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ABSTRACT Due to its complexity, financial time-series forecasting is regarded as one of the most
challenging problems. During the past two decades, nonlinear modeling techniques, such as artificial neural
networks, were commonly employed to solve a variety of time-series problems. Recently, however, deep
neural network has been found to be more efficient than those in many application domains. In this
article, we propose a model based on deep neural networks that improves the forecasting of stock prices.
We investigate the impact of combining deep learning techniques with multiresolution analysis to improve
the forecasting accuracy. Our proposed model is based on an empirical wavelet transform which is shown to
outperform traditional stationary wavelet transform in capturing price fluctuations at different time scales.
The proposed model is demonstrated to be substantially more effective than other models when evaluated

on the S&P500 stock index and Mackey-Glass time series.

INDEX TERMS Deep learning, multiresolution analysis, long-short term memory, financial time series,

forecasting.

I. INTRODUCTION

A time-series is a sequence of data values taken at equally
spaced successive points in time. Time-series analysis has
many applications in areas such as speech recognition, elec-
trical signal processing, traffic analysis, weather forecast-
ing, unemployment rate analysis, inflation dynamics, seismic
signal processing, economics, business and finance [1]-[3].
A branch of time-series analysis, called financial time-series
analysis, is used extensively to predict future stock prices.
This enables managers, traders, and investors to lay bet-
ter plans, make better decisions, minimize risks, reduce
costs, save resources, maximize profits, meet objectives, and
achieve goals [4], [5]. In the context of this article, financial
time-series data is a sequence of stock prices or index values
taken at successive equally spaced points in time.

Financial time-series data is frequently used to predict
future stock prices. However, predicting future stock prices
using financial time-series data is very challenging [6]. This
is because the price of a stock is influenced not only by
the fundamentals of the company but also by the mood
or sentiments of short-term and long-term investors [7].
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Positive sentiments can drive prices up and vice versa.
Some researchers have adopted techniques from natural lan-
guage processing to study the impact of sentiments on stock
prices [8]. Modeling investors’ sentiments is a very chal-
lenging problem and predicting future prices based only on
fundamental analysis is not sufficient. That is why many
investors buy and sell stocks based on technical analysis.
Decisions of buying and selling by technical analysts is based
on reading charts which they believe help them to predict
future stock prices. There are also other investors who base
their decisions on several other factors, such as news, proba-
bility and statistics, pure fundamentals, and machine learning
techniques. Depending on the time frame they use, market
investors can be of different categories such as scalpers, day
traders, swing traders, or positional traders. The rules to buy
and sell shares are also different which adds to the complexity
of predicting future stock prices.

Researchers have proposed notable models for financial
time-series data using linear modeling techniques such as uni-
variate Autoregressive (AR) and Autoregressive Integrated
Moving Average (ARIMA) [9], [10]. However, due to the
inherent complexity of financial time-series, design based
on linear modeling can result in poor prediction. With the
advance in computational power, other nonlinear models have

13099


https://orcid.org/0000-0001-5151-6830
https://orcid.org/0000-0001-6279-9776
https://orcid.org/0000-0002-5954-1675

IEEE Access

K. A. Althelaya et al.: Combining Deep Learning and MRA for Stock Market Forecasting

been proposed [11]-[13]. Recently, new nonlinear modeling
techniques, such as deep learning, have been used for predic-
tion using complex training data. Due to the unprecedented
performance achieved by deep learning networks (DNNs),
they have attracted considerable attention to build more effi-
cient solutions for a variety of application domains, such as
speech recognition, signal processing, image classification
and financial time series forecasting. Some researchers pro-
posed using deep recurrent neural network (RNN) along with
data preprocessing techniques to reduce and denoise the input
data [14], [15]. RNN has the ability to remember its previous
states. A variation of RNN, called Long-Short Term Memory
(LSTM), has memory units that enables very deep RNNs
to remember previous states and use them to perform more
accurate forecasting operations.

Data preprocessing is a very important step before
performing data modeling. It can increase performance
and improve prediction accuracy. Multiresolution Analy-
sis (MRA) is a data preprocessing technique used for
time-series data decomposition and denoising. It decomposes
time-series data into low-frequency and high-frequency sub-
series in the wavelet domain. Each data sub-series can then
be used separately to improve forecasting.

In this article we are proposing a more accurate stock
prices forecasting model that combines MRA with deep
RNN. To demonstrate the performance of the proposed
approach, we implemented, compared and evaluated two
types of multiresolution analysis methods, namely station-
ary wavelet decomposition (SWT) and empirical wavelet
transforms (EWT). SWT has been previously used in other
studies, e.g. [16]. To the best of our knowledge, the proposed
approach is the first to combine EWT multiresolution anal-
ysis with deep learning for both short- and long-term stock
market forecasting. The proposed methodology performs
data processing in two phases using several LSTM networks
based on data decomposition levels. For our experiments,
we used the bench mark datasets, namely S&P500 stock
index dataset and Mackey-Glass time series.

The remaining sections of this article are as follows.
Relevant literature is reviewed in Section II. The proposed
methodology is explained in Section III. Experimental results
and analysis of the proposed solution are discussed in
Section IV. Conclusions and future works are stated in
Section V.

Il. LITERATURE REVIEW

Time-series data is used not only to predict future stock
prices but also to predict long- and/or short-term trends of
weather, wind speed, water demand, electricity consump-
tion and many other application. Time-series data process-
ing techniques developed for one application are frequently
used for other applications. For instance, techniques used to
predict weather forecasting can also be used to predict wind
speed or water demand or electricity consumption with slight
modification [1]-[3].
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Time-series forecasting involves different linear modeling
techniques such as AR, moving-average (MA), ARMA, and
ARIMA. Many researchers [17]-[20] used ARMA mod-
eling technique for time-series forecasting. Chen-Xu and
Jie-Sheng [18] built a model based on ARMA to predict
bank cash flow. Kim [19] discussed the symmetric maximum
likelihood (ML) loss function and proposed asymmetric loss
function to build ARMA model to forecast stock returns.
Chen et al. [17] applied an adaptive approach to build ARMA
model by deriving the error based on the theory of minimum
mean square error (MMSE). Similarly, ARIMA modeling
was used by many studies [21]-[23] for time-series fore-
casting. The designed models were evaluated on different
application domains including stock market forecasting. In
time-series forecasting, many studies show that non-linear
modeling techniques when compared with linear techniques
show superior performance and better accuracy [24]-[26].
Thus, many non-linear modeling techniques were employed
for time-series forecasting. For example, Santos and dos
Santos Coelho [25] investigated the advantages of integrating
non-linear Multilayer Perceptron (MLP) neural network with
Radial Basis Function Neural Network (RBFNN) and the
Takagi-Sugeno fuzzy system to exchange-rate forecasting.

Artificial Neural Networks (ANNs) are widely used for
time-series analysis and forecasting due to their ability to
model non-linearity in time-series data. Many researchers
proposed the use of ANNs in time-series forecasting.
Xiao-Ming and Cheng-Zhang [27] combined ten ANNs mod-
els together to learn a highly accurate stock price fore-
casting model. They used AdaBoost technique to train the
combined models by selecting several technical indicators
of Shanghai Stock Exchange and international stock mar-
kets. Another study conducted by Pao and Chih [28] com-
pares the performance of ANN using linear and non-linear
models. They compared two nonlinear ANN models and
three linear time-series cross-sectional models and showed
that the ANN models exhibit higher forecasting accuracy.
Guo et al. [29] also used ANN to build a hybrid dimensional
reduction technique. The model combined two-directional
and two-dimensional principal component analysis (2DPCA)
with RBFNN to forecast daily stock closing prices. The pro-
posed model input features consisted of many stock market
technical variables and used a sliding window to shape the
input data. The evaluation used the Shanghai Stock Market
index. Some other modeling techniques such as Adaboost
and Hidden-Markov Model (HMM) were also employed to
time-series forecasting. Hassan and Nath [30] used HMM to
predict next day stock price through searching for patterns
in the dataset that matches specific query. Huang et al. [31]
used Support Vector Machine (SVM) to train a model
to forecast the direction of the weekly movement of the
NIKKEI 225 index. Moreover, Majhi and Anish [32] intro-
duced a non-dominated sorting genetic algorithm version-II
(NSGA-II) and multi-objective particle swarm optimiza-
tion (MOPSO) to efficiently design models for stock price
prediction to adjust four performance constrains.
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In general, ANN based techniques outperform linear
techniques and produce better time-series forecasting mod-
els. However, according to Singh and Srivastava [33],
the performance of ANN based models is not high enough
due to the complexity of financial time-series data. Deep
Neural Networks (DNNSs), on the other hand, showed supe-
rior performance in many applications, such as signal
processing, speech recognition, and image classification.
Therefore, adopting DNNs techniques to financial time-series
forecasting seems a promising approach. As a result, many
researchers studied the use of DNN for time-series forecast-
ing. Singh and Srivastava [33] compared Recurrent Neu-
ral Network (RNN) and ANN based models and concluded
that DNNs models are better than ANNs. Chong et al. [13]
explored the potential advantages and limitations of integrat-
ing DNNss into stock price forecasting by extracting features
from high frequency raw data collected from intra-day stock
prices. They conducted experiments to study the impact of
three unsupervised feature extraction techniques on the net-
works to predict the market direction. The results showed
that DNNs can improve the results of the autoregressive
model and enhance its prediction ability. Shen et al. [34]
proposed a model using an improved Deep Belief Net-
work (DBN) to forecast exchange rates. They used contin-
uous restricted Boltzmann machines (CRBMs) to construct
and improve the DBN. Tsantekidis et al. [35] applied Con-
volutional Neural Network (CNN) on a special kind of high
frequency data collected by limit-order-book (LOB). The
proposed model outperformed both SVM and MLP models.
Li et al. [36] developed a prediction model using Long
Short-Term Memory (LSTM) neural network. The proposed
model was improved by integrating a Naive Bayes (NB)
modeling technique to include and extract market factors and
investor sentiment from forum posts. Other researchers used
different kinds of data representation to train deep learning
models. For example, Chen et al. [37] transferred time-series
data into 2D images and fed them to CNN for training.

Characterizing, modeling, and extracting features of
time-series data was better achieved by integrating signal
processing methodologies into time-series analysis and
decomposition. Time-series data can be represented using dif-
ferent kinds of signal transforms such as Fourier and wavelet
transforms. Wavelet transform has been found to outperform
Fourier transform in analyzing non-stationary data; thus mak-
ing it a good candidate for time-series decomposition [38].
Wavelet methodology was first introduced by Grossmann and
Morlet [39]. This pioneering work was followed by present-
ing MRA by Mallat [40]. Combining multiresolution wavelet
methodology showed a significant improvement in data anal-
ysis and decomposition in many scientific areas including
time series. Ismail and Dghais [41], for example, attempted
to characterize financial time series using MRA. The study
used Linear ARIMA with wavelets to address forecasting
results using a multi-resolution fitting approach. Kilic and
Ugur [38] conducted experiments to analyze S&P500 dataset
using MRA with some other descriptive statistical modeling.
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They also conducted experiments to investigate and compare
the integration of MRA with linear as well as nonlinear fore-
casting methods. They concluded that using nonlinear models
with MRA can produce better results. Bekiros er al. [42]
applied MRA to linear and nonlinear models using neural
networks and concluded that nonlinear modeling techniques
and ANNs result in better performance. Zhang et al. [43]
found out that the integration of wavelet transforms with
ANN produces better forecasting results. They used shift
invariant scale-related wavelet transform representation. The
transformation established was based on Auto-correlation
Shell Representation (ASR). They used two layers of MLPs
for prediction and classification. The proposed approach
transformed the financial time-series and extracted wavelet
coefficients by ASR and applied Bayesian method of auto-
matic relevance determination (ARD) to select best features
for the first layer that is composed of multiple MLP predic-
tors. The output of this layer is input to the second layer that
consists of one MLP predictor. The proposed model proved
to be efficient when compared to another MLP model without
wavelet transform. Zhang et al. [44] used wavelet neural
networks along with other forecasting techniques such as,
LSTM, GRU, and MLP to perform prediction of multi-step
ahead hydrologic time series acquired by means of an IoT
network. The study concluded that LSTM and GRU mod-
els can achieve better performance. Reis and Da Silva [45]
applied multiresolution analysis to do feature extraction. The
study aimed at forecasting electrical short-term load. Multi-
ple forecasting models developed to perform forecasting on
different time scales. The multiresolution approach is used
to forecast certain scales of the decomposed time series-and
builds a separate model for each scale and combines the pre-
dicted sub-values to form the final predicted target. Aussem
and Murtagh [46] proposed a simple time-series forecasting
strategy based on multiresolution analysis. They decomposed
time-series data into multiple series based on multiple res-
olution levels. Multiple prediction models were trained for
every resolution scale. The predictions of all subseries were
combined to perform final prediction step. A dynamic RNN
was used to predict subseries at each resolution. The proposed
model was compared to two other forecasting models, namely
the MLP network and a simple autoregressive. The dynamic
RNN was found to outperform both models.

Few researchers proposed combining wavelet transforms
with deep learning techniques to learn financial time-series
forecasting model. Persio and Honchar [47] investigated the
merits of applying wavelet analysis with deep learning tech-
niques in financial time-series forecasting. They conducted
many experiments comparing the forecasting performance
of LSTM and CNN. The results show that the combination
of CNN and MRA outperforms the compared DNNs. Other
types of DNNs such as Stacked Autoencoders (SAEs) were
used by Bao er al. [15] to develop a forecasting model using
LSTM combined with wavelet transform to denoise input
features. The combined model outperformed the other three
separated single models. Yan and Ouyang [14] combined
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wavelet analysis with LSTM network to forecast the daily
closing prices of the Shanghai Composite Index. The applied
methodology is based on using the reconstructed data from
the wavelet analysis. They compared the proposed wavelet
LSTM network with many other models, trained on the same
data, and they found it to be superior.

lll. METHODOLOGY

The proposed methodology is a combination of multires-
olution analysis for data decomposition and deep learning
architectures for data modeling and training. The financial
time-series data is decomposed using multi-scale wavelet
analysis. A set of deep learning networks is trained for each
scale to perform the forecasting per each level. We applied
empirical multiresolution wavelet analysis method and com-
pared the results to stationary wavelet analysis. The training
process includes two stages. In the first stage, the learning and
forecasting of each sub-level of the time-series is done in iso-
lation. In the second stage, forecasts from the previous stage
are combined to predict the final target value. The proposed
methodology was evaluated by conducting experiments for
both short- and long-term forecasting using two benchmark
datasets, namely S&P500 dataset and Mackey-glass time
series.

A. WAVELET DECOMPOSITION

Data preprocessing is an important step in learning forecast-
ing models. It plays a significant role in determining the most
relevant features and models. Multiresolution analysis is a
data preprocessing step used to decompose time-series data
on different scales to model the data according to several
variations of representation. Multiple representations of data
are generated depending on the scaling parameters. Using
multiple data representations enables more information to
be captured and can thus produce better forecasting results.
The proposed methodology uses multiresolution analysis for
data decomposition. However, finding the best configuration
of parameters, that gives the highest possible performance,
relies on conducting several experiments.

Two types of wavelet decomposition are explored. During
this process, the decomposition of the data is accomplished
by defining basis functions called mother wavelet and the
data multi-scale resolutions extracted by the projection of
the given signal onto the basis function. The main advantage
of wavelet decomposition is that it extracts the trend from
the data and separates the spurious short fluctuations [48],
[49]. The wavelet basis function translation and dilation are
parameterized by b and a, respectively [48]. Such a basis
function is given by,

1 t—>b

Vap(t) = —=¥ ey
Ja a

Equation 1 conveys a basis for a continuous wavelet trans-

formation. In order to get a multiresolution representation

for the data, all the input data are decomposed based on

translation and dilation parameters. In contrast, a Discrete

13102

Wavelet Transform (DWT) basis function at time location n
and dyadic level m is given by [49],

Ymn® =229 Q27" 1 —n) )

The wavelets of the DWT generated by the dyadic grid sam-
pled wavelets are orthonormal. Based on the basis function in
Eq. 2, the inner product between the time-series data denoted
by x(¢) and the basis function v, , expressed in Eq. 2 is given
by,

S f Y X OYmalt)dt 3)

The wavelet coefficient, T, », is defined by Eq. 3 and param-
eterized by dilation m and translation n so that it returns
detailed information of the time series. Eq. 4 defines the
scaling function based on level and shift parameters denoted
by m and n, respectively.

Gmn(T) =232 - 1 —n) 4)

where ¢, , has the property ffooo ¢m.n(t)dt = 1. For the
translations, the scaling function is orthogonal to itself but
not to its dilations. The smoothing of the time-series data is
produced by the inner product of the time series with the scal-
ing function. The obtained samples are called approximation
coefficients and are defined by,

Sn = / Y X Obma(t)dl 5)

The following equation is used to obtain a smooth, scaling
function-dependent, continuous approximation of the data,

Xm(t) = Z Sm,n¢m,n(t) (6)

n=—0o0

Knowing the approximation coefficients S, , generated at
level mg and chosen arbitrarily, and the wavelet detailed coef-
ficients T}, , at levels 1, 2, .., mp, the final multiresolution
representation of the data can be obtained as,

[e%e) moy e’}
X0 =Y Swpnbmn®+ Y D Twn¥ma®) (7)

n=—00 m=1n=—00

There are many wavelet families, such as Haar, Daubechies,
Symlets, etc. Daubechies wavelets are used by many
time-series forecasting applications [43], [45], [46]. The
Daubechies wavelets are a family of orthogonal wavelets
whose vanishing moments number is maximal for some given
support. There are scaling and wavelet functions for each
wavelet family of this class. The scaling function generates
an orthogonal multiresolution analysis and is called the father
wavelet. We use Daubechies-20 wavelet to perform the mul-
tiresolution analysis using stationary wavelet transform. The
index number 20 refers to the number of coefficients. Figure 1
illustrates the scaling and wavelet functions [50]. DWT may
suffer from noise. Alternatively, the stationary wavelet trans-
form is an extension of the typical discrete wavelet transform
which is commonly used for exploratory statistical and signal
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FIGURE 1. Scaling and wavelet functions. [50].

analysis [49]. We noticed that this type of wavelet transforma-
tion is commonly used in time-series analysis and decomposi-
tion due to its shift-invariant property [43], [46]. The number
of resolution levels used for data decomposition in many
previous studies is up to four levels [43], [45], [46]. The block
diagram of the undecimated wavelet decomposition represen-
tation is shown in Figure 2, where D; and A; represent the
detail coefficients and approximation at level j, respectively.
The high frequency components, Dj, are generated from the
high-pass filter H;, and the low frequency components, A;, are
generated from the low-pass filter L;. Figure 3 shows the data
before applying wavelet decomposition and Figure 4 shows
the decomposition of the data into four detailed coefficients
and approximation coefficients at level four which are used
for multiresolution analysis. It can be noticed that the higher
the level of decomposition, the smoother the approximation
coefficients, and the lower the level of detailed coefficients,
the higher the captured frequency.

FIGURE 2. Decomposition block diagram of stationary wavelet transform.

Applying different types of wavelet transforms and
multiresolution analysis methods aims at investigating,
exploring, and deducing better forecasting results based
on several potential developed forecasting models. Thus,
we apply empirical wavelet transform (EWT) to perform
multiresolution analysis of data to build and compare mul-
tiple forecasting models. EWT is an adaptive wavelet trans-
form developed by Gilles [51]. The main advantage of this
transform is that the wavelet and scaling functions adap-
tively analyze the data according to the information contained
in the time-series without any prior information about the
data. It facilitates time-series processing and forecasting by
generating higher time-frequency resolution. EWT approach
performs data analysis to define a set of adaptive filter banks
extracted from data based on its prominent frequency com-
ponents. It identifies a set of maximum Fourier spectrum
(X(w)) of the signal with a set of corresponding frequency
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indices (w;) by defining frequency and magnitude thresh-
olds. The frequency axis, which is in the range [0 — n],
is divided into N segments defined as A; = [wi—1, w;]
using boundary values defined by a selected number ()
of maxima [52]. The boundaries w; are obtained by setting
wo = 0 and wy = m. The Fourier segments will be
[0, w1], [w1, w2], ... [wn—1, 7]. The filter bank represented
by N —1 band pass filters and one low pass filter is constructed
depending on boundaries. The supports (z,,) for the filters can
be calculated using the following equation [52],

T, = 2y Wy (3

where y parameter is defined to ensure that no two consecu-
tive transition bands are overlapping. The value of y can be
computed using the following equation,

y < min [u] )
i w1 +o;

The wavelet functions are defined using the 8 function which

is calculated as follows,

1
Bly,wi) =B (2—(|w| - - J/)wi)> (10)
Y Wi
where B(x) is defined by,
B(x) = x*(35 — 84x + 70x> — 20x%) (11)

Many functions can be defined by satisfying the following
conditions,
0, ifx <0
Bx)={ 1, ifx >0 (12)
BX)+ B —x)=1 ifx €[0,1]

The empirical scaling function ¢ (w) and the wavelets func-
tions y;(w) are given by,

1, if |o|(1 — y)wr
cos [ 2 (v 0], if (1 =y < o]
o1(@) = 2 1)
=+ y)w
0, otherwise
1, if (1 +y)o; < |l
< (1= y)wis
T .
cos [E,B(y, a)i+1)] ;i (1= y)wipr = o
Vi(w) = = (I +y)wit (14)
. '7T 1
sin [Eﬂ(y, a)i)] L = ) < o
= (I +ywi
0, otherwise

Based on the defined set of band filters, the EWT can be
defined in a similar way as the normal wavelet transform. The
approximation coefficients are obtained by the inner product
of applied signal X (w) with the empirical scaling function as
given by [52],

Wi(l, 1) = (x, 1) = IFFT (X(®) * ¢1(®)) 15)
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FIGURE 4. Stationary wavelet decomposition for part of the data.

The inner product of the empirical wavelets with applied
signal X (w) produces the detailed coefficients as given by,
Wi(i, 1) = (x, ¥i) = IFFT (X () * ¥i(w)) (16)
The decomposition of the input signal to Intrinsic Mode
Functions (IMF) is performed using equations 15 and 16. This
decomposition approach is characterized by using basis func-
tions generated according to the information contained in the
signal [52]. Figure 3 shows the data before applying wavelet
decomposition and Figure 5 shows part of the decomposition
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of S&P500 data into 18 resolution levels using empiri-
cal wavelet transform which are used for multiresolution
analysis.

B. DEEP NETWORK ARCHITECTURE

Deep learning networks are built using several stacked hidden
layers to train on huge amount of data. Each intermediate
layer extracts certain kind of patterns from the data and redi-
rects the learned patterns to the following layers to perform
other types of pattern extraction. A hierarchy of patterns is
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FIGURE 5. Adaptive wavelet decomposition for part of the data.

extracted from the training data and employed to perform
forecasting. The decomposition of data into sub-patterns
simplifies learning more complicated hierarchies. The input
features are fed into the deep neural network to learn network
weights. Selecting the best network design topology depends
on the performance results of the conducted experiments.
Many deep learning solutions have been developed to pro-
cess and model patterns from data sequences. Deep RNN is
a commonly used deep learning technique to process sequen-
tial data. It is widely employed to map input sequences to
target values or output sequences. It has been used in image
captioning, sentiment classification, and language transla-
tion. It has also been used to develop various forecasting
models to different kinds of time-series data, such as power
consumption, traffic analysis, and wind speed as well as
financial time series. It is characterized by its ability to
preserve network preceding states and retain information in
its hidden network cells while cascading forward through
data sequences. It uses a training algorithm mainly based on
backpropagation through time (BPTT). Training operations
align with the order and sequence of time series by link-
ing time steps sequentially. Capturing long-term dependen-
cies is infeasible using RNN due to the vanishing gradient
problem. This problem is solved by enhancing the hidden
states of the RNN to remember longer sequences of data.
The enhanced version of RNN is called LSTM, which is
devised by Hochreiter and Schmidhuber. It adds input, forget,
and output gates that control information to or out of the
memory cells using pointwise multiplication and sigmoid
neural net layer. The gated cells act on the current input data
by allowing or blocking its information to pass based on
its importance to the target value. Unlike RNN, LSTM uses
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truncated BPTT (TBPTT) that allows faster and more stable
results. The LSTM transition equations are as follows:

it = o(Wix; + Uihi—1 + Vicr—1) (17
Ji = oWexy + Urhy—1 + Ve —1) (18)
0r = o(Wox; + Uphy—1 + Vocy) (19)
¢ = tanh(Wex; + Uchy—1) (20)
a=fOa1+i0a 1)
h; = o; © tanh(c;) (22)

where i; denotes the input gate and o; denotes the output gate,
f» ct, and h; denote the forget gate, memory cell, and hidden
state, respectively [53].

C. TRAINING THE NETWORK

The methodology followed to construct the network archi-
tecture is illustrated in Figure 6. The proposed architecture
consists of three stages. The first stage performs data analysis
and decomposes the data into many sub-series. The sec-
ond stage learns multiple intermediate networks based on
the number of resolution levels generated from the previous
stage. Each intermediate network is constructed using two
layers of LSTM and one dense layer to learn each sub-series.
To choose the best network configuration, we varied the
number of memory units of the first LSTM layer between 8§,
16, and 32. The number of memory units in the second layer
of the LSTM was half of the first layer. The forecast of each
resolution level is produced by a dense layer which uses a
linear activation function. The third stage of the proposed
architecture receives forecasts produced by the second stage
as input features. It is constructed using two layers of LSTM
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——
Decomposition LSTM

FIGURE 6. Outline of the proposed methodology.
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FIGURE 7. Sliding window and features reshaping to perform forecasting.

and one dense layer to produce the final output using a
linear activation function. The LSTM output layer uses tanh
transfer function, while the hard sigmoid transfer function is
used for the recurrent activation. Input features are formed
according to time lag methodology adopted by this work.
We use a sliding window of size k constructed from #; to #,
time steps to forecast the #,41 time step in the future. Each
data sample formed by sliding window consists of k time
steps denoted as (x;—g, Xy—k+1, - - - , X1—2, X¢—1) to forecast x;
in the future. We utilize k time steps of each resolution level
to perform the forecast as illustrated in Figure 7. The third
stage of the proposed architecture combines the forecasts of
each resolution level to produce the final forecast value. The
values of the time steps used are five and ten working days,
i.e. working days of one and two weeks, respectively.

IV. EXPERIMENTS

To evaluate the proposed approach, we conducted several
experiments using two time series datasets (Mackey-Glass
and S&P500 datasets). We implemented the proposed fore-
casting approach in Python using Keras open-source pack-
age for deep learning with TensorFlow backend. The sta-
tionary wavelet analysis was performed using PyWavelets
open-source library [50]. The empirical adaptive wavelet
analysis was accomplished using the MATLAB toolbox for
empirical wavelet transforms [S1]. Data was normalized
using the mix-max normalization (Eq. 23) and framed into
five and ten days sliding windows with overlapping.

X—min;

norm(x) = .(nmax; — nmin;) + nmin; (23)

max; — min;
where min; and max; denote the original interval, nmin; and
nmax; represent the new interval, x represents the value,
norm(x) denotes the normalized value. The applications of
EWT converts the time series into many intrinsic mode func-
tions (IMFs) and all returned functions were used in the
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construction of the forecasting model. The evaluation process
used four performance measures to assess how well the fore-
casts represent the actual data. These measures are the Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE), and coefficient of
determination denoted as R%. The lower the error measures
(MAE, RMSE and MAPE) are and the closer the value of
R? to one is, the better the forecasting performance is. These
measures are defined mathematically as follows:

1 n—1 X
MAE = =" |y; — 34| (24)
n =0
1 n—1
RMSE = | =" (y, — 1) (25)
n
=0
L& by — 3l
MAPE = -y 2.1 (26)
n ; Vr +€
n—1 a2
R—1_ Z,:PI Ot y_z) 27
t=0 (yl - )’)2

where y, and J; represent the actual and predicted values at
step t for 0 < t < n, respectively, y = Z?;(} vt /n, and
€ is a infinitesimal value to avoid dividing by zero. Several
experiments were carried out using stationary and empirical
wavelet transforms for the data analysis and decomposition
phase. The proposed network architecture was tuned using
different numbers of cells (8, 16, and 32) for both intermedi-
ate and final stage deep networks. Each resolution level data
was reshaped into supervised learning and fed into the inter-
mediate deep network. The training process was performed
using training data and the best network weights were deter-
mined based on the results generated from the validation data.
The number of epochs used to train all developed networks
was 800.

First, the proposed approach was evaluated and compared
to other methods using Mackey-Glass (MG) chaotic time
series [54], which was first introduced to model the pro-
duction of white blood cells. It is defined by the following
time-delay ordinary differential equation,

dx(r) x(t —1)
d 14 x19¢ —1)

— yx(t) (28)
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TABLE 1. Results of short-term forecasting using deep learning with empirical wavelet transform (EWT) or stationary wavelet transform (SWT) for

Mackey-Glass time series normalized and original test data.

Network SWT EWT
_ MAE RMSE R? MAE RMSE R2

Window | g stage | 2nd stage Norm. Origin. Norm. Origin. Value Norm Origin | Imp(%) Norm Origin | Imp(%) Value | Imp(%)

8 | 0.11434 | 0.10015 | 0.15808 | 0.13846 | 0.67061 | 0.00255 | 0.00223 | 97.77 | 0.00326 | 0.00286 | 97.94 | 0.99987 | 49.10

8 16 | 0.09990 | 0.08750 | 0.15038 | 0.13171 | 0.74139 | 000252 | 0.00221 | 97.48 | 0.00322 | 0.00282 | 97.86 | 0.99987 | 34.86

32 | 0.06293 | 0.05512 | 0.10755 | 0.09421 | 0.87956 | 0.00252 | 0.00221 | 96.00 | 0.00322 | 0.00282 | 97.01 | 099987 | 13.68

8 [ 011190 | 0.09801 | 0.15973 | 0.13990 | 0.69960 | 0.00256 | 0.00224 | 97.71 | 0.00331 | 0.00290 | 97.93 | 0.99986 | 42.92

16 16 | 008177 | 0.07162 | 0.12885 | 0.11286 | 0.81233 | 0.00255 | 0.00223 | 96.89 | 0.00327 | 0.00286 | 97.46 | 0.99987 | 23.09

5 32 | 007829 | 0.06857 | 0.12525 | 0.10971 | 0.82800 | 0.00252 | 0.00221 | 9678 | 0.00322 | 0.00282 | 97.43 | 0.99987 | 20.76

8 | 0.14229 | 0.12463 | 0.19145 | 0.16769 | 0.50372 | 0.00255 | 0.00223 | 9821 | 0.00327 | 0.00287 | 9829 | 0.99987 | 98.50

3 16 | 0.08492 | 0.07438 | 0.13353 | 0.11695 | 0.79384 | 0.00253 | 0.00222 | 97.02 | 0.00324 | 0.00284 | 97.57 | 0.99987 | 2595

32 | 0.06203 | 0.05433 | 0.12037 | 0.10543 | 0.89556 | 0.00253 | 0.00222 | 9592 | 0.00323 | 0.00283 | 97.32 | 099987 | 11.65

8 [ 0.11973 | 0.10487 | 0.16464 | 0.14421 | 0.63091 | 0.00287 | 0.00252 | 97.60 | 0.00378 | 0.00331 | 97.70 | 0.99984 | 5848

8 16 | 0.07883 | 0.06905 | 0.12676 | 0.11103 | 0.82431 | 0.00284 | 0.00249 | 96.40 | 0.00366 | 0.00320 | 97.12 | 0.99985 | 2130

32 | 007797 | 0.06830 | 0.12619 | 0.11053 | 0.82679 | 0.00285 | 0.00250 | 9634 | 0.00364 | 0.00319 | 97.11 | 099985 | 20.93

8 | 011374 | 0.09963 | 0.16935 | 0.14833 | 0.68524 | 0.00258 | 0.00226 | 97.73 | 0.00340 | 0.00298 | 97.99 | 0.99986 | 4591

16 16 | 008951 | 0.07840 | 0.13492 | 0.11817 | 0.78426 | 0.00257 | 0.00225 | 97.13 | 0.00333 | 0.00292 | 9753 | 0.99986 | 27.49

10 32 | 0.06875 | 0.06022 | 0.11509 | 0.10081 | 0.86713 | 0.00253 | 0.00221 | 9632 | 0.00323 | 0.00283 | 9719 | 099987 | 1531

8 [ 012701 | 0.11125 | 0.17897 | 0.15675 | 0.61429 | 0.00263 | 0.00230 | 97.93 | 0.00345 | 0.00302 | 98.07 | 0.99986 | 62.77

3 16 | 0.08898 | 0.07793 | 0.13534 | 0.11854 | 0.79356 | 0.00256 | 0.00225 | 97.12 | 0.00330 | 0.00289 | 97.56 | 0.99987 | 26.00

32 | 006592 | 0.05774 | 0.11319 | 0.09914 | 0.86528 | 0.00259 | 0.00227 | 9607 | 0.00333 | 0.00291 | 97.06 | 099987 | 1555
e Yahoo finance. This dataset is one of the important bench-
| | mark datasets and contains the stock prices of 500 companies

‘ \ 1 . .

AL h m\ ‘H ‘ ‘“ “ ‘\ ‘ ‘ ‘ “ \‘ \ ' ‘ hl in the US market. Figure 3 shows the curve of the data used
‘ ‘ ‘ H\ ‘,h‘ \ ,‘ ‘ M ‘M !‘H\ i \f to evaluate the model forecasting of future closing prices.

ol \ H . .
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\ H “ \\ | \ H ‘\‘ “ ‘ \M \ H‘ | | ‘ \ ‘h H ‘ ‘ u “ “ | ‘ \ﬁ analysis phase were reshaped using sliding windows of size
d ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 five and ten working days, respectively. The data was split
1 u , \ || ‘, into two parts: the first 80% for training and the remaining

L
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FIGURE 8. Plot of data generated by the Mackey-Glass time series.

where 7 is a delay parameter which must be greater
than 16.8 for generating a chaotic time series. The parameters
selected to generate this time series for our experiment were
B =02,y =0.1,t = 17, and x(0) = 1.2. The adopted
time series was composed of the last 2000 of 2123 samples
generated from Eq. 28. Figure 8 shows a plot of this MG
time series, where the first 75% was used for training and
validation, and the remaining 25% for testing. The short-term
forecasting results of the proposed approach are as shown
in Table 1 for both EWT and SWT analysis methods. The
results are grouped based on different number of neurons for
the intermediate and final layers and on different window
sizes (5 or 10 time steps). They are also grouped based on
normalized (Norm) and original (Origin) data and on the
multiresolution analysis method EWT or SWT. Figure 9 illus-
trates the difference between actual data and forecasts of the
two best short-term forecasting models produced using EWT
and SWT based approaches.

The following experimental work was then conducted for
a real dataset. The S&P500 dataset was used to evaluate the
proposed approach. We downloaded and used the historical
data for the period from 01/01/2010 to 20/02/2018 from
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20% for testing. A number of experiments were conducted
on this dataset for short-term and long-term forecasting. The
short-term forecasting aims at predicting the closing price
of the next day whereas the long-term forecasting aims at
predicting the closing price 30 days ahead.

The short-term forecasting results generated from the
proposed architecture for both EWT and SWT are shown
in Table 2. Considering all trained network architectures
using S&P500 dataset for short-term forecasting, the best
performance (based on minimum RMSE) was achieved using
EWT analysis method. As shown in Table 2, the best achieved
performance reaches RMSE of 10.089 (above 97% improve-
ment), MAE of 7.319, MAPE of 0.305, and R? of 1.0. These
results were produced using ten time steps input features to
LSTM network architecture designed of 32 neurons in the
intermediate network and 8 in the final network. For the
SWT analysis method, the best performance for short-term
forecasting was achieved using ten time steps input features
to a network architecture composed of 16 neurons in both
intermediate and final LSTM networks. We can see in Table 2
that the best SWT results are 342.018 for RMSE, 174.695 for
MAE, 7.058 for MAPE and 0.981 for R2. Figure 10 illustrates
the difference between the actual data and forecasts of the two
best short-term forecasting models produced using EWT and
SWT analysis approaches.

For the long-term forecasting using S&P500 dataset,
experiments were conducted to predict the closing price
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FIGURE 9. Mackey-Glass data curves of actual prices versus forecasts using best selected models of SWT and EWT analysis

approaches.

TABLE 2. Results of short-term forecasting using deep learning with empirical wavelet transform (EWT) or stationary wavelet transform (SWT) for

S&P500 normalized and original test data.

Window Model RMSE MAE MAPE R?
Ist stage | 2nd stage SWT EWT | Imp(%) SWT EWT | Imp(%) SWT | EWT | Imp(%) SWT | EWT | Imp(%)
8 | 456.703 | 13.334 97.080 | 267.291 9.609 96.405 | 10.791 | 0.394 96.350 | 0.981 | 1.000 1.928
8 16 | 426.633 | 17.523 95.893 | 236.141 12.517 94.699 9.527 | 0.506 94.688 | 0.976 | 1.000 2.456
32 | 435.366 | 18.537 95.742 | 250916 | 12.813 94.893 | 10.117 | 0.515 94.907 | 0.968 | 1.000 3.301
8 | 456.061 | 11.205 97.543 | 276.999 8.288 97.008 | 11.208 | 0.348 96.891 | 0.979 | 1.000 2.127
5 16 16 | 432.719 | 12.023 97.222 | 256.497 8.860 96.546 | 10.345 | 0.370 96.423 | 0.973 | 1.000 2.759
32 | 418.183 | 14.889 96.440 | 245.544 | 10.553 95.702 9.924 | 0433 95.638 | 0.962 | 1.000 3.944
8 | 434.323 | 13.501 96.892 | 263.248 | 10.505 96.010 | 10.684 | 0.442 95.867 | 0.971 | 0.999 2.985
32 16 | 422.749 | 18.055 95.729 | 232.361 13.676 94.114 9.365 | 0.562 93.995 | 0.976 | 0.999 2.439
32 | 440.815 | 21.172 95.197 | 267.856 | 15.667 94.151 | 10.860 | 0.638 94.128 | 0.969 | 1.000 3.127
8 | 373.177 | 13.892 96.277 | 203.866 9.954 95.117 8.249 | 0.406 95.079 | 0.981 1.000 1.863
8 16 | 348.361 15.565 95.532 | 174.695 | 11.039 93.681 7.058 | 0.447 93.663 | 0.978 | 1.000 2.183
32 | 349418 | 18.784 94.624 | 181.577 | 12.964 92.860 7.332 | 0.520 92.910 | 0.975 | 1.000 2.563
8 | 358.026 | 11.427 96.808 | 177.828 8.323 95.320 7.202 | 0.343 95.237 | 0.979 | 1.000 2.150
10 16 16 | 359.632 | 14.652 95.926 | 203.648 | 10.572 94.808 8.246 | 0.429 94.792 | 0.977 | 1.000 2.318
32 | 348.006 | 22.200 93.621 190.864 | 15.611 91.821 7.717 | 0.623 91.923 | 0.975 | 1.000 2.498
8 | 372.524 | 10.087 97.292 | 208.612 7.319 96.492 8.433 | 0.305 96.384 | 0.981 | 1.000 1.957
32 16 | 342.996 | 10.297 96.998 | 181.917 7.453 95.903 7.369 | 0.310 95.795 | 0.979 | 1.000 2.152
32 | 342.018 | 16.598 95.147 | 185.445 | 11.212 93.954 7.512 | 0.451 93.999 | 0.975 | 1.000 2.526

30-days ahead. We reserved the last 30% of the whole data
for testing and the remaining 70% was used for training
and validation. The results of both stationary and empirical
wavelet transforms are shown in Table 3. These results show
that the highest performance of the EWT analysis method
is achieved by the model using 10 time steps window size
as input features and consisting of 32 neurons in both inter-
mediate and final LSTM networks. The best achieved per-
formance (minimum RMSE) has RMSE = 169.951 (approx.
73% improvement), MAE = 134.16, MAPE = 5.481, and
R? = 0.977. On the other hand, the best results of the SWT
analysis method were achieved using 10 time steps features
as input to a network architecture consisting of 16 neurons in
both intermediate and final LSTM networks. This produced
RMSE = 550.97, MAE = 356.71, and R*> = 0.976.

After comparing the results of the two approaches, we can
notice that significant forecasting improvement was achieved
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when using the empirical wavelet transform for data decom-
position. The results produced from the evaluation experi-
ments conducted using Mackey-Glass and S&P500 datasets
demonstrate that using empirical wavelet analysis has sig-
nificantly enhanced the performance compared to station-
ary wavelet analysis. EWT segments the Fourier spectrum
of the data and constructs adaptive filter bank to perform
data decomposition and separate each mode. Consequently,
it helps finding sparse representations of the data based on
information included in the dataset. On the contrary, SWT
uses basis functions designed independently of the data rep-
resentation which may result in a weak multiresolution rep-
resentation of the data. The wavelet coefficients include very
large redundancy which increases the computational cost.
It also lacks directionality and has persistent oscillation. The
optimal number of resolution levels of SWT is not easy to
determine. On the other hand, EWT has the ability to design
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TABLE 3. Results of long-term forecasting using deep learning with empirical wavelet transform (EWT) or stationary wavelet transform (SWT) for

S&P500 normalized and original test data.

Window Model RMSE MAE MAPE R?
Ist stage | 2nd stage SWT EWT | Imp(%) SWT EWT | Imp(%) SWT | EWT | Imp(%) | SWT | EWT | Imp(%)
8 | 716.905 | 208.624 70.899 | 471.053 | 160.762 65.872 | 19.111 | 6.512 65.926 | 0.970 | 0.974 0.385
8 16 | 709.073 | 208.873 70.543 | 457.396 | 161.545 64.681 | 18.493 | 6.546 64.602 | 0.975 | 0.974 -0.045
32 | 688.927 | 206.094 70.085 | 449.097 | 159.438 64.498 | 18.185 | 6.464 64.455 | 0.973 | 0.974 0.143
8 | 686.966 | 189.364 72.435 | 457.108 | 148.137 67.593 | 18.574 | 6.028 67.549 | 0.974 | 0.975 0.090
5 16 16 | 686.996 | 183.814 73.244 | 443.575 | 144.084 67.518 | 17.943 | 5.870 67.284 | 0.961 | 0.974 1.378
32 | 695.538 | 181.342 73.928 | 465.966 | 142.232 69.476 | 18.953 | 5.798 69.408 | 0.964 | 0.974 1.098
8 | 597.034 | 192.102 67.824 | 380.526 | 149.331 60.757 | 15.379 | 6.063 60.574 | 0.977 | 0.976 -0.085
32 16 | 594.064 | 185.746 68.733 | 373.305 | 144.776 61.218 | 15.069 | 5.887 60.934 | 0.977 | 0.976 -0.155
32 | 600.134 | 179.498 70.090 | 379.521 | 139.905 63.136 | 15.333 | 5.696 62.851 | 0.979 | 0.975 -0.318
8 | 710.582 | 186.033 73.820 | 481.636 | 146.519 69.579 | 19.624 | 5971 69.574 | 0.970 | 0.976 0.548
8 16 | 698.631 | 176.836 74.688 | 466.650 | 139.965 70.006 | 18.963 | 5.718 69.848 | 0.976 | 0.975 -0.096
32 | 667.747 | 171.712 74.285 | 442.866 | 136.597 69.156 | 17.983 | 5.590 68.915 | 0.978 | 0.975 -0.275
8 | 569.106 | 176.192 69.041 | 364.760 | 138.707 61.973 | 14.765 | 5.660 61.667 | 0.975 | 0.976 0.180
10 16 16 | 550.968 | 175.009 68.236 | 356.706 | 138.553 61.158 | 14.459 | 5.659 60.863 | 0.976 | 0.976 -0.005
32 | 469.655 | 170.531 63.690 | 316.080 | 135.633 57.089 | 12.888 | 5.548 56.953 | 0.944 | 0.976 3.477
8 | 642.696 | 182.853 71.549 | 419.548 | 143.881 65.706 | 16.992 | 5.860 65.514 | 0.969 | 0.977 0.921
32 16 | 635.656 | 171.887 72.959 | 411.050 | 135.893 66.940 | 16.631 | 5.550 66.628 | 0.977 | 0.977 0.076
32 | 632.893 | 169.951 73.147 | 417916 | 134.160 67.898 | 16.953 | 5.481 67.670 | 0.962 | 0.977 1.508

basis wavelet functions constructed based on the information
in the data. The number of resolution levels depends on the
Fourier spectrum.

V. CONCLUSION

This article proposed a novel approach for financial
time-series forecasting using multiresolution analysis and
deep recurrent learning techniques. We implemented, eval-
uated and compared two multiresolution analysis methods
using stationary as well as empirical wavelet transforms.
Applying deep learning for financial time-series forecasting
produced higher accuracy for both short-term and long-term
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forecasting. In addition, combining multiresolution analy-
sis and data decomposition further enhances the forecasting
accuracy. The proposed learning approach uses two stages
of stacked LSTM. The first stage performs learning for each
resolution level whereas the second stage produces the final
forecasts based on the components of each resolution level.
The proposed approach was evaluated using two different
benchmark datasets. It was found that using the empirical
wavelet transform for data multiresolution decomposition
outperformed stationary wavelet transform. Being adaptive
methodology, EWT helps modeling techniques to extract
more representative patterns from the data to construct more
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effective forecasting models. Though the proposed methodol-
ogy has been evaluated on stock market index data, it did not
consider the behavior of individual stocks. As future work,
it is recommended to combine other trading data sources and
technical analysis of stock markets.
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