
SPECIAL SECTION ON TOWARDS SMART CITIES WITH IOT BASED ON CROWDSENSING

Received December 30, 2020, accepted January 10, 2021, date of publication January 14, 2021,
date of current version January 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051719

Spectrum Sensing With Non-Gaussian Noise Over
Multi-Path Fading Channels Towards Smart
Cities With IoT
JUNFANG LI 1, QIAN CHEN2, ZHUOQUN LONG1, WEI WANG1,
HUIJIE ZHU 3, AND LIJUN WANG3
1School of Electronic Engineering, Xi’an Aeronautical University, Xi’an 710077, China
2Aerospace Stellar Space Technology Application Company Ltd., Xi’an 710077, China
3Science and Technology on Communication Information Security Control Laboratory, 36th Research Institute of China Electronics Technology Group
Corporation, Jiaxing 314033, China

Corresponding author: Junfang Li (li_jf@xaau.edu.cn)

This work was supported in part by the Aeronautical Science Foundation under Grant 2019ZH0T7001, and in part by the Scientific
Research Foundation of Xi’an Aeronautical University under Grant 2019KY0207.

ABSTRACT As the limited communication spectrum can not meet the demand of the exponential growth of
intelligent connected devices in the internet of things(IoT) and typical smart city applications, in this paper,
we propose a tractable spectrum sensing method based on Rao detection over non-Gaussian noise, such as
generalized Gaussian noise(GGN), Gaussian mixture noise(GMN) and symmetric alpha-stable distribution
(SαS) noise, multi-path fading channels environment to alleviate the issue of spectrum scarcity. In this
method, there are unknown parameters in the multi-path fading channels. When the probability density
function (P.D.F.) of non-Gaussian noise has a closed-form expression, the spectrum sensing method based
on Rao detection is used. Otherwise the P.D.F. for SαS noise is estimated firstly by using non-parametric
kernel estimation method, which addresses the issue that SαS noise has no closed-form P.D.F. expression,
and then the performance of spectrum sensing is derived based on the theory of Rao detection in multi-path
fading channels over typical smart city applications. Simulation results show that the accuracy of estimated
P.D.F. for SαS noise and the performance of spectrum sensing under different α values over indoor, outdoor,
and vehicle fading channels environment.

INDEX TERMS Spectrum sensing, non-Gaussian noise, multi-path fading channels, Rao detection, smart
cities.

I. INTRODUCTION
Wireless communications play an increasingly prominent
role in the internet of things(IoT) and typical smart city
applications, since they are able to provide ubiquitous and
transparent service [1]–[4]. The IoT will be able to con-
nect countless devices, which can range from toothbrushes
and lights to people and animals, from cars and homes to
smart offices. It will therefore have a major impact on many
aspects of smart cities, such as employment, healthcare and
transportation. Both the IoT technology and the development
of smart cities need to realize the perception, collection
and interaction of large amounts of data through wireless
communication.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kun Wang .

With the exponential growth of the number of smart con-
nected devices, and more spectrum resources will be needed.
However, spectrum resources are limited and do not increase
with the increase of connected devices. The limited availabil-
ity of the communication spectrum therefore is one of the
challenges which hinder the massive deployment of smart
city based IoT systems [5], [6]. With the development of
the IoT communication paradigm, the scarcity of spectrum
resources will becomemore serious [7]. At the same time, due
to various reasons, a large range of frequency band remain
under-utilized. Cognitive radio network (CRN) techniques
are expected to leverage the under-utilized frequency band
to resolve the issue of spectrum scarcity for the billions of
connected devices. The CRN allows primary users (PUs) and
secondary users (SUs) to share spectrum resources. The PUs
have priority while the SUs can temporarily occupy spectrum
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resources. To ensure the PU′s priority and the efficiency of
quality of service (QoS), the interference between the PUs
and SUs should be minimized.

Spectrum sensing is the fundamental in cognitive radio
networks for sharing spectrum resource to alleviate the
problems of spectrum scarcity [8]–[10]. Spectrum sensing
results directly affect whether harmful interference will occur
between PUs and PUs. When the spectrum sensing result is
correct, the SUs will not cause harmful interference to the
PUs; otherwise, the communication quality of the PUs will
be seriously affected. The performance of spectrum sensing
is closely related to the complex electromagnetic environ-
ment [11]–[15]. Non-Gaussian noise and multi-path fading
channels are two important factors that affect the perfor-
mance of spectrum sensing. Specially, non-Gaussian noise
is composed of multi-user interference, lightning noise, sea
cluttering noise, or low-frequency atmospheric noise, which
generally presents the characteristics of ‘‘spike impulse’’.
In practice, the problem is more challenging as we need
to sense the PUs signals affected by non-Gaussian noise
and multi-path fading channels [16]. As described in [17],
[18], when the presence of non-Gaussian noise occurs, due
to the heavy tailed characteristic of its probability den-
sity function (P.D.F.) and/or amplitude fading, the perfor-
mance of the optimized spectrum spectrum may decrease
dramatically.

For the non-Gaussian noise, the symmetric alpha-stable
distribution (SαS) noise model is widely used for its good
description of non-Gaussian noise [19]–[22], and it canmatch
Gaussian or non-Gaussian noise by choosing different char-
acteristic exponents α (0 < α ≤ 2). Due to no closed-form
expression for P.D.F. of SαS except for three special cases,
i.e., Gaussian, Cauchy and Pearson distribution, many spec-
trum sensing methods cannot be developed in case of SαS
noise. Some existing works have solved spectrum sensing
problems in the presence of SαS noise. For example, X.M.
Zhu et al. used high order cumulant based on fractional lower
order moments (FLOM) with orders pm ∈ (0, αm ≤ 2)
for spectrum sensing in [23], where αm denotes the charac-
teristic exponent. S. Ma used eigenvalue matrix to achieve
spectrum sensing with known PU signal cyclic frequency
in [24]. H.G. Kang et al. realized spectrum sensing based
on Cauchy detector, and the sensing performance is bet-
ter than that of linear detector when the prior knowledge
of noise dispersion parameter, γ , is known in [25]. How-
ever, in practice these prior information may not be readily
available.

Fading channel is also an important factor affecting the
sensing performance [26], [27]. Spectrum sensing perfor-
mance has been extensively studied in different traditional
fading channel environments, such as Rayleigh [28], Rician
and Nakagami-m [29]. However, these research are based on
known P.D.F. of noise and fading channel parameters, such
as κ , µ and m, and so on. When the P.D.F. of the noise is
unknown, the spectrum sensing performance based on the

above method will not be directly obtained in such fading
channels.

To solve the spectrum sensing problem with unknown
parameters of the noise and fading channel, [30] studied
the spectrum sensing performance based on generalized
log-likelihood ratio test (GLRT) where the unknown param-
eters were replaced by the estimated values, such as the noise
variance and the gain of fading channels, and so on. How-
ever, GLRT needs to estimate the unknown parameters under
H0 and H1. The classical Rao detection is an approximate
form of GLRT, where the maximum likelihood estimation
of unknown parameters in case of H0 is only needed, which
reduces the computational complexity.

In this paper, we develop a novel spectrum sensing method
based on the theory of Rao detection over non-non-Gaussian
noise multi-path fading channels environment. Due to the
adaptive kernel method is better than the classical fixed ker-
nel method in revealing the data features at the tails of the
distribution, the adaptive kernel function estimation method
is used to approximate the P.D.F. of the SαS noise. More-
over, the Rao detection theory is used to realize spectrum
sensing in order to reduce the computational complexity of
the proposed method. Based on big data statistics, the deci-
sion statistics and the progressive spectrum sensing perfor-
mance are obtained in multi-path fading channels. To verify
the effectiveness of the proposed method, we compare the
spectrum sensing performance under three multi-path fading
channels environments, such as indoor, outdoor and vehicle.
Simulation results demonstrate that the applicability of the
proposed method.

The rest of this paper is organized as follows. The system
model and signalmodel are presented in Section II. The P.D.F.
estimation of SαS noise based on non-parametric window
estimation method and Rao detection with Non-Gaussian
Noise is expressed in Section III. The progressive spec-
trum sensing performance over multi-path fading channls
is derived in Section IV. Section V shows the numerical
examples to verify the derived result and the estimation per-
formance. Finally in Section VI we conclude the main results
of this paper.

II. SYSTEM AND SIGNAL MODEL
A. SYSTEM MODEL
Fig. 1 is the system model of CRN and shows a spec-
trum sensing scenario with the coexistence of PUs and SUs,
which share spectrum resources over SαS noise multi-path
fading channels without harmful interference. The primary
network consists of a PU-Tx communicating with a PU-
Rxs, whereas the secondary network consists of a SU-Tx
serving a SU-Rxs. The wireless transmission channel con-
sists of L fading channels, which are caused by reflec-
tion, diffraction, scattering and multipath propagation of
electromagnetic waves. The red dotted line indicates that
harmful wireless interference may be generated between
PUs and SUs.
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FIGURE 1. System model of cognitive radio network.

B. SIGNAL MODEL
In the CR, define x(n), n = 1, · · · ,N , as the data sample
received by the SU. We assume that the number of fading
channels is L, the amplitude fading of the l-th fading channel
is al , and the phase delay of the l-th fading channel at the n-
th sampling time is τnl . s(n) is the deterministic signal sample
transmitted by the PU and s(n− τnl) is the PU signal sample
transmitted through the multi-path fading channels. w(n) is
the additive SαS noise sample.We also assume that the signal
components and noise are independent of each other. The
statistical hypotheses of the PU′s presence or absence can be
formulated as

H0 : x (n) = w (n)

H1 : x (n) =
L∑
l=1

als (n− τnl)+ w (n) , n = 1, · · · ,N ,

(1)

where H0 is the event that PU does not exist, and H1 denotes
the event of the existence of PU.

For the convenience of calculation, we express (1) in the
form of matrix. Therefore, (1) can be expressed as a binary
hypothesis test problem based on linear model, that is

H0 : x = w

H1 : x = Sa+ w, (2)

where x = [x (1) , · · · , x (N )]T is the received signal vector,
S is a N × L (N > L) dimensional observation matrix and
its rank is L, [S]nl = s(n − τnl). a = [a1, · · · , aL]T is an
unknown parameter vector. w = [w(1), · · · ,w(N )]T is the
noise vector and the P.D.F. of its elements is p(w).
Since the closed-formed P.D.F. of SαS noise is difficult

to obtain, the characteristic function is used to describe its
statistics as follows [19]

φ (z) = exp
{
jµz− γ |z|α

[
1+ jβ sign (z)� (z, α)

]}
, (3)

where α (0 < α ≤ 2) is characteristic exponent, γ denotes
dispersion parameter, β (−1 ≤ β ≤ 1) is symmetrical

parameter, sign(z) represents a sign function [19], and�(z, α)
is

�(z, α) =

{
tan (πα/2 ) , α 6= 1,

(2/π ) log |z| , α = 1.
(4)

Note that, when α = 2 and β = 0, the SαS distri-
bution reduces to the Gaussian distribution with mean µ
and variance 2γ . Especially, the SαS distribution is Cauchy
distribution when α = 1 and β = 0, while it is Pearson
distribution when α = 0.5 and β = −1.

III. SPECTRUM SENSING METHOD BASED ON RAO
DETECTION
A. P.D.F. OF GENERALIZED GAUSSIAN NOISE
Generalized Gaussian distribution, also known as exponential
distribution, including Gaussian, Laplace and uniform distri-
bution. The P.D.F. of generalized Gaussian noise is defined
as

p (w) =
c1 (β)
√

σ 2
exp

(
−c2 (β)

∣∣∣∣ w
√

σ 2

∣∣∣∣ 2
1+β
)
, (5)

where β > −1, c1 (β) =
0

1
2
(
3
2 (1+β)

)
(1+β)0

3
2
(
1
2 (1+β)

) and c2 (β) =[
0
(
3
2 (1+β)

)
0
(
1
2 (1+β)

)
] 1

1+β

, 0 (x) is the gamma function, that is

0 (x) =
∫
∞

0 ux−1 exp (−u)du.
Note that, the generalized Gaussian distribution is Gaus-

sian distribution when β = 0; and it is Laplace distribution
when β = 1; while β → −1, the distribution tends to be
uniform.

B. P.D.F. OF GAUSSIAN MIXED DISTRIBUTED NOISE
Gaussian mixed distributed noise is often used to describe
man-made noise and interference caused by ultra-wideband
systems in wireless channels, and is widely used in modeling
non-Gaussian noise [20]. The P.D.F. of the binary Gaussian
mixture distribution noise is

p (w) =
1− ε√
2πσ 2

1

exp

[
−
1
2
w2

σ 2
1

]
+

ε√
2πσ 2

2

exp

[
−
1
2
w2

σ 2
2

]
.

(6)

where ε is a mixed parameter, and 0 < ε < 1. One Gaus-
sian distribution is a Gaussian random variable that obeys
N (0, σ 2

1 ) distribution, and the other Gaussian distribution is a
Gaussian random variable that obeys N (0, σ 2

2 ) distribution.
Generally, when σ 2

2 � σ 2
1 and ε � 1, the Gaussian

noise with variance σ 2
2 is used to describe sudden pulses or

interferences with short duration and large changes in pulse
amplitude, while the Gaussian distribution with variance σ 2

1
plays a major role in the background noise. Due to the Gaus-
sian mixed noise is a linear combination of two Gaussian
distributed noises, the mean value E(w) is zero, the variance
σ 2 is (1− ε)σ 2

1 + εσ
2
2 .
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If σ 2
1 , σ

2
2 and ε are known, the P.D.F. of the distribution

is known. In fact, in general, ε is an unknown parameter
and can be estimated by moments. Suppose when N → ∞,
1
N

N∑
n=1

w2
→ E

(
w2
)
holds. The estimator ε̂ and variance of ε

can be obtained as

ε̂ =

1
N

N∑
n=1

w2
− σ 2

1

σ 2
2 − σ

2
1

(7)

and

var
(
ε̂
)
=

3 (1− ε) σ 4
1 + 3εσ 4

2 −
[
(1− ε) σ 2

1 + εσ
2
2

]2
N
(
σ 2
2 − σ

2
1

)2 .

(8)

It can be proved that when N → ∞, the estimate is a
uniform estimator, that is ε̂ → ε. Therefore, we can think
that the P.D.F. of Gaussian mixture noise can be calculated
by the variance of two known Gaussian distribution noises.

C. P.D.F. ESTIMATION OF SαS NOISE
In this section, a non-parametric window estimation method
is used to estimate P.D.F. of SαS noise. This method does
not need to know the distribution of random variables which
are to be estimated, and it can directly obtain the estimation
of P.D.F. from samples. Furthermore, compared with the
fixed-core method, the adaptive kernel method can clearly
display the characteristic information of the data, and does
not obscure the important features in the data on account of
over-smooth [31].

Based on the SαS noise characteristics, such as symmetry,
unimodality and severe tailing, the adaptive kernel estimation
method is used to estimate the P.D.F. of SαS noise from the
sample data. Assuming that the independent and identically
distributed (IID) noise samples are wm, m = 1, · · · ,M ,
the estimated value of the P.D.F. [31] is

p̂M (w) =
1
M

M∑
m=1

1
hλm

k
(
w− wm
hλm

)
, (9)

where k(·) is a kernel function, h is a global bandwidth,
which is used to control the smoothness of the P.D.F. and
the spread of the kernel function. The optimal value of h is
0.79RM (−0.2). R is the interquartile range of the sample data,
that is, the sample data is sorted from small to large, and the
1/4 quantile R1 and the 3/4 quantile R2 are obtained, then
R = R2−R1. λm is the local bandwidth, which is used to adapt
to the local characteristics of the function, such as the severe
tailing characteristic of SαS noise, which can be calculated
by

λm =

(
pM ,0(w)∏M

m=1 pM ,0(w)
1/M

)−1/2
, (10)

where pM ,0(w) can be obtained when λm = 1.

Since the Gaussian kernel function is a commonly used
kernel function and has been widely used, we also chooses
the Gaussian kernel function and substitutes it into (9). Then
we have

p̂M (w) =
1
√
2π

1
M

M∑
m=1

1
hλm

exp

(
−
1
2
(w− wm)2

(hλm)2

)
. (11)

In order to guarantee the symmetry property of P.D.F.,
we denote the estimation of P.D.F. as

p̂ (w) =
(
p̂M (w)+ p̂M (−w)

)/
2. (12)

It can be proved that when M → ∞, (13) is established,
where p(w) is the P.D.F. of the noise when α is equal to 0.5,
1 and 2, respectively.

Pr
{
supw

∣∣p̂ (w)− p (w)∣∣→ 0
}
= 1. (13)

D. DECISION STATISTIC BASED ON RAO DETECTION
Based on the theory of Rao detection, when the fading chan-
nel amplitude parameter vector a is unknown, the decision
statistic is

TR (x) =

∂ ln p(x;a,H1)
∂a

∣∣∣T
a=0

∂ ln p(x;a,H1)
∂a

∣∣∣
a=0

I (a)|a=0

H1
≥

<
H0

ηR,

(14)

where p(x; a,H1) is the conditional P.D.F. of x in case of
H1. I (a)|a=0 is the Fisher information matrix. ηR denotes the
detection threshold, which can be calculated from the given
false alarm probability (Pf ).

Based on the estimated value of P.D.F. for SαS noise p̂(w),
according to (1), we have

p̂ (x; a,H1) =

N∏
n=1

p̂

(
x (n)−

L∑
l=1

als (n− τnl)

)
, (15)

where w(n) = x(n) −
L∑
l=1

als(n− τnl). Taking the logarithm

on both sides in (15) and calculating the derivative of an
arbitrarily chosen element al in a, we have

ln p̂ (x; a,H1)

∂al
=

N∑
n=1

(−
dp̂(w(n))

dw

p̂(w (n))
s (n− τnl))

=

N∑
n=1

ĝ (w (n)) s (n− τnl), (16)

where

ĝ (w (n)) = −
dp̂(w(n))

dw

p̂ (w (n))
. (17)

According to (12), we can get

dp̂ (w (n))
dw

=
1
2

(
dp̂M (w (n))

dw
+
dp̂M (−w (n))

dw

)
, (18)
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where
dp̂M (w (n))

dw

=
1
M

M∑
m=1

[
1
√
2π

1
hλm

exp

(
−
1
2
(w− xm)2

(hλm)2

)(
xm − w

(hλm)2

)]
.

(19)

According to (17) and (18), ĝ(w(n)) is obtained as follows

ĝ (w (n)) = −
dp̂(w(n))

dw

p̂ (w (n))

= −

dp̂M (w(n))
dw +

dp̂M (−w(n))
dw

2p̂ (w (n))
, (20)

when a = 0, w(n) = x(n), then, ĝ(x(n)) is

ĝ (x (n)) = −
dp̂M (x(n))
dx(n) +

dp̂M (−x(n))
dx(n)

2p̂ (x (n))
. (21)

According to (16), we can get

∂ ln p̂
(
x; a, σ 2

w
)

∂al

∣∣∣∣∣
a=0

=

N∑
n=1

ĝ (x (n))s (n− τnl) . (22)

Let y =
[
ĝ (x (1)) , · · · , ĝ (x (N ))

]T , Sl is the l-th column
element of S, then

∂ ln p̂
(
x; a, σ 2

w
)

∂a

∣∣∣∣∣
a=0

= [ST1 y ST2 y · · · STL y]
T = ST y. (23)

According to the definition and diagonal nature of
Fisher information, we know that [I (a)]lk is a function of
∂ ln p̂(x;a,H1)

∂al
, and

[I (a)]lk

= E
[
∂ ln p̂ (x; a,H1)

∂al

∂ ln p̂ (x; a,H1)

∂ak

]
= E

[
N∑
n=1

ĝ (wn (n)) s (n− τnl)
N∑
m=1

ĝ (wm (m)) s (n− τmk)

]

=

N∑
n=1

N∑
m=1

E
[
ĝ (wn) ĝ (wm)

]
s (n− τnl) s (n− τmk) ,

(l, k = 1, · · · ,L), (24)

where wn = wn (n) = x (n) −
L∑
l=1

als (n− τnl) and wm =

wm (m) = x (m)−
L∑
l=1

als (m− τml).

Since each x (n) is independent, for m 6= n,

E
[
ĝ (wn) ĝ (wm)

]
= E

[
ĝ (wn)

]
E
[
ĝ (wm)

]
, (25)

and

E
[
ĝ (wn)

]
= −

∫
∞

−∞

dp̂(wn)
dwn

p̂ (wn)
p̂ (wn)dx (n)

= −

∫
∞

−∞

dp̂ (wn)
dwn

dx (n)

= −

∫
∞

−∞

dp̂ (wn)
dwn

dwn = 0. (26)

For m = n, we have

[I (a)]lk =
N∑
n=1

E
[
ĝ2 (wn)

]
s (n− τnl) s (n− τnk) , (27)

where

E
[
ĝ2 (wn)

]
=

∫
∞

−∞

ĝ2 (wn) p̂ (wn) dx (n)

=

∫
∞

−∞

(
dp̂(wn)
dwn

)2
p̂ (wn)

dx (n)

=

∫
∞

−∞

(
dp̂(wn)
dwn

)2
p̂ (wn)

dwn = z (a) . (28)

Thus, we can get

[I (a)]lk = z (a)
N∑
n=1

s (n− τnl) s (n− τnk) = z (a) ST S.

(29)

Then the Fisher information matrix is

I (a)|a=0 = z (a)|a=0S
T S, (30)

where

z (a) =
∫
+∞

−∞

(
dp̂(w)
dw

)2
p̂ (w)

dw. (31)

The procedure of spectrum sensing based on Rao detection
with SαS distribution noise over multi-path fading channels
is summarized in Algorithm 1.

Algorithm 1 The Procedure of Spectrum Sensing Based on
Rao Detection With SαS Distribution Noise Over Multi-Path
Fading Channels
1: Calculate the local bandwidth λm according to (10).
2: Using the non-parametric adaptive kernel density esti-

mation method, the estimated value of the P.D.F. of SαS
noise from the sample data by solving (11) and (12).

3: For a given Pf , the detection threshold value can be
calculated as ηR = Q−1

χ2
L
(Pf ).

4: Using (23), we can get ∂ ln p̂(x;a,σ 2w)
∂a |a=0, and use it to

replace ∂ ln p(x;a,H1)
∂a |a=0 in the decision statistics in (14).

5: Use (28) and (29) to calculate the [I (a)]lk , then let a = 0,
use (30) and (31) to get the Fisher information matrix
I (a)|a=0.

6: Finally, we compare TR(x) in (14) and ηR. When TR(x) is
greater than or equal to ηR, PU exists; otherwise, PU does
not exist and SU can share the frequency.
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FIGURE 2. Spectrum sensing performance versus different test channels
for generalized Gaussian noise for β = 0.

IV. PROGRESSIVE SPECTRUM SENSING PERFORMANCE
BASED ON RAO DETECTION
Substituting (23) and (30) into (14), the decision statistic of
Rao detection is

TR (x) =
(
ST y

)T(
z (a) ST S

)−1
ST y

=

(
ST y

)T (ST S)−1ST y
z(a)

. (32)

when N →∞, TR(x) obeys the following distribution.

H0 : TR(x) ∼ χ2
L

H1 : TR(x) ∼ χ2
L (ψ), (33)

where χ2
L is the central Chi-square distribution with L degrees

of freedom, χ2
L (ψ) is the noncentral Chi-square distribution

with L degrees of freedom, and noncentrality parameter ψ is

ψ = aT1 I(a)|a=0a1 = z(a)aT1 S
T Sa1, (34)

where a1 is the true value of a in the case of H1. Therefore,
the asymptotic spectrum sensing performance is as follows

Pf = Qχ2
L
(ηR)

Pd = Qχ2
L (ψ)

(ηR), (35)

where Pd is the detection probability,Qχ2
L
(ηR) =

∫
∞

ηR
p(w)dw

is the right-tail probability for a χ2
L random variable.

Since the P.D.F. is determined by noise in the case
of H0, it is independent of unknown amplitude parame-
ters of the multi-path fading channels. According to the
Neyman-Pearson criterion, the detection threshold ηR can be
calculated by a constantPf , which is also called constant false
alarm rate (CFAR). Therefore, in the process of simulation,
Pf is set to a pre-specified value, and the detection threshold
ηR is calculated according to the inverse of (35), that is ηR =
Q−1
χ2
L
(Pf ), and then Pd is calculated.

FIGURE 3. Spectrum sensing performance versus different test channels
for binary Gaussian mixture distribution noise for σ2

1 = 1, σ2
2 = 4 and

ε = 0.5.

V. NUMERIC SIMULATION AND DISCUSSION
In this section, we show the simulation results and compare
the estimation performance of the P.D.F. and the spectrum
sensing performance of the proposed method. Without loss
of generality, in simulations, the multi-path fading channels
used are the three test channels in ITU-R M.1225, which are
indoor, outdoor and vehicle test channels, and the number of
fading channels is L = 6. The number of samples is 6000.
The number of Monte Carlo experiments is 10000.

In order to verify the influence of the generalized Gaussian
noise and multi-path channels on spectrum sensing perfor-
mance, we conduct the simulation over three different test
channels repectively and we observe the performance varying
with test channel. In Fig.2, we can see that the proposed
method can effectively realize spectrum sensing over gener-
alized Gaussian noise and multi-path channels. In particular,
the sensing performance is very close to the theoretical anal-
ysis value in the outdoor multi-path fading channels.

In order to verify the influence of the binary Gaussian mix-
ture distribution noise and multi-path channels on spectrum
sensing performance, we conduct the simulation over three
different test channels repectively. We set σ 2

1 = 1, σ 2
2 = 4

and ε = 0.5. In Fig.3, We can see that this method can
effectively realize spectrum sensing on binary Gaussian mix-
ture noise and multi-path channels, and has the best sensing
performance in outdoor multi-path fading channels.

Using (12) the P.D.F. of the noise is estimated, when
M = 1000, the simulation result is shown in Fig.4. We
selected three typical distributions, such as Gaussian, Cauchy
and Pearson, and compared the approximate estimated values
with the theoretical values of P.D.F.. We compare the P.D.F.
calculated in [32] with the approximate estimated of P.D.F..
It can be seen from Fig.5 that when α = 1 and α = 2,
the proposed method is very close to the theoretical values
of P.D.F. in [32], and the absolute error is less than 0.02,
which demonstrates the accuracy of our proposed method,
at the same time, proves that the proposedmethod is effective.
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FIGURE 4. Estimation and comparison of P.D.F. for SαS noise.

FIGURE 5. Absolute Error of P.D.F. Estimation for SαS noise.

When α = 0.5, near the origin, the proposed method has a
certain error with the the theoretical values of P.D.F. in [32],
the absolute error is less than 0.12; interestingly, at other
points, the two are very close, and the absolute error is less
than 0.02.

Without loss of generality, the performance of the pro-
posed spectrum sensing method is evaluated by evaluating
the receiver operating characteristic (ROC) curves, which
illustrates the relationship between the Pd and Pf . Fig.6 to
Fig.8 compare the spectrum sensing performance in SαS
noise multi-path fading channels environment under differ-
ent α values. It should be noted that Generalized Signal-to-
Noise Ratio (GSNR) is used, and it is defined as GSNR,
10 lg(Ps/γ )dB, where Ps and γ represent transmit power and
the dispersion coefficient of SαS noise, respectively. In the
following simulations, GSNR = 12dB, L = 6. Due to α
is different, it corresponds to different non-Gaussian noises.
The smaller α is, the more obvious the spike of noise is,
and the greater the impact on spectrum sensing performance.
As can be seen from Fig.6, when α = 2, the noise obeys
the Gauss distribution, the spectrum sensing performance is

FIGURE 6. Spectrum sensing performance versus different α values over
indoor test channels.

FIGURE 7. Spectrum sensing performance versus different α values over
outdoor test channels.

FIGURE 8. Spectrum sensing performance versus different α values over
vehicle test channels.

the best, while when α = 0.5, the noise obeys the Pearson
distribution, and the spectrum sensing performance is the
worst.
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VI. CONCLUSION
Smart connected devices in the IoT and typical smart city
applications need a lot of spectrum to communicate. CR
can effectively improve the spectrum utilization and allevi-
ate the issue of spectrum scarcity. However, non-Gaussian
noise and multi-path fading channels are important fac-
tors affecting spectrum sensing performance. In particu-
lar, there is no closed-form P.D.F. for SαS noise. In this
paper, we implemented the spectrum sensing technology in
the SαS noise and multi-path fading channels environment,
and analyzed the spectrum sensing performance. Firstly,
the closed-form P.D.F. of SαS noise is obtained by using the
non-parametric adaptive kernel density estimation method.
Secondly, the influence of multi-path fading channels on
spectrum sensing performance is analyzed by using the Rao
detection theory of unknown fading channel amplitude. Sim-
ulation results show that the proposed method can achieve
better spectrum sensing in SαS noise multi-path fading chan-
nels environment.
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