lh = L̃H
h x̃h,lh/Mh, or

ρ4h,lh =
√
N L̃H

h x̃h,lh x̃
H
h,lhL̃hL̃H

h x̃h,lh/
∥∥∥L̃H

h L̃h
∥∥∥
F
.

(28)

ρdh,lh is used for initialization in d th thread, and after con-
vergence, Q (α, γ) corresponding to the initialization using
ρdh,lh is represented by Qd (α, γ). The ultimate estimates
of α and γ are obtained from the thread corresponding to
max
d

Qd (α, γ).

In each iteration, the computational complexity is domi-
nated by the matrix inverse in calculating 6h,lh . As N >

Mh, 6h,lh is calculated by 6h,lh = 3 − 3L̃H
h (γh,lhIMh +

L̃h3L̃H
h )
−1L̃h3 instead. The workflow of the proposed algo-

rithm is listed in Table 1.
It was mentioned that the methods on frequency domain

were applied in inverse solutions of brain rhythms. Our pro-
posed method can also be employed for localizing cortical
sources related to brain rhythms, if some adjustments are
made. In our SSR source localization method, to alleviate
the influence by the spontaneous brain rhythm components
at the same frequency of SSRs, the joint sparsity among
columns of W was modeled and utilized, and the variances
of spontaneous EEG plus electric noise at all epochs were
estimated. To adjust our method for inverse solutions of brain
rhythms, W will be instead used to model the distributed
sources of brain rhythms on the cortex, and electric noise is
to be estimated, whose variance is assumed to be invariant
among epochs. Though this adjustment seems simple, apply-
ing the adjusted method in brain rhythms should still be
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careful, as brain rhythms cannot be assumed to keep their
cortical locations for many epochs like SSRs, due to their
non-stationarity property.

V. EXPERIMENTS FOR PERFORMANCE VERIFICATION
The performance of the proposed SBL-based SSR inverse
solution is verified through experiments in two stages. In the
first stage, simulation experiments are carried out, where
the ground truth of simulated source locations is harnessed
for judging the accuracy of inverse solution. Comparison
between the proposed method and several existing inverse
methods we adapted for SSR source localization is presented,
and the outperformance of the proposed method is illustrated
in various scenarios. After evaluation by simulations, in the
second stage, the performance of the proposed method is
further judged involving EEG data recorded during real
SSR stimulation experiments. Here one typical category
of SSRs, ASSR, is considered. The inverse solutions for
ASSRs in various paradigms can be validated by conclu-
sions on this issue in some existing literatures. Further-
more, referring to the advantages achieved by the proposed

method in localization accuracy and spatial resolution
revealed by simulation results, we expect that the proposed
method may provide supplementary results for ASSR inverse
solutions.

In this paper, the LFM L̃ is calculated using Open-
MEEG [31]. A common T1-weighted MRI anatomical
template, the Montreal Neurological Institute/International
Consortium for Brain Mapping (MNI/ICBM) 152 standard,
is utilized for constructing L̃. With the aid of OpenMEEG,
a 3-shell realistic head model consisting of scalp, inner-
skull, and outer-skull, was obtained using the symmetric
boundary element method (BEM) as the distributed forward
solver. The source space was manifested by deploying dense
vertices on the surface of the cortex, and hence tessellating the
cortex surface with a dense grid consisting of 1500 triangles
corresponding to dipole positions. Given the electrode layout
information, the LFM L̃ mapping the source space to scalp
electrodes is further constructed according to the distributed
model. The generated lead field matrix is output by the
Brainstorm software [32], to be reused by our method as well
as the compared ones.

Q (α) , Ep(W|X1, X2, ··· , XH ; α,γ )
[
log p (W;α)

]
= const−

(
H∑
h=1

Lh

)
N∑
n=1

logαn

−

H∑
h=1

Lh∑
lh=1

N∑
n=1

Ep
(
wh,lh

∣∣x̃h,lh ; α,γ )
(∣∣wh,lh [n]

∣∣2)
αn

= const−

(
H∑
h=1

Lh

)
N∑
n=1

logαn

−

H∑
h=1

Lh∑
lh=1

N∑
n=1

6h,lh [n, n]+ µh,lh [n]µh,lh [n]
∗

αn
, (22)

Q (γ) , Ep(W|X1, X2, ··· , XH ; α,γ )
[
log p (X1, X2, · · · , XH |W; γ )

]
= const−

H∑
h=1

Mh

Lh∑
lh=1

log γh,lh



−

H∑
h=1

Lh∑
lh=1

Ep
(
wh,lh

∣∣x̃h,lh ; α,γ )
[(

x̃h,lh − L̃hwh,lh

)H (
x̃h,lh − L̃hwh,lh

)]
γh,lh

= const−
H∑
h=1

Mh

Lh∑
lh=1

log γh,lh

− H∑
h=1

Lh∑
lh=1

{
x̃Hh,lh x̃h,lh

−2Re
(
x̃Hh,lhL̃hµh,lh

)
+ tr

[
L̃H
h L̃h

(
6h,lh + µh,lhµ

H
h,lh

)]}
/γh,lh , (23)

γh,lh =
x̃Hh,lh x̃h,lh − 2Re

(
x̃Hh,lhL̃hµh,lh

)
+ tr

[
L̃H
h L̃h

(
6h,lh + µh,lhµ

H
h,lh

)]
Mh

,

h = 1, 2, · · · , H , lh = 1, 2, · · · , Lh . (25)
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TABLE 1. The proposed SSR inverse method.

Electrode montages corresponding to two multi-electrode
caps, developed by Easycap GmbH (Herrsching, Germany),
were employed in the experiment verification. Their electrode
layouts are displayed in Fig. 3. In simulation experiments,
the generated simulation EEG recordings were assumed to
be collected by EEG electrodes in the ‘‘64Ch-BrainCap-
FEBA’’ or ‘‘32Ch-BrainCap-FEBA’’ cap. In the real SSR data
verification stage, only the ‘‘64Ch-BrainCap-FEBA’’ cap was
utilized for EEG recording.

A. SIMULATION EXPERIMENTS
In the simulation verification stage, the SSRs generated at
specified source locations were synthesized, mapped to scalp
by the LFM L̃, and contaminated by electric noise and spon-
taneous EEG, leading to the EEG recordings at M scalp
electrodes. Some pattern of stimulation was assumed to be
given for arousing SSR, with the stimulus frequency f0. The
origins of K dipole sources were assumed located at K pre-
determined positions on the cortex, and hence mapping them
to the scalp electrodes correspond to specified columns of
L̃. For each source signal, L epochs were generated. In each
epoch, the source signal had the sinusoidal formulation, with
random amplitude (uniformly distributed in [0.8σs, 1.2σs])
and random initial phase (uniformly distributed in [-π , π]),
lasting for T0. This implies that the amplitude and phase of
SSR can vary among sources or even epochs, which will
test the reasonability of setting the prior distributions of all
columns of W to be an identical complex Gaussian distribu-
tion in (13). The spontaneous EEG plus electric noise in each
epoch has temporally and spatially uncorrelated zero-mean
Gaussian distribution, with variance σ 2

l + σ
2
n , where σ

2
n is

fixed while σ 2
l , l = 1, 2, . . . ,L obey Gamma distribution

among epochs.

FIGURE 3. The montages of two electrode caps (Easycap GmbH,
Herrsching, Germany) used in experiments. (a) Electrode layout of the
employed ‘‘32Ch-BrainCap-FEBA’’ cap. (b) Electrode layout of the
employed ‘‘64Ch-BrainCap-FEBA’’ cap.

The stimulus frequencies in the simulation experiments
were all set as f0 =39.1Hz, and the EEG recordings we
simulated at scalp electrodes had the sampling frequency
fs =1000 Hz in this paper. The number of samples of EEG
recordings in each epoch was fixed as 10230. For prepro-
cessing the generated L-epochmulti-channel EEG simulation
data, each epoch was divided into 10 nonoverlapped and
successive segments and they were aligned and averaged
to produce an ‘‘enhanced epoch’’ with length T = 1023,
by a bit misusage of the concept. We believe that such a
superposition averaging may bring two advantages: on one
hand it reduced the number of FFT points, and on the other
hand the SSR component can be ‘‘enhanced’’ compared with
the spontaneous EEG and electric noise as the initial phases
of sinusoidal sources in all the segments in the same epoch
were guaranteed to be identical. After performing FFT on
the lth ‘‘enhanced epoch’’, the Fourier components at f0 =
39.1 Hz are derived to form the vector x̃l . For a simulated
‘‘subject’’, X =

[
x̃1, x̃2, · · · , x̃L

]
obtained by preprocess-

ing is used as the input to our proposed method. Change of
stimulation frequency f0 in simulation experiments will not
lead to performance degradation, though the only thing to
note is that the number of samples in data segments to be
aligned and averaged should be adjusted, to guarantee that the
initial phases of sinusoidal sources of f0 in all the segments
in the same epoch are identical.
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FIGURE 4. Locations of simulated sources in three cases, where the
numbers of sources are 1, 2, and 3, respectively.

In the first simulation experiment, the one-trial examples
of inverse solutions of simulated SSRs with preset cortical
locations by the proposed method were given. We considered
three cases, where sources were located at the left hemi-
sphere of cortex, as displayed in Fig. 4. In the first case,
the SSR had only one source originated at the postcentral
gyrus. In the second case, another simulated source at the
superior temporal gyrus was added. In the third case, three
sources were generated, where a source located at the mid-
dle frontal gyrus was supplemented compared to the sec-
ond case. The sources were mapped to be recorded by the
EEG electrodes in the employed ‘‘64Ch-BrainCap-FEBA’’
cap with FCz as the reference, and hence the 62-channel
EEG recording simulation data was generated for usage. For
each case, we explored three signal-to-noise (SNR) scenarios:
high SNR (SNR=12dB), medium SNR (SNR=0dB), and low
SNR (SNR=-12dB). The EEG simulation data was assumed
to be recorded from one subject, and the number of epochs
was fixed as L = 10. In order to illustrate the superior
performance of the proposedmethod, 3 existing inversemeth-
ods including MNE [13], sLORETA [14], and LCMV beam-
former [16] were also simultaneously performed for compar-
ison. For fair comparison, we adapted these three methods
to handling the inverse problem through frequency domain
analysis. The one-trial inverse solution results, projected on
the surface of cortex in the form of color map, are displayed
in Fig. 5, where ‘‘SBL’’ was used to label our method for
distinguishing the proposed method from the compared ones,
and the ground-truth simulated source location is marked
by the small filled circle. Fig.5 shows that, apart from the
performances of LCMV locating only one source, the com-
pared methods yielded much smoother location results in
various scenarios, and sometimes even merged or missed
some sources. In contrast, the proposed method gave focal
source localization, and the ground-truth sources lay right in
the scope of its inverse solution in these trials. A trend that
may be suspected from Fig. 5 is that, the proposed method
may be much less affected by the SNR reduction, compared
with the other methods.

The accuracy and resolution of source localization perfor-
mance was further evaluated by Monte Carlo simulations.
Statistical calculation of two indicators, root mean square
error (RMSE) and spatial dispersion (SD) [33] was per-
formed, involving the estimated locations and ground-truth
source locations in Monte Carlo trials. The localization accu-
racy was evaluated by RMSE, which is given by

RMSE =

√√√√ K∑
k=1

I∑
i=1

∥∥r̃i,k − rk
∥∥2
2/ (K · I ), (29)

where rk is the spatial location vector of the kth ground-truth
source, r̃i,k corresponds to the cluster center among K clus-
ters of the localization results closest to the kth ground-truth
source, and I is the total number of Monte Carlo trials. The
SD was used to reflect the degree of localization ambiguity,
represented as

SD =
1
I

I∑
i=1

√√√√√ K∑
k=1

∑
jk∈Lk

αjk

∥∥r̃i,jk − rk
∥∥2
2/

N∑
n=1

αn, (30)

where Lk consists of the location indexes belonging to the
cluster whose center is closest to the kth ground-truth source.
In this paper, we used K-Nearest Neighbor (KNN) for clus-
tering the localization result at each trial.

In Fig. 6, we plot the curves of RMSE and SD of source
localization by the proposed method and the compared ones
versus SNR, considering three cases of simulated sources
given by Fig. 4. In all the cases, 500 Monte Carlo trials
were carried out in each condition, and the number of epochs
used in each trial was fixed at L = 10. The proposed
method achieved the lowest RMSE and SD in low SNR
range in all three cases. Specially, in the case of three
sources, the proposedmethod gave substantially lower RMSE
and SD curves compared with other methods in all SNR
ranges. Some compared methods, which as mentioned were
their frequency-domain-processing version, also revealed
encouraging performances in localizing small number of
SSR sources. E.g., LCMV yielded dominant performances
in mediate and high SNR ranges when only one source was
considered, and MNE gave lowest RMSEs in mediate and
high SNR ranges at two sources’ scenario. However, in real
applications, as we never preliminarily know the true number
of sources in the distributed source model, such ‘‘outper-
formance’’ of the compared methods cannot be confirmed.
As observed from Fig. 6(c) that the lowest RMSE and SD
curves versus SNRwere achieved by the proposedmethod for
localizing three sources, we are also interested in inspecting
how these two indicators will vary with the increment of
number of epochs used. Fig. 7 shows the RMSEs and SDs in
the case of localizing three sources as displayed in Fig. 4, with
variation of the number of epochs used and fixed SNR= 3dB.
It can be found that all the performed methods, processing
data in frequency domain, had the similar trend of very slow
decline in RMSE and SD curves with respect to the increment
of number of epochs used. Hence, we may suspect that the
proposed method can already achieve appropriate source
localization performance even when using a small number
of epochs.

As we proved the convergence of EM procedure in our
proposed method theoretically, we are interested in inspect-
ing the convergence performance of our method in exper-
iments. Still the case of localizing three sources displayed
in Fig. 4 was considered, and the ‘‘64Ch-BrainCap-FEBA’’
cap was employed. We calculated the RMSEs and SDs of
inverse solutions using the updated parameters at each round
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FIGURE 5. Examples of SSR source localization results using various
localization methods in three cases. (a) One simulated source. (b) Two
simulated sources. (c) Three simulated sources. The number of epochs
used were all L = 10.

of iteration, and 500 Monte Carlo trials were carried out.
Four scenarios were considered: (1) SNR=-20dB and L = 5;
(2) SNR=-20dB and L = 10; (3) SNR=0dB and L = 10;
(4) SNR=20dB and L = 10. Curves of RMSE and SD of
inverse solutions versus time of iteration at these 4 scenarios
are displayed in Fig. 8. It can be found that convergences
were achieved around 100 rounds of iterations for these
4 simulation scenarios, and the stable values of SDs appeared
much earlier than those of RMSEs. From Fig. 8, we can also
speculate that, with fixed number of epochs our method will
converge faster and achieve lower RMSE and SD of source
localization in higher SNR scenario.

FIGURE 6. RMSE and SD of source localization results versus SNR in three
cases, where the left column shows the RMSE curves and the right one
shows the SD curves. (a) One simulated source. (b) Two simulated
sources. (c) Three simulated sources. The number of epochs used were all
fixed at L = 10.

FIGURE 7. RMSE and SD of source localization results versus the number
of epochs used in the case of three sources, where SNR was fixed at 3dB.
(a) RMSE versus the number of epochs. (b) SD versus the number of
epochs.

We examined our method’s resistance to uncertainty in
LFM L̃ through simulation experiments. A random perturba-
tion matrix 1L̃ was added to L̃ which was assumed given
by precise forward solution. The entries of 1L̃ are inde-
pendent of each other and identically Gaussian distributed:

1L̃ [m, n] ∼ N
(
0, p×

∥∥∥L̃∥∥∥2
F
/
(
M2N 2

))
, where p is a

tunable parameter. The task was to localize three sources as
displayed in Fig. 4 employing the ‘‘64Ch-BrainCap-FEBA’’
cap, under the conditions of L = 10 and SNR varied.
500 Monte Carlo trials were carried out in each condition,
and we assumed that the perturbation in L̃ was unknown
in each trial for inverse solution. Four scenarios have been
considered: (1) no perturbation existing in L̃; (2) perturbation
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FIGURE 8. Convergence performances of the proposed method in various
scenarios. (a) RMSE versus the number of iterations. (b) SD versus the
number of iterations.

existing in L̃ (p = 1); (3) perturbation existing in L̃ (p = 10);
(4) perturbation existing in L̃ (p = 100). Fig. 9 depicts the
RMSE curves and the SD curves with respect to SNR for
these 4 scenarios. From these results, it can be noticed that the
proposed method was almost immune to a small perturbation
in L̃ (p = 1, 10), and even for a larger perturbation (p = 100)
the performance degradation was also very limited. This
phenomenon coincides well with our conjecture from (10)
that the perturbation in the LFM can be absorbed into γl
which is estimated in the proposed method, hence endowing
our method with some robustness to uncertainty in forward
solution.

Compared with the existing method, our proposed SSR
inverse solution method can easily fuse EEG recordings
from multiple subjects to give an integrated source location
result, even when they employ different electrode montages.
We considered the scenario of combining 10-epoch sim-
ulation data by two subjects, who were assumed to use
same or different electrode montages. These two subjects
were assumed to have the same three-source SSR ori-
gins according to Fig. 4. For fair comparison, three cases
were simulated, including: both of the subjects employ-
ing ‘‘64Ch-BrainCap-FEBA’’ caps, both of them employing
‘‘32Ch-BrainCap-FEBA’’ caps, and one employing ‘‘64Ch-
BrainCap-FEBA’’ cap and the other one employing ‘‘32Ch-
BrainCap-FEBA’’ cap. Fig. 10 shows the RMSE and SD
curves versus SNR by our method, where ‘‘SBL-64Ch’’,
‘‘SBL-32Ch’’, and ‘‘SBL-64Ch&32Ch’’ mark the three cases

FIGURE 9. Performances of source localization by the proposed method
confronting uncertainty in forward solution, where p controls the ratio of
perturbation in LFM. (a) RMSE versus SNR. (b) SD versus SNR.

mentioned above, respectively. As we expected, the source
localization performance of ‘‘SBL-64Ch’’ outperformed that
of ‘‘SBL-32Ch’’, due to the additional electrode record-
ings. ‘‘SBL-64Ch&32Ch’’ had the performance between
‘‘SBL-64Ch’’ and ‘‘SBL-32Ch’’ in low SNR range, while
in high SNR range it had the smallest RMSE but largest
SD among all three cases. The results displayed in Fig. 10
imply that the proposed method achieved a neat style of
information integration of multiple subjects with probable
different electrode montages in SSR inverse solution.

To show how the proposedmethodwill performwhenmore
SSR sources are to be localized, we considered the scenario
where eight sources were simulated covering the left and right
hemisphere of cortex. The ground-truth locations of simu-
lated sources include: left middle frontal gyrus, left postcen-
tral gyrus, left inferior occipital gyrus, left middle temporal
gyrus, right middle frontal gyrus, right parieto-occipital fis-
sure, right middle occipital gyrus, and right middle temporal
gyrus. Fig. 11 shows one trial example of source localization
by the proposed method in this scenario, where SNR= 12dB,
the montage of ‘‘64Ch-BrainCap-FEBA’’ cap was used, and
10 epochs of simulation data were generated and used. The
ground-truth simulation source locations are marked by col-
ored solid points on the cortex. It can be observed that in this
example, the SSR source localization results of our method
were sparse, focusing right around the ground-truth simu-
lation source locations. As four lobes of the cerebral cortex
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FIGURE 10. SSR Source localization results of the proposed method
combining simulation data of two subjects using same or different
recording electrode montages, where 10 epochs of data were simulated
for each subject. (a) RMSE versus SNR. (b) SD versus SNR.

FIGURE 11. One trial example of SSR Source localization results of the
proposed method in locating eight simulated sources.

were all involved when presetting the locations of simulated
SSR sources in this example, the proposed method showed
its potential in inspecting the locations of SSR sources from
the whole cerebral cortex with fine resolution.

B. REAL SSR EXPERIMENTS: 40-Hz ASSR EXAMPLES
Encouraged by the performances of our method in simula-
tion experiments, we are interested in exploring how well it
works in solving inverse problems for real SSR data. In this
paper, we considered 40-Hz ASSRs, stimulated by monau-
ral or binaural periodic auditory stimulus at around 40 Hz,
whose clinical applications were widely studied in hearing
detection, anesthesia monitoring, consciousness state assess-
ment, etc. It is of great significance to figure out the origins
of 40-Hz ASSRs to support its clinical applications from
the perspective of source generation. As aforementioned, the
source locations of 40-Hz ASSR were explored in literatures
with some conventional methods such as BESA [22], [24],
LORETA [23], LCMV [25], and ECD fitting [26]. Hence,

these existing studies may provide some proof for 40-Hz
ASSR source localization results. Furthermore, according
to the outperformance of our method shown in simulation
experiments, we also expect that it may give supplementary
or calibrated conclusions of 40-Hz ASSR inversion solution
in comparison to the existing studies.

The collection of 40-Hz ASSR recordings comes from our
previous study on developing a 40-HzASSR automatic detec-
tor and combining multi-paradigm 40-Hz ASSR automatic
detection results for prognosis of comatose patients [8]. The
40-Hz ASSR automatic detector in [8] was developed by
using EEG recordings of 26 healthy right-handed young vol-
unteers experiencingmulti-paradigm 40-Hz auditory stimula-
tion. The involved volunteers all gave their signed informed
consents before participating in the experiments. The study
in [8] was carried out in accordance with the Declaration
of Helsinki and approved by the Medical Ethics Committee
of the Taicang Affiliated Hospital of Soochow University.
Among the 26 healthy volunteers, 6 subjects (3 males and
3 females, aged 21± 1.89 years) admitted to have their
whole-scalp EEG recording, using the ‘‘64Ch-BrainCap-
FEBA’’ cap. In this paper, we applied our SSR inverse
method in the EEG recordings of these 6 subjects undergoing
multi-paradigm 40-Hz auditory stimuli.

The auditory stimuli were in the form of sinusoidal ampli-
tude modulated tones at f0 = 39.1Hz, generated by MAT-
LAB2015b and output by customized in-ear headphones,
with sound intensity level of 70 dB SPL for healthy sub-
jects. 4 paradigms of stimulation were presented: binaural
stimulation with carrier frequency fc = 500 Hz (denoted as
‘‘39.1-500-both’’), monaural stimulation at left ear with fc =
500 Hz (denoted as ‘‘39.1-500-left’’), binaural stimulation
with fc = 1000 Hz (denoted as ‘‘39.1-1000-both’’), and
monaural stimulation at left ear with fc = 1000 Hz (denoted
as ‘‘39.1-1000-left’’). When stimulation was only given at the
left ear, the right ear of the subject was masked by white noise
at the same time. For each stimulation paradigm, the auditory
stimulation lasted for 150 seconds. Between every two adja-
cent stimulation paradigms, the subjects rest for 1 minute.
The subjects were asked to keep their eyes closed during
the whole experiment for excluding electrooculogram (EOG)
artifacts.

The EEG recording was achieved by using BrainAmp (S/N
AMP 13122084MRplus) and BrainVision Recorder (Version
1.20.0601) produced by Brain Products GmbH (Munich,
Germany). Conductive gel was used to keep the resistance
between each electrode and scalp under 5k�. The sampling
rate was fs = 1000 Hz, and a bandpass filter with 1∼300 Hz
passband (12dB/octave) and a 50-Hz notch filter were used
for noise suppression during recording. For the recorded
150s data related to each paradigm of stimulation, prepro-
cessing was applied to form a data matrix X consisting of
L = 10 epochs, which was the input to our proposed method.
Firstly, the EEG recording was re-referenced from FCz to
the average of TP9 and TP10, and hence transformed from
63-channel data to 62-channel data. Secondly, the first 5s
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FIGURE 12. Cortical source localization results for ASSR evoked by
stimulation paradigm ‘‘39.1-500-both’’. The top row displays the left, top,
and right views of the ASSR inverse solution on cerebral cortex provided
by the proposed method integrating all 6 subjects’ data, while each
subsequent row shows the solution using the corresponding one
subject’s data alone.

data was used for baseline calibration, and the rest data was
divided into successive and nonoverlapped data segments,
with equivalent length of 1023 samples. Thirdly, artifacts
rejection was performed at each data segment: one data
segment was abandoned if the amplitude of any sample in
it exceeded ±40 µV; otherwise it was reserved. Fourthly,
the reserved data segments were passed through a bandpass
digital filter in 35∼45 Hz, and then every 10 successive data
segments were averaged to form a 1023-sample ‘‘epoch’’,
where epochs were guaranteed to be nonoverlapped and
only the first 10 epochs were reserved for subsequent usage.
Lastly, the lth column of X (l = 1, 2, . . . ,L) was given by
the Fourier components of the lth epoch data at f0 = 39.1 Hz.
For each subject under one paradigm of stimulation,

we obtained a 62× 10 data matrix X as the input to our pro-
posedmethod. Our method can also easily utilize all subjects’
data to exploit the common source locations of ASSR evoked

FIGURE 13. Cortical source localization results for ASSR evoked by
stimulation paradigm ‘‘39.1-500-left’’, ‘‘39.1-1000-both’’, and
‘‘39.1-1000-left’’, where each row shows the left, top, and right views of
the ASSR inverse solution on cerebral cortex for the corresponding
stimulation paradigm. All solutions were given by our method combining
all subjects’ data under a certain stimulation paradigm.

by a certain paradigm of stimulation. Fig. 12 shows the source
location results on the cerebral cortex using each subject’s
data alone or combining all 6 subjects’ data, where the ASSR
evoked by ‘‘39.1-500-both’’ was taken for example. Com-
paring the integrated result with the one obtained from each
subject only in Fig. 12, we can observe that the source loca-
tion integration was not just a simple multi-subject-averaging
version, but gave a collection of dominant located sources by
our proposed method applied in all subjects’ data. If more
subjects are involved, we can expect to derive a more robust
conclusion of cortical origins for the SSR evoked by some
pattern of simulation.

The integrated source location results for the ASSRs
evoked by the rest of paradigms of stimulation are dis-
played in Fig. 13. It seems that when the carrier frequency
fc = 500 Hz, the binaural stimulation may arouse 40-Hz
ASSR with a little wider cortical source distribution than that
aroused by the monaural one. However, this assumption did
not hold in the case of fc = 1000 Hz, as displayed in Fig. 13.
In this paper, we tried to figure out the common source loca-
tions of 40-Hz ASSRs aroused by 4 paradigms of auditory
stimulation that we carried out. From Fig. 12 and Fig. 13, our
proposedmethod revealed that the locations of 40-HzASSR’s
cortical origins include: superior temporal gyrus, transverse
temporal gyrus, middle temporal gyrus, inferior temporal
gyrus, postcentral gyrus, angular gyrus, lingual gyrus, middle
frontal gyrus, and lateral orbital gyrus. Most of the above
derived source locations can find their counterparts in the
literatures: in [23], temporal lobe, parietal lobe, and frontal
lobe were claimed to have 40-Hz ASSR origins; temporal
gyri coincided with the conclusions in [22] and [25]; post-
central gyrus, lingual gyrus, and middle frontal gyrus were
also confirmed as locations of 40-Hz ASSR sources in [26].
Hence, our proposed method provided a more comprehen-
sive conclusion of 40-Hz ASSR’s origins compared with
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the inverse solution given by any existing method alone.
Furthermore, as illustrated by simulation experiments, our
method achieved SSR source localization with much higher
resolution covering the whole cortex. From the experiments
involving 4 paradigms of auditory stimulation, the results of
our method showed that, sources of 40-Hz ASSR may also
appear in angular gyrus and lateral orbital gyrus, rather than
vague conjectures on parietal lobe and frontal lobe.

VI. CONCLUSION
In this paper, the inverse problem for SSRs was consid-
ered in perspective of multi-channel EEG signal processing
at frequency domain, where the framework of SBL was
applied. We showed that the complex Fourier components
of multi-channel SSR data at the stimulation frequency have
a sparse representation counterpart on the cerebral cortex
according to the distributed model. Based on the sparse rep-
resentation of Fourier components, a hierarchical Bayesian
model was established for SSR source localization using a
single subject’s data as well as combining multiple subjects’
data. In designing the Bayesian model, the joint sparsity
of complex-valued source component vectors among epochs
was modeled and the non-stationarity of spontaneous EEG
was considered. EM was employed to derive the iterative
Bayesian inference procedure for solving the SSR inverse
problem. Specially, the proposed method is also applica-
ble in SSR source localization integrating the EEG record-
ings of multiple subjects even employing different electrode
montages. The simulation experiments verified the advan-
tages in source localization accuracy and resolution achieved
by the proposed method, compared with the frequency-
domain-analysis version of the conventional inverse methods.
Real 40-Hz ASSR stimulation experiments were carried out
and the recorded data was utilized for further performance
verification. The yielded results coincided well with the exist-
ing literatures and provided SSR source location results with
higher resolution on some lobes. Encouraged by the SSR
source localization performances of the proposed method,
we expect it to make more contributions to SSR related brain
research and applications in the future.

APPENDIX A. PROOF OF CONVERGENCE
If q (W) is an arbitrary distribution over W, log p(X1, X2,

· · · , XH ; α,γ) can be reformed as

log p (X1, X2, · · · , XH ; α,γ)

=

∫
q (W) log

p (X1, X2, · · · , XH ,W; α,γ)
q (W)

+KL (q (W) ‖p (W |X1, X2, · · · , XH ; α,γ ) )

≥

∫
q (W) log

p (X1, X2, · · · , XH ,W; α,γ)
q (W)

, (31)

where KL (q ‖p ) denotes the Kullback-Leibler divergence,
which is nonnegative. (31) provides a tight lower bound of

log p (X1, X2, · · · , XH ; α,γ), i.e.

LB
[
log p (X1, X2, · · · , XH ; α,γ)

]
=

∫
q (W) log

p (X1, X2, · · · , XH ,W; α,γ)
q (W)

, (32)

and the equality in (31) will hold when q (W) =

p (W |X1, X2, · · · , XH ; α,γ ). In each iteration of EM,
the E-step in (31) gives a lower bound of log p(X1, X2, · · · ,

XH ; α,γ), while the M-step maximizes this lower bound to
make it get closer to max

α,γ
log p (X1, X2, · · · , XH ; α,γ).

In the (t + 1)th iteration, if q(t) (W) =

p
(
W
∣∣X1, X2, · · · , XH ; α

(t),γ(t)
)
built by α(t) and γ(t)

obtained from the t th iteration, the M-step is given by(
α(t+1),γ(t+1)

)
= argmax

α,γ
LB

[
log p (X1, X2, · · · , XH ; α,γ)

] ∣∣∣q(t)(W)
= argmax

α,γ

∫
q(t) (W) log

p (X1, X2, · · · , XH ,W; α,γ)
q(t) (W)

= argmax
α,γ

∫
q(t) (W) log p (X1, X2, · · · , XH ,W; α,γ)

= argmax
α,γ

Q (α,γ)
∣∣∣q(t)(W)=p(W|X1, X2, ··· , XH ; α(t),γ(t) ) .(33)

Now combing (31) and (33), we further have

log p
(
X1, X2, · · · , XH ; α

(t+1),γ(t+1)
)

=

∫
q(t+1)(W) log

p
(
X1, X2,· · · ,XH ,W; α(t+1),γ(t+1)

)
q(t+1) (W)

≥

∫
q(t) (W) log

p
(
X1,X2,· · · ,XH ,W; α(t+1),γ(t+1)

)
q(t) (W)

≥

∫
q(t) (W) log

p
(
X1, X2, · · · , XH ,W; α(t),γ(t)

)
q(t) (W)

= log p
(
X1, X2, · · · , XH ; α

(t),γ(t)
)
. (34)

From (34), it can be observed that the sequence
log p

(
X1, X2, · · · , XH ; α

(t),γ(t)
)

is non-decreasing.
As log p

(
X1, X2, · · · , XH ; α

(t),γ(t)
)
≤ 0, this sequence

is also upper bounded, so its convergence is guaranteed.
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