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ABSTRACT The tuning of the robot actuator represents many challenges to follow a predefined trajectory
on account of the uncertainties of parameters and the model nonlinearity. Furthermore, the controller gains
require proper optimization to achieve good performance. In this paper, the use of a modified neural network
algorithm (MNNA) is proposed as a novel adaptive tuning algorithm to optimize the controller gains.
Furthermore, a new mathematical modulation is introduced to promote the exploration manner of the NNA
without initial parameters. Specifically, the modulation is formed by using a polynomial mutation. The
proposed algorithm is applied to select the proportional integral derivative (PID) controller gains of a robot
manipulator arms in lieu of conventional procedures of designer expertise. Another vital contribution is
formulating a new performance index that guarantees to improve the settling time and the overshoot of every
arm output simultaneously. The proposed algorithm is evaluated with different intelligent techniques in the
literature, including the genetic algorithm (GA) and the cuckoo search algorithm (CSA)with PID controllers,
where its superiority to follow various trajectories is demonstrated. To affirm the robustness and efficiency
of the proposed algorithm, several trajectories and uncertainties of parameters are considered for assessing
the response of a robotic manipulator.

INDEX TERMS Robot manipulator, nonlinear system, trajectory tracking, PID controller, neural networks.

I. INTRODUCTION
In the last years, the robot manipulator has been applied for
different aspects such that aid the industry and human works.
The robot can do the routine works and follow the object with
more effectiveness and a short time than the human. The robot
manipulator needs an efficient and accurate controller to do
duties like the tracking of position [1]. The nonlinearity of the
manipulator system and the variation of parameters represent
the major challenges that opposite the designer to detect the
controller of its arms [2], [3].

In the literature, different control techniques are applied
to the manipulators, e.g. the proportional-integral-derivative
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(PID) control approach [4]–[6], fuzzy logic control [7]–[9],
and adaptive control [10], [11]. Among these controllers,
most of the industrial applications utilize the PID controller
for the sake of its simple structure and implementation.
However, this controller needs proper optimization to pro-
vide the perfect performance, particularly in complicated
and nonlinear systems. Numerous techniques are applied to
optimize the PID controller, such as conventional procedures
that can involve Ziegler Nichols (ZN) technique [12], [13] and
graphical procedures [14], [15]. The ZN technique is built on
fixed rules for each system, and it fails to give a good per-
formance [16], [17]. In respect of the graphical procedures,
these procedures require the linear model of the system, long
time-consuming, and it has complicated mathematical for-
mulation, especially in the big systems [17]. Diverse robust
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adaptive sliding mode control methods have been introduced
in [18]–[22] which are superior to the traditional slidingmode
control schemes.

Meta-heuristic algorithms can cope with the optimization
issue of the PID controller and provide the best results in
various applications with short time consuming [23], [24].
There are various types of meta-heuristic techniques like
the genetic algorithm (GA) [25], particle swarm optimiza-
tion [26], ant colony optimization [27], and teaching-learning
algorithm [28]. The catching in a local optimum posi-
tion demonstrates the enormous problem which faces these
techniques. Different strategies (e.g. mutation operator) are
applied to overcome this problem and promote the explo-
ration manner of the algorithms [29]. Indeed, the use of
the mutation operator proves good results with various algo-
rithms [29]–[32]. Many variants of mutation like random,
non-uniform, and polynomial mutation can be applied to
guarantee the exploration manner of the optimization algo-
rithms [33]. Recently, the polynomial mutation proves bet-
ter performance than the other procedures in many studied
cases [34]. However, its usage for promoting the exploration
manner of the neural network algorithm (NNA) for tracking
various trajectories of robot manipulator arms is not yet
investigated, which is covered in this work. Furthermore,
trajectories and uncertainties of parameters are considered
a challenge in the previous studies of robot manipulators
to improve their response in terms of settling times and
overshoots.

To cover the gap in the literature, this paper proposes a new
mathematical modulation for the NNA by utilizing the poly-
nomial mutation to promote the exploration manner of this
algorithm. It has a global search characteristic built to relate to
the criteria of artificial neural networks. Furthermore, it does
not need initial parameters to start, unlike the other algo-
rithms. The NNA proves good results in various optimiza-
tion problems [35]–[37]. In that case, the inspired modified
NNA algorithm is applied to detect the controller gains of
the robot manipulator in lieu of conventional procedures of
designer expertise. The introduced technique tunes the con-
troller parameters for the sake of minimizing a new developed
time-domain performance index to confirm the decreasing
of the settling time and overshoot. The results of the intro-
duced procedure are evaluated with the GA-PID controller
and the cuckoo search algorithm (CSA)-PID controller. The
progress of the proposed procedure is tested to follow non-
regular trajectories. Besides, the parameters uncertainties
experiment is formed to ensure the robustness of the inspired
procedure.

The major contributions and novelty of this manuscript are
listed below:
• A new polynomial mutation is applied to promote the
exploration manner of the original NNA without initial
parameters.

• The new algorithm is introduced to obtain the optimal
gains of the robot manipulator controller instead of con-
ventional procedures of designer expertise.

• A new performance index is created to guarantee the
decreasing of the settling time and the overshoot at the
same time.

• The suggested procedure is evaluated with the GA-PID
controller [38] and the CSA-PID controller 39].

• The progress of the inspired procedure is confirmed
against various trajectories and system parameter
variations.

The remnant of the paper is listed as: Section 2 presents
the procedure of NNA. In Section 3, the proposed modula-
tion of the NNA is illustrated. The formulation of a robot
manipulator with the controller is presented in Section 4.
Section 5 shows the results and discussions of the pro-
posed system. In the end, the conclusions are summarized in
Section 6.

II. NEURAL NETWORK ALGORITHM
The neural network algorithm is a novel intelligent procedure
created according to the biological manner of nervous
systems [35]. The procedures of artificial neural network
structure are the main process of the NNA. The NNA
has the manner of global research to detect new solutions.
Furthermore, it does not need initial parameters for the start-
ing instead of the other algorithms. Specifically, it discovers
the new solutions by adapting the weight variables between
the predicted solution and the target. Systematically, it can
reach an optimal solution during the search region. The NNA
has a different procedure than the other algorithms to obtain
the optimal solution. Its procedure works on the decreasing
of the space between the optimal position and the different
positions. This algorithm consists of four phases as follows:

A. INITIAL POPULATION STAGE
TheNNA is started with a random initial population like other
algorithms to generate initial solutions inside the defined
search space. Each solution is named ‘‘pattern solution’’.
At the start, a random pattern matrix of solutions ‘‘X ’’ with
size N×D is generated. Where N is the generation num-
ber and D is the number of variables. The pattern solu-
tions can mathematically be symbolized as follows, X =
[X1 ,X2 , ..,Xi , ....XN ]′ and Xi = [xi1, xi2, . . . . . . ..., xiD],
where;

xij = Lj + rand (Uj − Lj), i = 1, 2, . . . . . . ,N ,

j = 1, 2, . . . . . . ,D (1)

in which L and U are the minimum and maximum limits of
the variables, respectively.

The NNA is similar to the artificial neural network where
each solution Xi in the generation has a corresponding
weight vector Wi = [wi1,wi2 , . . . . . . ...,wiN ]. Note that the
weight matrix for all population individuals has a size of
N×N. The NNA process is started with a random weight
matrix between (0, 1). In each iteration, the weight matrix
is updated regarding the network error. The summation of
weights for every solution is constrained while it does not
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FIGURE 1. Mechanism of new population in NNA.

exceed 1 as follows,

N∑
j=1

wij = 1, i = 1, 2, . . . . . . ,N (2)

This constraint adjusts the bias of the solution movement and
generation. It reserves the algorithm from the restriction in
the local optimal solution. After the determination of ran-
dom solutions and the corresponding weights, the fitness of
every solution is calculated by the computation of the perfor-
mance index. Then, the optimal solution with its weights is
determined to produce the updated solution as follows,

Xnewj (t + 1) =
N∑
i=1

wij(t)× Xi(t), j = 1, 2, . . . . . . ,N

(3)

Xi(t + 1) = Xi(t) + Xnewi (t + 1), i = 1, 2, . . . . . . ,N

(4)

where Xi(t) is the solution at iteration ‘t’, Xnewi (t + 1) is
the updated solution at the next iteration ‘t + 1’. The new
generation is presented in Fig. 1.

B. WEIGHT MATRIX UPDATING
In this stage, the weights between variables are updated as
follows,

Wi(t + 1) = Wi(t)+ 2× rand

× (W ∗(t)−Wi(t)), i = 1, 2, . . . . . . ,N (5)

where W ∗(t) is the target vector of weights.

C. BIAS STAGE
The NNA uses a bias operator for good exploration. This
operator is applied to change a percentage from generated
solutions and the weight matrix. The bias operator is reduced
adaptively with the increasing of iteration number. Any pos-
sible procedure can be applied for this purpose as follows,

β(t + 1) = 1−
(

t
tmax

)
, t = 1, 2, . . . . . . , tmax (6)

or as follows,

β(t + 1) = 0.99β(t), t = 1, 2, . . . . . . , tmax (7)

where tmax is the final number of iterations. The decreasing
of β with increasing the iteration promotes the exploitation
manner of the algorithm to catch the best solution. In this
stage, a random number is produced to detect the population
number for biasing as follows,

NP = Round(D× β) (8)

Then, the population and weights are modified as follows,

Xj = L + rand(U − L), j = 1, 2, . . . . . . ,NP (9)

Also, a random number is produced to detect the number of
weights that must be modified as follows,

Nw = Round(N × β) (10)

Wj = m, j = 1, 2, . . . . . . ,Nw (11)

where m is a random variable within (0, 1).

D. TRANSFER FUNCTION STAGE
The transfer function operator is applied in the NNA to pro-
mote the exploitationmanner of the algorithm. This operation
transfers the new solutions from their original positions to
new positions to decrease the gap between them and the target
solution. The transfer operation is presented as follows,

X∗i (t + 1) = Xi(t + 1)+ 2× rand

× (X∗(t)− Xi(t + 1)), i = 1, 2, . . . . . . ,N (12)

where X∗(t) is the best solution at iteration number ‘t’.

III. THE PROPOSED MODULATION OF NNA
The trapping of most optimization algorithms in a local opti-
mal represents a serious problem. This issue is occurred at
the early stage of the optimization procedure due to the use
of random patterns. The mutation operator proves an efficient
function to overcome this problem with many single and
multi-objective optimization techniques [30]–[32]. There are
various procedures of mutation like random, uniform, non-
uniform, and polynomial mutation [33]. It is demonstrated
that the polynomial mutation provides good experimental
results compared with the other procedures [34]. However,
the polynomial mutation has a nonlinear probability to adopt
the current solution to the best neighboring, and so it can guar-
antee the exploration manner of the optimization procedure.
The exchange of the current agent to the neighboring value is
formed as follows:

Xi(t) = Xi(t + 1)+ α × δmax(Xi), i = 1, 2, . . . . . . ,Np
(13)

α =

{
(2r)(1/(q+1)) − 1 if r < 0.5
1− [2(1− r)](1/(q+1)) otherwise

(14)

δmax ij(t) = max [Xij(t)− Lj,Uj − Xij(t)],

i = 1, 2, . . . . . . ,Np, j = 1, 2, . . . . . . ,D

(15)

where q is a positive factor and named a shape variable, r
is a random variable within (0, 1), δmax ij is the maximum
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allowed change between the present solution and the mutated
one. One of the contributions of this paper is to propose the
mutation operation in lieu of the random exploration of the
biasing stage in (9). The nonlinear probability in the proposed
polynomial mutation can diverge the current solution to the
best neighboring one; Therefore, it significantly improves
the exploration manner of the optimization procedure, espe-
cially for the challengable robot manipulator. In respect of
the prior stages of the NNA and the proposed modulation,
the flowchart in Fig. 2 summarizes the procedures of the
modified NNA (MNNA) to get the optimal solution, thanks
to the proposed polynomial mutation.

IV. SYSTEM MODELING
This part demonstrates the formulation of the proposed robot
manipulator. The robot dynamic is formulated by nonlinear
differential equations. The equations have various parts like
gravity, inertia, Coriolis, centrifugal torques, and load. The
robot actuator in its arm needs a proper torque to move the
end-effector in a predefined trajectory with limited speed.
The next equation can govern the manipulator dynamics of
various n-arms [38].

τ = M (θ )
••

θ +C(θ,
•

θ )+ G(θ ) (16)

where
τ Torque vector of the arms with size n×1
M (θ ) Positive matrix with dimensions n×n

C(θ,
•

θ ) Coriolis torque vector with size n×1
G (θ ) Gravity torque vector with size n×1
θ Angular position of arms
•

θ Velocity of arms
••

θ Acceleration of arms
n Number of arms
In this case, the suggested manipulator has two arms as

clear in Fig. 3. The dynamics formulation of this robot are
described as [40],

τ1 = m2 l 22 (
••

θ 1 +
••

θ 2)+ m2 l1 l2 c2 (2
••

θ 1 +
••

θ 2)

+(m1 + m2 ) l 21
••

θ 1 − m2 l1 l2 s2
•

θ22

−2m2 l1 l2 s2
•

θ1
•

θ2 + m2 l2 g c12
+(m1 + m2) l1 g c1 (17)

τ2 = m2 l 22 (
••

θ 1 +
••

θ 2)+ m2 l1 l2 c2
••

θ 1

+m2 l1 l2 c2
•

θ12 + m2 l1 g c12 (18)

where c1 = cos (θ1), c2 = cos (θ2), c12 = cos (θ1 + θ2), s1 =
sin (θ1), and s2 = sin (θ2). In this paper, the control signal of
the PID represents the torque of every arm as follows,

τi = KP,i × ei + KI ,i

∫
ei . dt + KD,i ×

d ei
d t

, i = 1, 2 (19)

ei = θd,i − θi (20)

where ei is the error, θd,i is the target trajectory, and θi is the
output angular position.

FIGURE 2. The flowchart of the MNNA.

V. RESULTS AND DISCUSSION
In this part, the MNNA is devoted to optimizing the PID
controller gains to enhance the response of a robotic manip-
ulator which is cleared in Fig. 3. The main target of the
optimization procedure is the decreasing of settling time ‘ts’
and the maximum overshoot ‘Mp’ of every arm to achieve
the target trajectory. This paper proposes a new performance
index to confirm the decreasing of ts andMp of the output of
every arm simultaneously. This performance index is named
figure of demerit (FOD) and it is formulated as follows,

J =
2∑
i=1

(1− e−ψ ) (MP,i + ESS,i )+ e−ψ (t s,i − t r,i )

(21)

where

MP,i The wave overshoot.
ESS,i The steady-state error.
ts,i The wave settling time.
tr,i The wave rise time.
ψ A weighting constant.
i The index of each robot arm.

The previous performance index can achieve the decreas-
ing of ts and Mp of the output of every arm by selecting a
proper value for the weighting factor ‘ψ’. If the value of
ψ < 0.7, it will minimize ts. On the contrary, if the value
of ψ > 0.7, it will minimize the Mp. This performance
index is proved by simulation in [41]. In this case, the chosen
weight ‘ψ = 0.7’ to ensure the decreasing of both ts and Mp
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FIGURE 3. The schematic representation of a robotic manipulator with
two-arms.

TABLE 1. The controller parameters due to each procedure with the
corresponding performance index.

FIGURE 4. The performance index due to the different algorithms.

of every arm output together. The proposed MNNA search
for the best PID controller gains by the decreasing of the
performance index in (21). The optimization procedure is
cried out at the system nominal parameters and a unit step
target for the position of every arm. The nominal parameters
of the main system are: m1 = m2 = 0.1 kg, l1 = 0.8 m,
l2 = 0.4 m, and g = 9.81 m/s2 [38]. The MNNA parameters
are: The maximum agent’s number is selected as 100 besides
50 iterations number. The selected limits of the controller
gains are ‘‘[ KP1,min = 0,KI1,min = 0,KD1,min = 0,
KP2,min = 0,KI2,min = 0,KD2,min = 0]; ‘‘[KP1,max =
250,KI1,max = 1,KD1,max = 20,KD2,max = 250,KI2,max =
1,KD1,max = 10]’’. The results of the inspired MNNA is
confirmed by comparing it with the GA-PID controller [38]
and the CSA-PID controller [39]. The controller parameters

TABLE 2. The tuned factors of different techniques.

Algorithm 1 MNNA pseudo-code to detect the best gains
1: StartMNNA
2: Simulate the manipulator including the chosen controller
3: Determine the performance function in (21)
4: Select the best solution and best weights
5: While (t < iterationsmax)
6: Carry out the steps of MNNA in Fig. 2
7: Simulate the manipulator including the chosen

controller
8: Obtain the performance function in (21)
9: Select the best fitness
10: zero: Select the new solution
11: End While
12: Stop

FIGURE 5. The output wave of the position arm1 in the nominal case.

computed by each procedure with the corresponding perfor-
mance index value are recorded in Table 1. Furthermore,
Fig. 4 shows the performance index due to the different
algorithms in the vertical bar plot as an effective clarified
way for comparison. The inspired MNNA has the least per-
formance index, as clarified in Table 1 and Fig. 4. Moreover,
the proposed MNNA has less tuning factors compared to
other algorithms, as listed in Table 2. The procedures of the
MNNA, to detect the best parameters, are concluded by the
pseudo-code described by Algorithm 1.

Various test scenarios are formed in the next subsections to
affirm the efficiency and robustness of the inspired MNNA.
These scenarios are the nominal parameter check with unit
step reference and variable trajectory experiment for the posi-
tion of every arm. Furthermore, the robustness experiment of

VOLUME 9, 2021 11915



M. Elsisi et al.: Improved NNA to Efficiently Track Various Trajectories of Robot Manipulator Arms

FIGURE 6. The output wave of the position arm2 in the nominal case.

TABLE 3. The ts and Mp of the system performance of nominal case due
to the various procedures.

the inspired MNNA versus the variations of system parame-
ters is carried out.

A. SCENARIO 1: THE NOMINAL PARAMETER TEST WITH
UNIT STEP REFERENCE
In this test, a unit step position reference is applied for every
arm at system nominal parameters. Figs. 5 and 6 present the
output wave of the robot manipulator arms to follow a unit
step position reference. Table 3 records the values of ts andMp
of the output wave due to the various procedures, which quan-
tifies the improvement in the proposed objective function
expressed by (21). Specifically, this table compares these two
parameters for the proposed MNNA, GA-PID controller, and
the CSA-PID controller. Furthermore, Fig. 7 shows the output
response characteristics due to the different algorithms in the
vertical bar plot as an effective clarified way for comparison.
It is summarized from Figs. 5, 6, and 7, and Table 3 that
the inspired MNNA-PID controller outperforms the GA-PID
controller and the CSA-PID controller. Furthermore, the pro-
posed MNNA has the lowest ts andMp values compared with
the other procedures for the two arms.

B. SCENARIO 2: THE EFFICIENCY OF THE INSPIRED
PROCEDURE AGAINST VARIOUS TRAJECTORIES
In this scenario, the inspired procedure is tested to follow
various position trajectories. The test is done in two stages.
The first one is created by applying a random step position
trajectory on every arm as clarified in Fig. 8. The system
output due to this stage is shown in Figs. 9 and 10. These
figures illustrate that the inspired MNNA-PID controller can
follow the random step trajectory with negligible steady
state-error, minimum settling time, and negligible overshoots
compared with other techniques.

FIGURE 7. The output response characteristics due to the different
algorithms (a) The maximum overshoot (MP), (b) the settling time (ts).

FIGURE 8. Random step position trajectory of each robot arm.

The second stage of this test is formed by applying a
cubic position trajectory on every arm, as clarified in Fig. 11.
This cubic trajectory is developed from the following
equation [40],

θd,i = c0,i + c1,i × t + c2,i × t2 + c3,i × t3 (22)

with end velocity and acceleration constraints that are
determined in the following equations,

•

θdf ,i = c1,i + 2 c2,i × tf + 3 c3,i × t 2f (23)
••

θ df ,i = 2 c2,i + 6 c3,i × tf (24)
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TABLE 4. The initial and final parameters of the cubic trajectories.

FIGURE 9. The output wave of arm1 due to random step position
trajectory; (a) The position of arm1 (b) The position deviation of arm1.

where i = 1, 2 is the indicator of every arm and tf ,
•

θdf ,
••

θ df are the end time velocity, and acceleration, respectively.
Where the initial and final parameters of the cubic trajectories
are listed in Table 4. The constants ‘c0,i, c1,i, c2,i, c3,i’ can be
determined by solving (22) and (23) together with the starting
and endpoints of the position and velocity. Therefore, the
nonlinear trajectory can be sketched for each arm as clarified
in Fig. 11.

The output wave of the model achieved by the inspired
MNNA-PID controller in the situation of cubic position tra-
jectory test is presented in Figs. 12 and 13. These figures clear
that the proposed algorithm can follow the cubic position
trajectory effectively.

FIGURE 10. The output wave of arm2 due to random step position
trajectory; (a) The position of arm2 , (b) The position deviation of arm2.

FIGURE 11. Cubic position trajectory of each robot arm.

C. SCENARIO 3: THE ROBUSTNESS EXPERIMENT OF THE
INSPIRED PROCEDURE TOWARD PARAMETERS
VARIATIONS
This scenario is performed by making uncertainty in masses
and lengths of the robotic arms by ±20% from the
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FIGURE 12. The output wave of arm1 due to cubic position trajectory.

FIGURE 13. The output wave of arm2 due to cubic position trajectory.

FIGURE 14. The output wave of arm1 due to robustness test.

FIGURE 15. The output wave of arm2 due to robustness test.

nominal values. Figs. 14 and 15 show the output wave of
the model with respect to the inspired MNNA-PID controller.

It is clarified from these figures that the introduced procedure
diminishes the change in the system output in the case of
parameter variations.

VI. CONCLUSION
In this paper, a proposed intelligence procedure, named
MNNA, has been introduced for the optimization of a robot
manipulator controller. Furthermore, a new performance
index has been applied to confirm the decreasing of both the
wave settling time and the overshoot of robot manipulator
arms. Many experiments with different scenarios have been
done to confirm the effectiveness of the introduced proce-
dure. In addition, the performance of the inspired MNNA
is evaluated with the GA-PID controller and the CSA-PID
controller, in terms of the settling time and the overshoot.
The inspired MNNA can follow the cubic position trajectory
effectively while diminishing the change in the system output
in case of parameter variations. The results prove that the
inspired procedure superior to the other procedures and it
is more efficient to follow various trajectories. Furthermore,
the inspired procedure is robust versus uncertainties of the
system parameters and diverse trajectories. Besides, most
of the industrial applications utilize the PID controller for
the sake of its simple structure, implementation, and the
tuning process is carried out offline by MATLAB software.
However, the proposed algorithm requires proper selection
for the limits of the controller gains, number of agents, and
the number of iterations. The future work will be directed
to consider modern model predictive control schemes while
investigating the application of the proposed MNNA-PID
controller to industry 4.0.
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