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ABSTRACT This paper presents the development of an easy-to-deploy and smart monitoring 0T system
that utilizes vibration measurement devices to assess real-time condition of bulldozers, power shovels and
backhoes, in non-stationary operations in the mining industry. According to operating experience data
and the type of mining machine, total loss failure rates per machine fleet can reach up to 30%. Vibration
analysis techniques are commonly used for condition monitoring and early detection of unforeseen failures
to generate predictive maintenance plans for heavy machinery. However, this maintenance strategy is
intensively used only for stationary machines and/or mobile machinery in stationary operations. Today,
there is a lack of proper solutions to detect and prevent critical failures for non-stationary machinery. This
paper shows a cost-effective solution proposal for implementing a vibration sensor network with wireless
communication and machine learning data-driven capabilities for condition monitoring of non-stationary
heavy machinery in mining operations. During the machine operation, 3-axis accelerations were measured
using two sensors deployed across the machine. The machine accelerations (amplitudes and frequencies)
are measured in two different frequency spectrums to improve each sensing location’s time resolution.
Multiple machine learning algorithms use this machine data to assess conditions according to manufacturer
recommendations and operational benchmarks Proposed data-driven machine learning models classify the
machine condition in states according to the ISO 2372 standards for vibration severity: Good, Acceptable,
Unsatisfactory, or Unacceptable. After performing field tests with bulldozers and backhoes from different
manufacturers, the machine learning algorithms are able to classify machine health status with an accuracy
between 85% - 95%. Moreover, the system allows early detection of “Unacceptable” states between 120 to
170 hours prior to critical failure. These results demonstrate that the proposed system will collect relevant
data to generate predictive maintenance plans and avoid unplanned downtimes.

INDEX TERMS Internet of Things, mining, non-stationary operations, data-driven, heavy machinery,
condition monitoring.

I. INTRODUCTION importantly, having machine operators well informed about
The safe operation of heavy machinery depends on many where other pieces of mine areas, obstacles, and personnel are
variables, from site design to proper work practices, and more about their equipment [1]. Situational Awareness (SA) is now

an essential element of many mining safety programs across

The associate editor coordinating the review of this manuscript and the industry. SA involves picking up information and cues
approving it for publication was Muhammad Imran . from the environment, putting those pieces of information
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together so operators can develop a good idea of what is going
on, and then using it to predict what happens next. That is
where technology can help. Many companies embrace new
technologies to support and enhance the mining equipment
operator’s SA [2].

Typically, SA is interpreted as the mining machinery sys-
tem’s capability to interpret its surroundings and other agents’
intentions. However, the internal system awareness is often
not receiving the same R&D focus, even though any given
critical mission’s success is completely dependent on the con-
dition of all the internal and external agents simultaneously.
The internal system awareness in the form of vehicle health
is the focus of this paper.

As the mining industry becomes increasingly automated,
and vehicles become increasingly advanced, the need for con-
dition monitoring and prognosis will continue rising [1], [3].
Condition-based Maintenance, or Predictive Maintenance,
is a decision-making strategy using condition monitoring
information to optimize heavy machinery availability [4].
Condition Monitoring (CM) enables the early detection of
faults or failures to reduce downtime and operating costs,
facilitate proactive responses, and improve the productivity,
reliability, availability, maintainability, and safety (RAMS)
of equipment [5] [6]. Rotating machines and main compo-
nents of mobile mining machinery typically operate under
conditions such as high load, high temperature, high mois-
ture or dusty areas. Degradation in component’s health is to
be expected under these operating conditions. Unexpected
breakdowns also can cause downtime and economic loss [7].
These situations cause accelerated degradation of critical
components of heavy machinery, increasing the failure rates,
and consequently, the repair costs up to 6 times and repair
times up to 30 hours or more [8]. Unplanned maintenance
in mining operations can reduce the availability of heavy
machinery up to 37%. Correspondingly, the useful life of
mobile mining machinery can be reduced by 25% [9]. In the
worst case, improper maintenance programs can cause total
loss of machine in less time than the manufacturer’s lifespan.

Multiple machine breakdowns in mining can impact
planned uptime up to critical conditions, resulting in impaired
production targets downstream, with the cost ranging from
$100,000 to $200,000 per machine per day [10]. Fig. 1 shows
the relationship between maintenance cost, time to failure,
and reliability in machinery. When the time to failure equals
zero, the system enters a failure state. When the time to failure
approaches zero, the system’s failure rate increases, and the
reliability and mean time to failure decreases, correspond-
ingly [8]. Therefore, it is critical to have a well-developed
CM program to improve non-stationary heavy machinery
reliability.

Unforeseen failures of mobile machinery used in the min-
ing industry significantly impact availability, overall equip-
ment efficiency, and productivity. Due to the lack of on-line
monitoring during machine operations, it cannot be veri-
fied that operators are using machines correctly or adequate
maintenance is being performed according to manufacturer
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FIGURE 1. Typical curve Maintenance cost versus Time to Failure for a
heavy machinery.

guidelines. These situations cause accelerated degradation
of critical components of mining machines, increasing the
failure rates and consequently the repair costs up to 6 times
and repair times up to 30 hours or more.

Three main research topics can be identified in the state
of the art of condition monitoring solution for heavy machin-
ery: (i) improvement of data processing techniques (detec-
tion, diagnosis and prognosis algorithms), (i) optimization of
maintenance planning and scheduling, and (iii) development
of hardware solutions for data acquisition in harsh environ-
ment conditions. The literature review indicates that areas (i)
and (ii) are the ones with the greatest R&D. Most references
in (i) use existing data and focus on the development of
new algorithms to achieve better accuracy or true-positive
rate for machine health status classification. Another relevant
challenge identified is the improvement of machine health
status predictions using small datasets with limited historical
information content. It should be pointed out that the survey
and gathering of industrial machine labelled data is a complex
task in mining conditions.

On the other hand, most references in (ii) use machine
health status diagnosis derived from existing data and focus
on improving maintenance strategies to extend assets lifespan
and bring more productivity and economic benefits using
ROI evaluations considering different maintenance plans and
schedules. Commonly, these developments use data obtained
through Multiphysics FEM/DEM modelling. These evalua-
tion techniques help to provide fault diagnosis under spe-
cific boundary conditions. The use of multiphysics modelling
techniques are typical for stationary machine assessment and
fault diagnosis, where physical behaviour under different
operating conditions are extensively reported.

CM is a broad term referring to the systematic process
of data collection to evaluate asset’s performance, relia-
bility, and maintenance needs to plan repair and mainte-
nance backlogs. Its main purpose is potential failures finding.
It requires the collection of good quality asset’s health data
which trending is studied. The primary advantage of CM
is that it incorporates health indicator monitoring activities
performed while the machine is operating. Assets failures are
predicted well in advance of their occurrence with the help of
data-driven models. Also, machine parameter data trending
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allows extending assets operation as close as possible to
their actual useful life. CM data provides vital information
for taking important decisions affecting machine fleet oper-
ation goals. Maintenance decisions are taken based on the
actual asset condition avoiding unnecessary repairs leading
to startup failures. Catastrophic failures of critical assets pre-
senting accelerated wear trends also can be avoided by using
CM tasks. Sometimes, operating conditions change, causing
life expectance to reduce as noted by steeper indicators trends
leading to unexpected catastrophic failures. CM can detect
this and earlier planned shutdowns can avoid such disasters.
To achieve all these technical capabilities, it is mandatory
to develop hardware, firmware and software solutions that
meets industrial standards for equipment information gath-
ering.

This paper explores data-driven methods to estimate
mobile mining machinery’s fault condition and health status
in non-stationary operations using a novel design for low-cost
wireless accelerometer sensor modules installed on-board
machines for on-line condition monitoring. This work per-
forms condition monitoring analysis by utilizing the infor-
mation and signals gathered from proposed wireless 3-axis
vibration sensors to make assessments of the current machine
condition and tasks. The mining industry is characterized by a
small series of highly specialized machines, which challenges
the possibility to use traditional fault detection, diagnosis and
prognosis solutions.

In addition to the proposed novel wireless vibration sensor
network for condition monitoring of non-stationary heavy
machinery, this paper aims to develop early fault detec-
tion algorithms using machine learning techniques. Machine
health information can support routine maintenance tasks,
it is an essential input to decision-making for diagnosis and
prognosis systems and further operation planning, i.e., how
to run the machine for minimum wear and damage while
maintaining other mission targets.

This paper proposes a real-time monitoring system for
non-stationary heaving machinery. The system consists of
several vibration sensors (accelerometers) located at the
machine’s critical points, communicating with each other
through a Bluetooth Low Energy (BLE) network. A cen-
tral wireless hub sends the condition monitoring information
using a 3G network to an external server, accessed by a
web platform for O&M analysis purposes. Different machine
learning data-driven algorithms for predicting the machine
health status based on machine working time, and the vibra-
tional severity gathered from real-time sensor information are
proposed.

This work provides results for both, a rugged hardware
design to acquire high-quality and reliable data in real-time
from heavy machinery, and machine learning algorithms to
diagnose the machine health status using measured data on
the industrial environment (with accuracy over 90%). Design
of hardware, firmware, and data-driven models is carried out
to cover non-stationary heavy machinery operations’ techni-
cal requirements. Correspondingly, features like high energy
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autonomy and robust wireless communication are key values
of the solution. Proposed low-energy consumption hardware
design for wireless sensors has IP67 protection to surpass
mining harsh environmental conditions; it is a light and small
size to ensure compatibility with typical O&M conditions.
Wireless sensors include high magnetic field attachment
system for fast and easy deployment on heavy machinery
structures. This paper addresses the following challenges for
condition monitoring: (i) how to acquire reliable data from
heavy machinery in real time correctly, and (ii) how to use the
measured data in data-driven machine learning algorithms for
early fault detection and prediction of the machinery’s health
status.

This paper is organized in eight sections: (i) Introduc-
tion, (ii) Maintenance philosophies & strategies, (iii) Con-
dition monitoring of mining machinery, (iv) Data-driven
approaches, (v) Solution description (vi) Results, (vii) Con-
clusion (viii) Future scope.

II. MAINTENANCE PHILOSOPHIES AND STRATEGIES

The field of maintenance can be divided into three main
areas. The most fundamental is reactive maintenance, where
errors are fixed as they arise, known as breakdown mainte-
nance. This can be a good option for failures, not causing
considerable production loss or damage. However, it is a low
option for most critical components given its unpredictabil-
ity, causing a sudden loss of functionality and unplanned
detentions [11]

On the other hand, preventive maintenance is when parts
are exchanged based on some parameter different from fail-
ure, such as the machine’s running hours. The replacement
of parts is performed at set intervals. The benefits include
a reduced number of unplanned stops, i.e., reduced risk of
failure and secondary damage, and reduced degradation of
critical components. The main drawback is a high, potentially
unnecessary cost for parts and labour since different individ-
ual machines do not deteriorate at the same rate [12].

Condition-based and/or predictive maintenance is main-
tenance based on some measurable parameters on the
individual machine. Ideally, operators can measure some
degradation parameters and then change parts necessary at
the most convenient time right before failure. Thus, minimum
maintenance resources can be used without compromising
reliability and availability. A good review of such methods in
predictive maintenance is closely related to prognostics [13].

Fig. 2 shows a summary of the maintenance strategies used
for preventive maintenance. Comprehensive preventive main-
tenance in modern mining operations include activities of
corrective maintenance (run-to-failure), routine maintenance
(scheduled approach), random maintenance (opportunity-
driven), and predictive maintenance based on condition mon-
itoring and failure prediction [14].

The field of prognostics is defined by the standard ISO
13381-1:2015: E as “analysis of the symptoms of faults to
predict the future condition and residual life within design
parameters.” [15]. The estimated time to failure (ETTF) is
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lower probability of failure
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Condition Monitoring + Failure Prediction

FIGURE 2. Summary of the maintenance strategies used for preventive
maintenance.

the time from the point of prediction (.4 ) until the estimated
failure time. The remaining useful time (RUL) is the time
between f,,q and the end of life. The prognosis relies on some
measured signal from the asset, together with a model relating
this signal to a deterioration process. There are many ways to
develop such models, but in principle, they can be divided
into three main groups: experience-based models [8] [16],
physics-based models [17], and data-driven models [18].

Data-driven models relieve the need for physical under-
standing by using measurement data to find the relation-
ships between sensor signals and damage. A good review of
data-driven statistical approaches is given by [19]. Benefits
and drawbacks are as follows: (i) there is no need for physical
models of degradation and dynamics, (ii) the approach can
capture unknown failure modes, (iii) the available techniques
are not specific to a certain domain, i.e., the methods can
be transferred to different applications, (iv) data from an
operational machine is required, model development can only
be done after machine is built and used, (v) a lot of data
is typically required, and also run-to-failure data, which is
often expensive and in some cases dangerous to obtain; (vi)
the approach suffers from the fact that error is rare events,
leading to too unbalanced data sets, which are hard to learn
from, (vii) the learned relations rarely take into account of
causality, i.e., the direct relation between problems and symp-
toms, (viii) anomaly detection on real-time through machine
learning techniques [1].

Using their definitions, this paper’s main work can be
categorized as a data-driven model to infer a measurement
model and use of a data-driven model to predict the time to
failure and prognosis.

Ill. CONDITION MONITORING OF MINING MACHINERY

A condition monitoring system can increase the RUL of
the asset while keeping uptime and high production quality.
Currently, most industries are working in the term called
“Time on Tools,” which means improving the maintenance
process based on statistical analysis and real-time asset mea-
surements. This way, “Time on Tools” allows increasing the
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RUL of the asset, also increasing overall labour effectiveness.
Nowadays, technological advancements make it feasible to
collect data from many industrial processes and apply the
“Time on Tools” concept [20].

State of the art on condition monitoring of heavy machin-
ery can be divided into two groups: the Original Equipment
Manufacturer (OEM) and the Original Technology Manufac-
turer (OTM) solutions. The OEM solutions refer to solutions
for some product which are developed by the own product
developer. On the other hand, OTM solutions refer to some
products developed for other companies.

Within the OEM solution for heavy machinery are the
Engine Control Modules (ECMs) [21]. These systems use
actuators like high-pressure pumps, cylinder injectors, among
others. Typically, the ECM controls four subsystems in heavy
machinery: air-fuel rate, idle speed, valves synchronization,
and turn on synchronization. The ECMs receive abnormal
signals from the OEM sensors, and they deliver a failure alert,
tagged with a code. So, these devices work under reactive
maintenance logic, which is not enough to avoid losses asso-
ciated with catastrophic failures.

Additionally, OEMs have developed some improvements
to measure in real-time when a component of the engine
fails [22]. However, these solutions rely on the same reac-
tive and non-predictive fault detection strategy. ECM-based
solutions exhibit a TRL 8 or 9.

Other OTM solutions with a TRL 4 or less are outlined
below. Oppenheimer er al. proposed a physical model to
predict shafts cracked in a machine. The proposed system
uses a combination of machine-fault models and measured
machine signatures to identify and classify the machine’s
state. Some issues were found related to the identification
of the machine’s loads in measured data, which impaired the
machine state classification [23].

A logistic regression model was used for calculating the
probability of failure of a machine using given condition
variables. Also, the remaining useful life of the asset was
estimated using the proposed approach [24]. The system
achieves promising results in health predictions for an eleva-
tor system. However, tests were not reported for heavy equip-
ment case. Then, not enough data is available to validate its
accuracy.

Gebraeel er al. [25] proposed a neural network-based
degradation model to calculate the residual life distribution
of partially degraded components. In this solution, predicted
failure times are estimated using a dynamic Wavelet neural
network using real-time sensory signals (vibrations). These
estimations are used to derive prior failure time distribution
for the component being monitored. This system was tested
for stationary machinery with good results (error = 7.56%).

Other solutions have been developed for machinery mon-
itoring. In [26] a new wireless sensor network for indoor
industrial monitoring to optimize the data packet and energy
consumption with high reliability was developed. This solu-
tion focused on optimizing network protocol and topology
to support the condition monitoring of industrial machinery.
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TABLE 1. Commercial solutions for machinery monitoring.

Item \ Solution’s Company System 1 System 2 System 3 PROPOSED SYSTEM
Effective work time measurement Yes Yes. Yes Yes.
Vibration severity assessment No. No. No. Yes.
Fuel consumption Yes Yes. Yes Yes, optional feature.
Asset Geolocation Yes Yes. Yes Yes, optional feature

Operation cost optimization through machine

Yes. Calculation

Yes, method based

Yes, the method

learning and unstructured data analysis mgthod not on reliability data. based on reliability Yes
disclosed data.
Prev@ntlve mgmtenance plans through Yes. Calculation Yes, method based Yes, method based
machine learning and unstructured data method not R L Yes
analysis disclosed. on reliability data. on reliability data.
L . . Yes. Calculation Yes, method based
Predictive maintenance plans through machine
. . method not No. on control curve Yes
learning and unstructured data analysis . .
disclosed. delimitation.
Supplies and spare parts purchase plans
through machine learning and unstructured No. Yes, rr}etl_l(_)d based No. No, under R&D.
data analysis on reliability data.
Suitable for mining heavy equipment Yes. Yes. Ves. Yes

monitoring

This work makes more evident the relevance of the com-
munication network and protocol for condition monitoring
purposes.

Several works addressed the instrumentation of critical
mining machinery with external condition monitoring sys-
tems. These solutions improved the OEE of machinery oper-
ating under stationary conditions such as conveyor belts,
crushers, ball mills and vibratory screens. The solutions pro-
posed in these works aims to improve the OEE while reduces
measurement noise in electronic instrumentation [27]-[30].

Another work developed a system with an accelerom-
eter and a microphone to assess a diesel engine’s health
status. In this work, the vibration magnitude (RMS value)
and the vibration frequency spectrum obtained from 3-axis
accelerometer signals were used for condition monitoring
and fault analysis [31]. This system was developed only
for diesel engine monitoring. The early fault detection in
other critical components using the proposed solution is not
reported.

Table 1 shows a feature comparison between the exist-
ing commercial OTM solution (TRL 7-9) to monitor heavy
machinery. These systems use a plurality of sensors, typ-
ically temperature, pressure, and Hobb meter sensors for
performing the condition monitoring. None of the solutions
in Table 1 provides health status predictions based on the
heavy machinery’s reliability. All solutions in Table 1 estab-
lish empirical control curves based on physics-models and
experience-based models. These control curves are used to
trigger failure alarms using fixed thresholds according to the
machinery’s condition variables. Thus, Table 1’s monitoring
systems are not based on the machinery’s current state for
maintenance diagnostics. These systems provide a diagnosis
based on hours of work and do not quantify the intensity of
work.
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In summary, still, there is an opportunity for R&D
in condition monitoring systems for heavy machinery.
A number of technology gaps were identified as manda-
tory to reach the TRL level demanded by the application:
(i) smaller size of sensors, (i) device’s weight reduction,
(iif) increase of energy autonomy, (iv) avoid wiring for instru-
mentation and/or power, (v) smart wireless communications,
(vi) improve IP protection to withstand harsh environmental
conditions, (vii) proper attachment system for easy and fast
deployment, (viii) avoid drilling or welding for device attach-
ment to machines, (ix) short-term training of data-driven
models, and (x) use of small datasets with limited historical
information content for the training of predictive condition
monitoring models, among others.

IV. DATA-DRIVEN APPROACHES

Data-driven approaches addressed in this paper contain both
statistical and machine learning techniques. These techniques
include Artificial Neural Network, Particle Filtering, Neuro-
Fuzzy Inference system, Hidden Markov model, Gaussian
Process Regression, Match Matrix, Fuzzy Logic, Extended
Kalman Filtering, and Support Vector Machine (SVM).

Fig. 3 shows the different requirements for each tech-
nique to achieve adequate operation of prediction mod-
els [32]. Gaussian process regression and Match matrix
demand heavy computational time while Particle Filtering,
the hidden Markov model, Artificial Neural Network, and
Neuro-Fuzzy systems require considerable amounts of his-
torical data to perform prognosis. These requirements limit
the applicability of these techniques to real-world implemen-
tation for real-time prediction.

Heavy historical data requirement is not desirable for the
application since historical data is not always available or
well labelled. The use of unreliable and/or low-quality data
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FIGURE 3. Machine learning models classification according to their specific requirements.

results in unreliable, inaccurate forecasts. It causes false
alarms and unnecessary machine downtime [32], [33]. On the
other hand, heavy computation time can be avoided using
modern powerfull multi-core computers/servers and/or cloud
computing. Despite the processing hardware available on
premise or in the cloud, the most suitable algorithms for
the application will be the ones with moderate data required
to ensure real-time operation when scale-up the number of
machines being monitored.

Considering the design boundary conditions of data
requirement and computation time, the best machine learning
algorithms for the application should not require a signifi-
cant computational capacity, must be able to provide good
predictions with small datasets, and be easy to implement as
industrial monitoring systems [34]. The algorithms that meets
these characteristics are [35], [36]:

(i) Support Vector Machine (SVM): this technique has the
goal of finding a hyperplane in N-dimensional space (with
n data classes) that separates the data. In most situations, this
can have multiple solutions. However, this algorithm finds the
one with the most significant margin to the data classes. Thus,
higher reliability in the classification is achieved. To maxi-
mize the margin, support vectors are used, which correspond
to the data closest to the hyperplane. These support vectors
will condition the position and orientation of the hyperplane.
A cost function is calculated, from which its partial deriva-
tives are obtained to optimize using a gradient-based algo-
rithm finally. Table 2 shows the advantages and disadvantages
of the SVM algorithm [37] [38] [39].

(ii) Naive Bayes: it is a non-parametric and Bayesian
approach process that provides uncertainty measurements
to predictions. Unlike other classification approaches,
the Bayesian infers the probability distribution of the data,
starting from an initial probability and recalculating it with
the data’s evidence using the Bayes rule. Thus, it weights
each possible prediction with its last calculated probability
distribution from the training to predict unknown data. Using
Gaussian regression calculates the probability distribution
over all potential curves that fit the data. Equal starts from a
probability distribution and recalculates it with the data. Nor-
mally, one begins by assuming a Gaussian distribution of the
data. However, knowing the input data, specific parameters
can be preset to improve the regression process, such as the
mean, covariance, and the data.
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TABLE 2. Main features of SVM.

Advantages Disadvantages
« Flexible, probabilistic non- * High computational cost
parametric  technique that <There are numerical stability
offers prediction of uncertainty — problems in restricted quadratic
through the variance around programming.
the mean prediction of the < The parameters need to be
bayes theorem tailored specifically to the
» High adaptability to handle problem at hand and this can be
high-dimensional data and can  difficult.

achieve accurate prediction
even when the sample size is
small

Table 3 shows the advantages and disadvantages of the
Naive Bayes algorithm [40]-[42].

(iii) Discriminant Analysis: Pattern recognition and
machine learning algorithm that finds a linear combination
used to build up predictive models and forecast the group to
which an observation belongs based on specific characteris-
tics, that is, to identify the characteristics that differentiate
and define its profile.

Table 4 shows the advantages and disadvantages ofDis-
criminant analysis [43].

V. SOLUTION DESCRIPTION

The proposed system is a comprehensive solution that
comprises hardware and firmware for data collection, and
software for O&M data analysis of heavy machinery in
non-stationary operations.

Each heavy machinery has its own vibratory patterns [44],
which can help to detect machinery’s health status in real-
time. The proposed solution uses several wireless accelerom-
eter sensor modules located at critical points in the machin-
ery. The solution requires sensing the heavy machinery in
a non-invasive way to obtain acceleration signals during
normal operation. The sensor modules (named Bluetooth
accelerometer sensors) use a dedicated BLE wireless net-
work for data transmission [45], [46]. The distributed sensor
network considers one hub module (named gateway pub-
lisher) for backhaul of vibrations readings from Bluetooth
accelerometer sensors using a star network topology [45].
The hub module concentrates the measurements from all the
sensor modules of the network, and send this information
through a 3G/4G/LTE network to the system server connected
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TABLE 3. Main Features Naive Bayes.

Advantages

Disadvantages

e Can calculate degradation
prediction for dynamic
classification problems.

» Flexible, probabilistic non-
parametric technique that offers
prediction  of  uncertainty
through the variance around the
mean prediction of the Gaussian
process model.

* High adaptability to handle
high-dimensional data and can
achieve accurate prediction even
when the sample size is small

. Allows non-parametric
learning of a regression function
from noisy data, avoiding
simple parametric assumptions.

» High computational load,
especially when training data
sets are large

* Assume that all points are
normally distributed and that
the error between each point is
correlated

o It isn't easy to find optimal
values of the scale parameters
» Assume that the noise in the
training data is constant
throughout the input domain.

TABLE 4. Main features of Discriminant analysis.

Advantages

Disadvantages

* Robust and accurate results
with large input data.

* High precision with
maximized decision limit.

« Efficient for small or large
data sets and real-time
analysis.

« It is successfully applied to
the diagnosis of machinery
failure

. Good generalization
performance on a limited
number of learning patterns

« There is no standard method for
choosing the kernel function.

* There are numerical stability
problems in restricted quadratic
programming.

e It is difficult to construct a
univariate time series for the
remaining life and the sampling
time.

» The parameters need to be
tailored specifically to the
problem at hand and this can be
difficult.

to network backbone on the mine site [46], [47]. The data is
stored in a SQL compatible database server, which is accessed
by a web platform for O&M monitoring and analysis pur-
poses. Table 1 shows a comparison between three commercial
condition monitoring solutions and proposed system. The
developed solution exceeds the features of commercial sys-
tem studied.

A. GATEWAY Publisher-Hub MODULE DESIGN

The design of the Hub module of the sensor network or Gate-
way Publisher (GP) meets different technical and functional
requirements to ensure embedded capabilities: (i) network’s
management, (i) data packets routing and traffic control,
(iii) power supply unit, (iv) power management unit, (v) data
processing unit, and (vi) sensing unit. Fig. 4 shows the GP
device functional diagram. It should be pointed out that the
hub module includes the same embedded sensing capabilities
that sensor modules. Each functional block embedded in the
GP device performs the following tasks:

1) PROCESSING SYSTEM

This functional block is responsible for coordinating the
communication with Bluetooth Accelerometer Sensor (BAS)
modules using BLE links. The BAS devices’ vibration
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information is sent to the WEB server through the
3G/4G/LTE module.

2) COMMUNICATION SYSTEM

This functional block comprises two elements, the BLE con-
troller, which communicates using a star topology to the BAS
units. The second element is the 3G/4G/LTE controller, which
establishes communication with the WEB server.

3) POWER MANAGEMENT SYSTEM

The primary power source of the Hub modules is the on-board
power system of the heavy machines. A voltage regulation
stage is then used to supply a LiPo battery to provide auton-
omy to the system if the machine power fails.

B. BLUETOOTH ACCELEROMETER SENSOR DESIGN

The design of the BAS measuring devices of the sensor
network considers the following embedded capabilities: data
storage and processing functionalities, wireless communi-
cation, 3-axis inertial measurement, accelerometer, power
supply, and power management. Fig. 5 shows the BAS device
functional diagram. Each available block embedded in BAS
devices performs the following tasks:

1) PROCESSING SYSTEM

Its function is processing and managing the vibration sig-
nals coming from the IMU sensor (Bosch BMI160) and
the accelerometer (Rohm Semiconductor Kx220). The BAS
device uses a combination of IMU and accelerometer to
extend the frequency range without lowering its resolution.
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FIGURE 6. Power consumption of BAS and GP devices during the
communication tests.

Thus, the system achieves a total frequency range of
1-5000 [Hz] for inertial signals measurement. Some parame-
ters are calculated in the edge BAS device from the accelera-
tion signals, which are described in section VIL.D.

2) RF COMMUNICATION SYSTEM

This functional block is responsible for the data transmission
of estimated parameters of inertial signals measured by the
BAS device to the GP device or hub module of the sensor
network using BLE.

3) POWER MANAGEMENT SYSTEM

An embedded 3.7V 1400mAh LiPo battery is used to power
the systems of each BAS device. The proposed design con-
siders battery wireless recharging.

C. DEVICES IMPLEMENTATION

1) ELECTRONICS ENGINEERING

Prototypes of GP and BAS devices were implemented for
functional performance testing and evaluation. During lab
testing, measurements of power consumption were accom-
plished using Fluke 287 multimeter (Fluke Corporation,
Everett, Washington, USA) and the TDS1002C-EDU Tek-
tronix Oscilloscope (Tektronix, Beaverton, Oregon, USA).
The test protocol was as follows: (i) both devices start to
measure inertial signals simultaneously, (ii) then establishes
a BLE connection between each other, (iii) after BAS device
complete a measurement cycle, it sent the vibration measure-
ment parameters to the GP device, (iv) when the GP receives
the BAS devices’ information, it starts the 3G connection to
send the information to the application web server, (v) finally,
the BLE connection ends when the last data sent triggers the
3G connection’s ending in the GP device.

Fig. 6 shows the power consumption of the GP and the
BAS modules. The average power consumption of the GP is
468 mA and 58 mA for the BAS. Thus, an energy autonomy
of 3 hrs and 24 hrs is achieved in the devices, respectively.

2) MECHANICAL ENGINEERING
To ensure an IP67 protection against harsh environ-
ment conditions in mining, an Epoxy resin’s block of
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charging system (only in BAS device), c) Hardware (GP and BAS devices),
d) LiPo Battery, e) high-field magnet f) piece of heavy equipment body
and/or chassis.

90 x 40 x 29[mm)] size for the GP device and 70 x 22 x
30[mm] for BAS device were manufactured. Fig. 7 shows a
3D assembly model for GP and BAS devices.

D. DATA PROCESSING

After acceleration signal acquisition, the RMS value of accel-
erations is calculated, and the frequency spectrum analysis
of measured signals is performed in each sensor module
(GP and/or BAS). A Fast Fourier Transform (FFT) is applied
to the vibration signals for frequency spectrum analysis. The
frequency spectrum analysis is implemented on the micro-
controller embedded on each sensor module. Thus, the FFT
uses a one-minute window for each frequency spectrum anal-
ysis. The data processing algorithm stores the five highest
predominant frequencies with their respective amplitudes
in 3-axis.

The BMI160 and KX220 accelerometers of the GP and
BAS devices measure at a frequency of 500Hz and 5000Hz,
respectively. This data is stored in a buffer per one minute
to be processed. Every 15 minutes, the calculated indicators
(1 per minute, 15 indicators per sampling cycle) are averaged
and sent to the GP for further processing and analysis at the
application web server. This strategy is chosen to decrease
data traffic between sensor network devices.

E. COMMUNICATION PROTOCOL
The main challenge to design the sensor devices is LiPo
batteries’ limited energy capacity in BAS devices.

To handle the energy restriction, the BAS device first
measures the sensors’ variables and then pre-process the
information to assemble a package with less data than the
originals. This way, fewer transactions using BLE connection
are needed, which results in less power demand. Once the
pre-processing is complete, the BLE is enabled, and the data
is sent; finally, the BLE is disabled.

The data packet transferred from a BAS to a GP is 78 bytes
length. This data packet comprises 4 bytes for the header and
74 for the accelerometer’s pre-processed data. Table 5 shows
the data packet distribution. It should be noted that a BLE
transaction (data packet of Table 5) is made every 15 minutes.
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TABLE 5. BAS data packet specification.

TABLE 6. GP data packet specification.

Item Content Bytes Data
type
D ID Slave Device 2 UINTS
header Long msg 2 UINT8
RMS per axis (X, y, z). 12 UINT8
BMI160 Five frequencies Wlth major amplitudes per 10 UINTS
axis (X, y, z).
Five major amplitude per axis (x, y, z). 10 UINT8
RMS per axis (X, y, z). 12 UINT8
KX220 Five frequencies Wlth major amplitudes per 20 UINTS
axis (X, y, z).
Five major amplitude per axis (x, y, z). 10 UINT8
Total 78

The GP or Hub module of the sensor network act as a
gateway for the BAS modules, so the GP’s BLE is always
enabled. GP device is always connected to a 3G network to
send the BAS data to a remote server for further processing
and analysis. Due to these two conditions, the GP device
is connected to the machine power system with a backup
battery (see section V). The data packet that GP module sent
to the server over the 3G network has a minimum length
of 84 and a maximum length of 552 bytes. The data packet
length depends on the amount of BAS modules connected
to the GP, which depends on the heavy machinery under
evaluation. Table 6 specifies the data packet distribution sent
by the GP device to the remote server. The data packet
comprises 4 bytes for header and 80 bytes (up to 548 bytes)
for pre-processed data. This pre-processed data is constituted
by the machine effective working time and the vibration data
from the accelerometers.

F. HEALTH STATUS DETECTION ALGORITHM
This research proposes a cost-effective solution for imple-
menting a vibration sensor network with wireless commu-
nication and machine learning data-driven capabilities for
condition monitoring of non-stationary heavy machinery in
mining operations without interference with existing WiFi
2.4/5GHz networks. During machine operation, 3-axis accel-
erations are measured using a plurality of sensors deployed
across the machine. The machine accelerations (amplitudes
and frequencies) are measured in two different frequency
spectrums to improve each sensing location’s time resolu-
tion. In this paper, multiple machine learning algorithms use
these machine data to assess condition according to vendor
recommendations and operational benchmark. Proposed
data-driven machine learning models classify the machine
condition in a state according to the ISO 2372 standards
for vibration severity: Good, Acceptable, Unsatisfactory,
or Unacceptable. The parameters described in section VII are
used as input for machine health status classification.

The Good state indicates that the machine is work-
ing in conditions that do not impair asset lifespan.
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Item Content Bytes Type Character
ID Master Device 2 UINTS8
ID header -
Long msg 2 UINT8 &
E]
Machine working hours 2 UINT8 =3
(=%
Master measurement 78 UINTS
data packet
Slave 1 measurement 73 _
data packet
Slave 2 measurement 78 _
data packet
Vibration  Slave 3 measurement 78 _ o
sensor data data packet =
Slave 4 measurement 78 _ %
data packet =
Slave 5 measurement 78 _
data packet
Slave 6 measurement 78 _
data packet
Minimum total 84
Maximum total 552

The Acceptable state indicates work conditions in which
the machine’s useful life is not significantly reduced. The
Unsatisfactory state indicates that the machine can operate
for a limited period in the current operating condition until
the need for corrective action arises. The Unacceptable state
indicates that the machine will suffer a critical failure in short,
maintenance is mandatory immediately.

The machine learning algorithms chosen for machine
health status classification during non-stationary operations
are the following: Naive Bayes, Support Vector Machine
(SVM), and Discriminant Analysis.

The three algorithms were tested considering a prior opti-
mization process of method’s parameters, kernel, support,
and type with different combinations to achieve a better pos-
sible classification. The protocol to train the machine learning
algorithm was the following:

1) Test an algorithm with default parameters.
2) Change the kernel and choose the best.
3) Change support.

The training protocol was performed using the Matlab
software classification learner toolbox (MATLAB R2020a,
Mathworks, Inc., Natick, MA, USA).

VI. RESULTS

For testing the proposed system, two backhoes machines
were used. These backhoes were model 3CX ECO 15FT from
the JCB manufacturer (JCB, Rocester, UK). The measure-
ments in both industrial machines were performed during
60 continuous working days. Both backhoes integrated the
same machine fleet. Both machines were used as earthmovers
in road maintenance activities in a mining site located in
Chile. The measurements elapsed by 60 working days until
one of the backhoes suffer a diesel engine critical failure.
The measurement survey end for the two machines for data
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labelling and standardizing after this unplanned downtime.
Collected data was analyzed and classified by an expert
in heavy machinery maintenance and condition monitoring
(data manual labelling).

For practical purposes, only the vibration data from a BAS
module installed in the machine for diesel engine monitoring
is discussed in this section. However, it is important to note
that the vibration data from any BAS device installed to
monitoring the machine has the same structure.

During field test and measurements, the backhoe that suf-
fers the critical breakdown (machine #1) was labelled by
the condition monitoring expert into four states of vibratory
severity during the 60 days trial. On the other hand, the back-
hoe without critical faults during the 60 days trial (machine
#2) was labelled by the expert only into the states Good and
Acceptable.

A. GENERAL FRAMEWORK

The proposed approach is simple but efficient. It uses the
classical steps of data preparation, feature extraction, feature
selection and classifier training [47].

The approach’s input is the raw data generated by sensor
modules installed in each heavy machinery every 15 minutes
(5 highest predominant frequencies in measured vibrations
with their respective RMS amplitudes in 3-axis).

In other words, the input from each sensor is a multivariate
time series with ten variables {7y, T3, ..., T19}, where T,
is a series of floating point numbers {x1, x2, ..., X]0} made
sequentially through time.

After receiving the input data, datasets are cleaned and
prepared for statistical analysis, feature extraction and clas-
sifiers training. Several techniques were used along the data
analysis process to get the best performance in speed and
accuracy. The output of the approach predicts each moni-
tored main component’s health status and heavy machinery in
real-time.

B. DATA PREPARATION

The raw sensor data are not directly ready to build up the
classification models. In several cases, these data contain
outliers and missing values that will influence the features’
calculation accuracy.

Data cleansing is a mandatory phase that should precede all
other machine learning phases. In data cleansing, two tasks
were executed: (i) identification and handling of missing
values, and (ii) identification and handling of outliers.

The outlier is a numeric value with an unusually high
deviation from the mean or median value. Although there
are numerous sophisticated algorithms for outlier detection,
a simple statistical method is used in this work. This method is
based on the interquartile range, which measures the variabil-
ity of data [47]. After the identification, the outliers, as well as
the missing values, were substituted by the mean value of the
dataset in the neighbourhood. The data cleansing procedure is
simple but very efficient. It can remove most erroneous values
from the data.
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C. DATA NORMALIZATION

Data were normalized to reduce unwanted variation between
datasets as well as to allow data from different scales to
be compared by converting them into a common unified
range [48].

Since the vibration’s excursion range of heavy machin-
ery differs from one machine to another, for comparison all
vibration data measurements were normalized by dividing
by the maximum vibratory severity reported by vendors and
operational data benchmark per type of heavy machine.

D. STATISTICAL FEATURE EXTRACTION

The second step in the proposed approach is feature extrac-
tion, which is transforming patterns in time series into fea-
tures that are considered a compressed representation of
datasets.

Feature extraction is related to dimensionality reduction of
datasets. In machine learning, feature extraction starts from
an initial set of measured data and builds derived values or
features intended to be informative and non-redundant, assist-
ing the subsequent learning and generalization steps for better
process interpretations and predictions. The selected features
are expected to contain the relevant information from the
input data, so feature extraction involves reducing the num-
ber of resources required to describe large datasets. Another
objective of feature extraction methods is to avoid overfit-
ting the data to make data analysis and model prediction
possible.

Heavy machinery time series have very high dimension-
ality. Therefore, mining such data is a challenge because
a huge number of features can be extracted from the raw
data [47]. A high-level representation is built to reduce the
data dimensionality, where a set of significant features are
calculated. These features provide an approximation of the
original time series datasets.

For each time series variable T} = {x1, x2, ..., X190}, I =
1...10, a number of statistical features were calculated to
measure different properties of each variable. In this paper,
the statistical feature analysis considers: (i) measures of
central tendency, (if) measures of variability, (ii) measures
of shape, (iv) measures of position, and (v) measures of
impurity. In specific, the statistical analysis included the
following evaluations: (i) arithmetic mean value, (ii) stan-
dard deviation, (iii) root-mean-square, (iv) coefficient of vari-
ation or relative standard deviation, and (v) standardized
moment, to measure tendency and dispersion of frequency
distribution of measured data; (vi) kurtosis, (vii) skewness,
(viii) Fisher-Pearson asymmetry coefficient of skewness,
to measure shape attributes and other information about curve
behaviour; and, (ix) percentiles (p10, p25, p50, p80) and (x)
entropy to measure position and impurity. In addition to the
above-mentioned measures, basic statistical functions were
calculated like min, max, sum, first, last and range.

The sensor modules designed are capable of acquiring
the first 10 predominant frequency components of the vibra-
tory signal generated by the machine’s piece element under
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FIGURE 8. Scatter plots of predominant frequency components (amplitudes and frequencies) per axis. a) b) c) d) e) f).

evaluation (sampling frequency = 440 Hz, bandwidth up to
220 Hz). Operational data shown that the cumulative sum
of magnitudes of the 5 predominant frequency components
of the signal accounts for 85% of the signal’s information,
approximately [47], [48].

The statistical feature analysis of the actual frequency val-
ues for the 5 predominant components of vibratory signals
per axis shown:

o The machine #1 presents a coefficient of variation of
the average values of predominant frequencies of 0.2%
versus 0.11% for machine #2 (~100% difference in
dispersion of frequency values between a machine in
critical failure condition and a machine in good oper-
ational conditions). The machine #1 (that reached the
unacceptable health status) showed greater variability
in the frequency data under the same operating con-
ditions during the 60 trial days. This feature analy-
sis of field data shown a direct relationship between
dispersion of predominant frequencies in the vibra-
tory signals and the machine health status. The higher
the coefficient of variation and dispersion of predomi-
nant frequency values, the worse the machine’s health
status.

o The Fisher-Pearson asymmetry coefficients of skewness
for the average values of predominant frequencies in x-
, y- and z-axis for machine #1 (heavy machinery with
information in the 4 vibratory severity states accord-
ing to ISO 2372) are —0.0013, —0.0043 and 0.011,
respectively. The dominant frequency in 3-axis presents
a leptokurtic distribution, i.e. signals with a positive
excess kurtosis, while the other predominant frequen-
cies present a platykurtic distribution, i.e. signals with
a negative excess kurtosis. This information was key
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for kernel estimation in the application of Naive Bayes
and SVM algorithms for real-time predictions based
on frequency information. In this work, the field data
collected from the two backhoes during the 60 days trial
was used to estimate the initial kernel parameters for
both machine learning techniques. Then, sliding window
trend analysis was applied to the time series to update
the kernel parameters in real-time using sampled and
resampled time data series to get an accuracy above 95%
in vibratory severity predictions and improved forecast-
ing horizon based on models fitted to present and past
observations.

In Fig. 8.a-c shows the dispersion of the frequency val-
ues of the 3 predominant components of the signal mea-
sured with their respective vibration severity diagnostic
labels according to the ISO 2372 standards. The pre-
dominant accelerations were concentrated around 30 Hz
(29.3 to 30.4 Hz), 90 Hz (89.2 to 90.7 Hz) and 150 Hz
(149 to 151 Hz) for the x-, y- and z-axis, respectively.
The data on z-axis presents a higher dispersion than the
measurements on the other axes. The z-axis corresponds
to the direction with highest degree of freedom of mobile
heavy machinery. Finally, it should be noted that the
actual vibrations with predominant frequencies away
apart from the average values reported (30 Hz, 90 Hz and
150 Hz) indicated the machinery condition evolution to
critical health status in terms of vibratory severity.

The statistical feature analysis of the actual amplitude

values for the 5 predominant components of vibratory signals
per axis shown:

o The machine #1 presents a coefficient of variation

of the average amplitudes of predominant frequency
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TABLE 7. Classification results with different classfiers algorithms.

Machine Learning Accuracy Recall Recall Recall Recall
Algorithm [%] Good class [%] Acceptable class [%] Unsatisfactory class [%] Unacceptable class [%]
Naive Bayes' 92.66 97.52 85.82 77.74 93.76
Naive Bayes' with
smoothing density 96.02 99.97 89.09 86.61 98.12
estimate model.
Naive Bayes' with
smoothing density 96.14 99.97 88.66 88.38 98.96
estimate model and
positive support
SVM? Linear Kernel 95.02 98.20 89.40 86.77 97.71
) .
SVM? polynomial order o, 96.56 83.91 82.09 9334
2 kernel
SVM? gaussian kernel
with a scale of 95.60 99.50 90.01 83.70 96.67
sqrt(datalength)*2
SVM? gaussian kernel
with a scale of 89.01 98.99 89.71 85.64 86.44
sqrt(datalength)/2
SVM? gaussian kernel
with a scale of 95.02 99.16 89.89 78.70 98.33
sqrt(datalength)*0.56
Linear Discriminant 84.22 87.88 77.88 73.87 87.94
Quadratic Discriminant 93.25 97.59 87.18 79.03 95.21

! The best results with Naive Bayes was always the technique with gaussian kernel.
2 SVM was tested only with unbonded support because it requires normalized data as input.

components of 127% versus 53.7% for machine #2 (a
machine in critical failure condition reached 2.4 times
higher dispersion of average amplitudes of predominant
frequency components than a machine in good oper-
ational conditions). The machine #1 (that reached the
unacceptable health status) showed greater variability in
vibration frequency components’ amplitudes under the
same operating conditions during the 60 trial days. This
feature analysis of field data shown a direct relationship
between amplitude dispersion of predominant frequency
components in the vibratory signals and the machine
health status. The higher the coefficient of variation and
dispersion of amplitude values, the worst the machine
health status.

o The Fisher-Pearson asymmetry coefficients of skewness
for the average amplitudes of predominant frequency
components in x-, y- and z-axis for machine #1 (heavy
machinery with information in the 4 vibratory sever-
ity states according to ISO 2372) are 6.4, 7.5 and
0.011, respectively. The predominant frequencies
in 3-axis presents a leptokurtic distribution, i.e. signals
with a positive excess kurtosis. This information was
also key for kernel estimation in applying Naive Bayes
and SVM algorithms for real-time predictions based on
amplitude information.

o In Fig. 8.d-f shows the dispersion of the average ampli-
tude values of the 3 predominant components of the
signal measured with their respective vibration sever-
ity diagnostic labels according to the ISO 2372 stan-
dards. The predominant accelerations’ amplitude was
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concentrated below 0.01, 0.01 and 0.02 for Good and
Acceptable states in the x-, y- and z-axis, respectively.
Any excursion beyond those limits indicated the evolu-
tion of machine condition to Unsatisfactory and Unac-
ceptable states in terms of vibratory severity.

E. FEATURE SELECTION
High dimensional datasets, which has hundreds of possible
features, can contain a high degree of irrelevant and redundant
information which might greatly reduce the performance of
machine learning algorithms [49]. Therefore, feature selec-
tion becomes necessary.

Designers must choose a subset of relevant features with
high predictive value for creating robust machine learn-
ing models [45], [46]. In this work, feature selection was
implemented at hardware/firmware level to improve selected
machine learning models’ performance while reducing the
data traffic between sensor network devices.

All the machine learning techniques shown in Fig.3 can be
trained using time series in raw data format and/or processed
values like the RMS value of vibratory signal that represents
the mechanical energy release in our study. The decision of
what type of data should be used to train the data-driven
models in each case is given by technique requirements such
as precision, computational capacity and amount of data
available, among others.

Data clustering on the measured time series was used in
this work for feature selection using key indicators for diag-
nosis of machinery health status like RMS value of vibratory
signals and the FFT frequency analysis of the signals over
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FIGURE 9. Original time series of RMS vibration data for machines #1 and #2.

sliding windows. The amplitude spectrum analysis was used
to determine the 5 predominant frequency components, the
dispersion of the actual frequency and amplitude values of the
predominant frequencies, and the statistical frequency distri-
bution of the vibratory signal in each time window. These
operating variables are considered relevant for the diagnosis
health state of heavy machinery [49].

F. CLASSIFICATION RESULTS

With all the data from the measurements, the machine learn-
ing algorithms described in section V-F was trained and eval-
uated. These algorithms were trained only with the data from
a BAS module located in chassis close to the diesel engine.

The classification results attained with the machine learn-
ing algorithms selected are shown in Table 7. The best results
in both, prediction accuracy and true positive rate or recall
for all states of vibratory severity according to ISO 2372 as a
whole, were achieved with the Naive Bayes algorithm with a
smoothing density estimate model and positive support. This
algorithm achieves a prediction accuracy exceeding 96% with
an average true positive rate or recall for health state predic-
tion of 94%. Moreover, the same machine learning algorithm
allows to predict a critical failure of the machinery with a
forecasting horizon up to 170 hours, being the best-in-class
among techniques used in this work. Thus, data-driven mod-
els help improving early fault detection up to 50 hours before
manual diagnosis. This indicates that proposed design satis-
fies the condition monitoring requirements and will help to
generate predictive maintenance plans. For more details see
Tables 7 and 10.

Fig. 9 shows the RMS values of the vibrations of machine
#1 and machine #2. A condition monitoring expert labelled
these signals based on their vibratory severity for health state
classification according to ISO 2372. The vibrations collected
during the 60 days trial in both backhoes are denominated
Original signals in this work. Note that machine #1 exhibited
the four possible health state conditions (Good, Acceptable,
Unsatisfactory and Unacceptable) while machine #2 only
reached the first 2 states. Table 8 shows each health state’s
specific start time along measured time series dataset for
machine #1. This table shows the health status predic-
tions provided by machine learning models versus manual
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TABLE 8. Health state transition time for machine #1 using original
signal.

Start time [h]

Good  Acceptable  Unsatisfactory ~ Unacceptable
state state state state
Expert Label 0 357 675 830
Naive.
Bayesl with
smoothing
density 0 358 676 831
estimate
model and
positive
support.
Naive Bayes. 0 360 678 832
SVM?
Linear. 0 359 677 832
Kermel
 Linear 0 365 688 840
Discriminant.
° 100
o o
: o —p 50
.. .. o o
.. ° N ° Class A Class B

Original Imbalanced Data

Class A Class B

SMOTE.resampling Resampled Balanced Data

FIGURE 10. Schematic diagram of synthetic minority random
oversampling technique (SMOTE resampling) used in this work.

diagnosis results. It should be pointed out that none of the
proposed machine learning models were able to provide
better forecasting horizon than manual diagnosis based on
original signals datasets. This result is mainly due to the fact
that changes in machine health state occur very quick and
abruptly. Therefore, the system cannot capture enough infor-
mation on the transitions between health states to improve
forecasting horizon while ensuring good prediction accuracy.
Most common machine learning algorithms usually work
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FIGURE 12. Machine learning health state classification results based on RMS vibration data for machine

#1 according to 1SO 2372.

well on balanced training sets, that is, datasets in which all
classes are approximately represented equally [50]. Because
these algorithms treat all misclassifications equally, they bias
classes with many instances, resulting in false accuracy esti-
mates. Therefore, the accuracy estimates may be unreliable
and classes with only a few values are often misclassified
or neglected [50]. This issue is known as a class imbalance
problem in machine learning. Datasets that do not meet
this criterion are referred to as imbalanced data [50]. Most
condition monitoring datasets are imbalanced data in some
extent. Time series of vibration excursions collected from
heavy machinery in non-stationary operations under typical
operating conditions in mine sites usually are not equal in data
density for each class. It can additionally be influenced by the
sampling strategy [50].

Several approaches have been developed in the machine
learning community to handle imbalanced data. One is the
design of new models that can directly handle imbalanced
datasuch aspplying cost functions that penalize wrong clas-
sification [51]. Another approach is to apply different evalu-
ation metrics instead of the overall accuracy, such precision
and recall [52], [53]. A third approach is to resample the
data [54].

Several resampling approaches have been proposed which
can be separated in two groups: (a) data-driven and (b) algo-
rithm driven methods [52], [53] [54]. Most researchers have
employed data-driven methods [54] which use resampling
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techniques to adjust the ratio between the classes in the train-
ing set [51]. In their simplest forms, random oversampling
(ROS) increase the minority class data by random replica-
tion of their occurrence, and random undersampling (RUS)
decreases the number of majority class data by randomly
removing data from the original dataset. This consequently
allows machine learning algorithms to be trained from the
balanced data without bias [52] [53].

With the aim to improve forecasting horizon in health state
predictions, synthetic minority random oversampling tech-
nique (SMOTE resampling) was used in this work over the
RMS vibration measured signals focused in state transition
data. (see Fig. 10). Random oversampling is the simplest
oversampling technique to balance the imbalanced nature of
the dataset. It balances the data by replicating the minority
class samples. This does not cause any information loss, but
the dataset is prone to overfitting as the same information is
replicated. To avoid this issue, SMOTE is preferred. It creates
new synthetic samples to balance the dataset. SMOTE works
by utilizing a k-nearest neighbor algorithm to create synthetic
data. Steps samples are: (i) identify the feature vector and
its nearest neighbor, (if) compute the distance between the
two sample points, (iif) multiply the distance with a random
number between O and 1, (iv) identify a new point on the
line segment at the computed distance, and (v) repeat the
process for identified feature vectors taking into account aver-
age value, standard deviation, precision, recall and accuracy.
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TABLE 9. Health state transition time for machine #1 using original
signal.

Start time [h]

Good Acceptable Unsatisfactory Unacceptable
state state state state

Expert Label 0 357 675 830
Naive
Bayes! with
smoothing
density
estimate
model and
positive
support
Naive Bayes 0 312 632 785

SVM?
Linear 0 310 630 783
Kernel
Linear
Discriminant

0 309 627 781

322 645 791

TABLE 10. Summary of forecasting horizon for critical failure
(unacceptable health state) for machine #1 reached for each machine
learning method using resampled data.

Original Resampling
Expert label 120
Naive Bayesl with
smoothing density 119 169
estimate model and
positive support
Naive Bayes 118 165
SVM? Linear Kernel 119 167
Linear Discriminant 119 159

Fig.11 shows resampled RMS value of vibration measure-
ments for machine #1 considering up to 100 extra samples in
health state transitions to get less abrupt changes and enough
synthetic information to improve forecasting horizon.

Table 9 and Fig.12 show each health state’s start times
for machine #1 predicted by machine learning methods with
resampled data versus manual diagnosis results.

Finally,

Table 10 shows a summary of the forecasting horizon
results for the different machine learning algorithms, using
the original and resampled data for both cases.

VII. CONCLUSION

A rugged, easy-to-deploy and smart vibration monitoring
system based on IoT devices and data-driven models to assess
heavy machinery’s real-time condition in non-stationary
operations for mining industry have been proposed. Proposed
solutions for hardware, firmware and machine learning algo-
rithms for software were cost-effective for implementing a
wireless vibration sensor network for condition monitoring
using Bluetooth and 3G/4G/LTE data transmission. Designed
sensor modules can be attached to the chassis of heavy
machinery in different locations using magnetic coupling to
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measure 3-axis accelerations in real-time. Once deployed
on-board, the sensor modules interconnected with a Hub
module forming a star network topology using Bluetooth
links and externally through mobile cellular networks to a
remote monitoring server on-site avoiding interference with
existing wireless networks. Machinery vibration measured
data was sent every 15 minutes to a remote server for health
state evaluation using machine learning according to ISO
2372 vibratory severity standards. The design of sensor mod-
ules meets different technical and functional requirements
to ensure embedded and distributed capabilities: (i) network
management, (ii) data routing and traffic control, (iii) power
supply unit, (iv) power management unit, (v) data processing
unit, and (vi) sensing unit. The proposed wireless sensor
module are low-energy consumption, it has IP67 protection
to surpass mining harsh environmental conditions; it is a light
and small size to ensure compatibility with typical O&M
conditions, and it includes wireless battery recharging to
avoid cable connections for powering and communications.

The best classification results in both, prediction accu-
racy and true positive rate for all states of vibratory severity
according to ISO 2372 as a whole, were achieved in this work
with the Naive Bayes algorithm with a smoothing density
estimate model and positive support. This algorithm achieves
a prediction accuracy exceeding 96% with an average recall
for health state prediction of 94%. Moreover, this machine
learning algorithm allows to predict a critical failure of the
machinery with a forecasting horizon up to 170 hours, being
the best-in-class among techniques used in this work. Thus,
data-driven models help improving early fault detection up
to 50 hours before manual diagnosis. This indicates that
proposed design satisfies the condition monitoring require-
ments and will help to generate predictive maintenance plans.
With the aim to improve forecasting horizon in health state
predictions, synthetic minority random oversampling tech-
nique (SMOTE resampling) was used in this work over the
RMS vibration measured signals focused in state transition
data. Random oversampling is the simplest oversampling
technique to balance the imbalanced nature of the dataset.
It balances the data by replicating the minority class samples.
This does not cause any information loss, but the dataset is
prone to overfitting as the same information is replicated.
To avoid this issue, SMOTE was preferred in this work to
balance the dataset utilizing a k-nearest neighbour algorithm
to create synthetic data.

VIIl. FUTURE SCOPE
The future scope has three significant challenges:

1- Monitor a highernumber and more diverse group of
backhoes to find the minimum number of sensing points in
order to predict the different critical components’ failures.

2- This paper presents a family of machine learning
data-driven algorithms that are trained under a robust set
of assumptions. However, there is a wide and specialized
literature of alternative algorithms and alternative settings
with potential applications in this problem. Furthermore,
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the

question of what algorithm and what predictor vari-

ables to use, to achieve the best machine operation perfor-
mance, could have a state-dependent answer; based on cur-
rent real-time data, data frequency, and computational power.
Indeed, in the context of non-stationary operations, these are
interesting topics and challenging questions that leave room
for future research.
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