
Received December 30, 2020, accepted January 10, 2021, date of publication January 14, 2021, date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051637

AS-RIG: Adaptive Selection of Reconstructed
Input by Generator or Interpolation for Person
Re-Identification in Cross-Modality Visible
and Thermal Images
JIN KYU KANG , MIN BEOM LEE , HYO SIK YOON ,
AND KANG RYOUNG PARK , (Member, IEEE)
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea

Corresponding author: Kang Ryoung Park (parkgr@dongguk.edu)

This work was supported in part by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology Research Center
(ITRC) Support Program supervised by the Institute for Information and Communications Technology Promotion (IITP) under Grant
IITP-2020-2020-0-01789, and in part by the National Research Foundation of Korea (NRF) funded by the MSIT through the Basic Science
Research Program under Grant NRF-2020R1A2C1006179 and Grant NRF-2019R1A2C1083813.

ABSTRACT Multimodal camera-based person re-identification (ReID) is important in the field of intelligent
surveillance. Thermal cameras can solve the problem in that visible-light cameras cannot acquire the valid
feature information of a person under poor illumination conditions. However, thermal cameras usually
have lower frame resolution than visible-light cameras. To overcome this problem, we propose an adaptive
selection of reconstructed input by generator or interpolation (AS-RIG) method, which can adaptively
select the generative adversarial network (GAN), or an interpolation method (bi-linear or bi-cubic). AS-
RIG automatically selects a resolution-model using the mean-squared error (MSE), feature distance (FD),
and structural similarity (SSIM). To verify the performance of our proposed method, two open databases
are used: the DBPerson-Recog-DB1 and Sun Yat-set University multiple modality Re-ID (SYSU-MM01).
Infrared frames from both databases are resized to be smaller than the original ones for experimentation.
Experimental results show that our generator outperforms traditional interpolation methods. In addition, the
person ReID experimental results demonstrate that AS-RIG outperforms non-adaptive selection methods
and state-of-the-art methods.

INDEX TERMS Person Re-ID, convolutional neural network (CNN), super-resolution (SR), GAN.

I. INTRODUCTION
Person re-identification (ReID) aims to match a specific
person having varying viewpoints and poses from two or
more frames that are captured from more than one camera.
Compared to the tracking algorithm, this is difficult because
it is an environment that has non-continuity with respect
to the axis in time. Recently, research on person ReID has
been performed owing to the need for intelligent surveil-
lance systems [1]. Research to re-identify a specific person
using different visible-light cameras (CCTV) in the daytime
environment is the main focus [2]–[4]. However, visible-
light cameras are vulnerable to illumination conditions. In the
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case of intelligent surveillance systems, there is a functional
meaning at night time, when the crime incidence rate is higher
than in the day time. In order to solve this problem, there
has been much interest in research on person ReID using
a multimodal camera that combines a visible-light camera
and an infrared camera [5]–[8]. Multimodal cameras are
free from illumination conditions, but it is relatively difficult
to utilize the input data of different properties. Compared
to relatively high-resolution visible-light cameras, thermal
cameras have a lower resolution, and the person region cap-
tured by a thermal camera in an intelligent surveillance sys-
tem is smaller than that by the visible-light camera, which
causes the degradation of quality of person region in the
thermal camera image. In general, low-resolution thermal
image can be resized using an interpolation method such as
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bi-cubic or bi-linear, but it has the limitation of performance
enhancement, and this is the major challenge of our research.
We aim to improve the result of person ReID compared to the
interpolation method by utilizing the generator model. The
superiority of adaptive selection of reconstructed input by
generator or interpolation (AS-RIG) proposed in our paper is
demonstrated using two types of open databases (DBPerson-
Recog-DB1 and SYSU-MM01). This means that AS-RIG has
successfully improved the physical properties of the thermal
camera using the generator. In addition, by performing exper-
iments, we found that the generator model is not always supe-
rior to the interpolation method. Following this discovery,
we devised a system that can be applied to the cross-modality
person ReID algorithm by evaluating the reconstructed ther-
mal frames using the mean-squared error (MSE), feature
distance (FD), and structural similarity (SSIM). The main
contributions of this paper are as follows:

- We propose an AS-RIG method, which can improve
the accuracies of person ReID by adaptively selecting
a generator or bi-cubic to reconstruct the input data.

- By performing experiments, we discovered that the gen-
erative model is not always superior to the interpolation
methods for person ReID.

- AS-RIG improves the performance of person Re-ID by
adaptively selecting the reconstructed thermal frame or
interpolated thermal frame using the MSE, FD, and
SSIM.

- For ease of comparison, we made the proposed algo-
rithm with models available by other research [41].

The remainder of this paper is as follows. In Section II,
we analyze the previous research on person ReID by dividing
it into three parts (person ReID using a visible-light camera,
a multimodal camera, and generative model). In Section III,
we explain in detail our propose method. Then, in Section
IV, we present the experimental results with analyses, and we
present the conclusions in Section V.

II. RELATED WORK
As a basic study on person ReID, Huang and Russell
[11] proposed the Bayesian method for tracking the same
object from various camera perspectives. Subsequently, many
studies on person ReID based on a visible-light camera
were introduced [12]–[18], [45], [48]–[50]. In addition,
research based on multimodal cameras was also conducted
to overcome the limitations of visible-light cameras and to
improve accuracy [19]–[23]. In recent studies, person ReID
has been interpreted from various perspectives based on
generators [25], [27]–[30].

A. PERSON ReID USING VISIBLE-LIGHT CAMERA
Person ReID on a visible-light camera focuses on
solving the problem of varying poses and viewpoints.
Farenzena et al. [12] designed a three-phase process for a
person ReID. This is one of the early approaches to finding
the axes of symmetry and asymmetry parts in the frame of

a person, and feature matching by extracting the features
of pedestrians from each part. Subsequently, deep learn-
ing has been applied to person ReID, and various studies
have been reported [5], [6]. Ahmed et al. [13] proposed a
method to calculate the probability of similarity with soft-
max obtained from the concatenated feature map, which is
extracted through convolutional layers from the input frame.
Unlike the deep models for person ReID [14], [15], which
proposed the verification loss between positive and negative
frames for an anchor, Cheng et al. [16] proposed a person
ReID that is based on a triplet loss function that can reduce
intra-class variation. Hermans et al. [17] employed a batch
hard to improve the previous triplet loss. The batch hard
consists of a hardest negative frame ranked higher and a
hardest positive frame ranked lower for the anchor frame.
Chen et al. [18] proposed a quadruplet loss comprising four
batches by adding an extra negative frame. It was reported
that the quadruplet loss is more effective than triplet loss
in increasing inter-class variation and reducing intra-class
variation.

Person ReID using the generative model proposed new
perspectives of person ReID by generating or transferring
the primary issues such as varying pose, viewpoint, illu-
mination, and data type. Zhong et al. [25] proposed Cam-
Style as a method to solve one of the person ReID chal-
lenges and frame style variations by different cameras.
CamStyle is based on a cycle-consistent generative adver-
sarial network (CycleGAN) [26], and it is introduced to
solve the differences between camera styles by provid-
ing data augmentation. Wei et al. [27] proposed a person
transfer generative adversarial network (PTGAN) that trans-
fers the background and mean of the lighting in order to
focus on the identity of a person. Ge et al. [28] reported
that the pose variation of frames is a key challenge for
learning robust person features. To solve this challenge,
we proposed a feature distilling generative adversarial net-
work (FD-GAN) that transfers two input frames to a tar-
get pose. Qin et al. [45] proposed the pedestrian ReID based
on super-resolution images (SRPRID) which consisted of
the super-resolution sub-network and ReID sub-network.
In [48], authors propose the method of multi-scale learning
for low resolution person re-identification, and Wang et al.
proposed the method of scale-adaptive low-resolution person
re-identification based on learning a discriminating surface
[49]. In addition, Jing et al. propose the method of super-
resolution person re-identification with semi-coupled low-
rank discriminant dictionary learning [50]. However, all these
researches did not deal with the cross-modality person ReID
issue, but our research deals with the cross-modality person
ReID issue between visible and thermal cameras.

B. PERSON ReID USING MULTIMODAL CAMERA
Person ReID using a multimodal camera aims to solve
extremely illumination condition problems as well as varying
poses and viewpoints. Wu et al. [19] proposed a person ReID
that combines a visible-light camera and a depth camera.

12056 VOLUME 9, 2021



J. K. Kang et al.: AS-RIG for Person Re-Identification in Cross-Modality Visible and Thermal Images

In this study, invariant body shape and skeleton informa-
tion freely under extremely illumination conditions and color
change were applied to person ReID using a depth camera.
There are also studies on person ReID usingmultimodal cam-
eras that combine visible-light and infrared cameras [5]–[8],
[21]. Ye et al. [20] proposed an end-to-end network by apply-
ing the identity loss and ranking loss based on the feature
extraction of two different types of frames using each stream
network. Kang et al. [22] proposed a one-stream network for
person ReID using a single input data model. The single input
data model is three-dimensional (3D) data composed of inter-
channel pairs and intra-channel pairs based on visible-light
frames and infrared frames. Lin and Li [23] introduced the
pentaplet loss by applying the triplet loss introduced in [24]
to multimodal data conditions. Pentaplet loss is a function
that is designed so that the cross-modality variation and intra-
modality variation are simultaneously trained by dividing
them into five subsets: anchor (visible-light frames), negative
(inter-class of visible-light frames), cross-modality negative
(intra-class of visible-light frames), positive (inter-class of
infrared frames), and cross-modality positive (intra-class of
infrared frames).

Person ReID on a multimodal camera also used a gen-
erative model to solve the discrepancies related to hetero-
geneous data. Zhang et al. [29] introduced a study on per-
son ReID under poor illumination conditions. This research
proposed a Teacher-Student GAN (TS-GAN) that is capable
of transferring RGB to infrared data in order to resolve the
cross-modality discrepancy of features from frames captured
by an infrared camera on night and a visible-light cam-
era during the daytime. Choi et al. [30] aimed to reduce
cross-modality discrepancies. Hierarchical cross-modality
disentanglement (HI-CMD), consisting of identity preserv-
ing person image generation (ID-PIG) and hierarchical fea-
ture learning (HFL), reported that it can simultaneously
reduce cross-modality and intra-modality discrepancies using
ID-discriminative factors and ID-excluded factors. In [51],
Ye et al. proposed a novel dynamic dual-attentive aggrega-
tion (DDAG) learning method by mining both cross-modality
graph-level contextual cues and intra-modality part-level for
visible-infrared (VI)-ReID. In [8], they proposed a homo-
geneous augmented tri-modal (HAT) learning method for
VI-ReID. In their method, an auxiliary grayscale modal-
ity is generated from homogeneous visible images without
additional training process. In [52], authors newly proposed
a modality-aware collaborative ensemble (MACE) learn-
ing method with middle-level sharable two-stream network
(MSTN) for VT-ReID. It handles the modality-discrepancy
in both feature level and classifier level.

In [53], Ye et al. proposed a dual-path network with a new
bi-directional dual-constrained top-ranking (BDTR) loss to
learn discriminative feature representations. Although it is
not about the research of person ReID, authors newly pro-
posed an instance-wise softmax embedding, which directly
executes the optimization over the augmented instance fea-
tures with the binary discrimination softmax encoding [54].

Although they are not about the researches of person ReID,
Luo et al. proposed a new dimensionality reduction (DR)
method, termed local geometric structure Fisher analysis
(LGSFA), for HSI classification of hyperspectral imagery
[43]. In addition, Shi et al. proposed a novel unsupervised
DR method called local neighborhood structure preserving
embedding (LNSPE) for HSI classification of hyperspectral
imagery [44].

Table 1 summarizes the advantages and disadvantages of
the methods proposed in the conventional studies and this
study for person ReID.

III. PROPOSED METHOD
In general, the image resolution of pedestrian region detected
by a visible-light camera is higher than that by a thermal
camera. Owing to this problem, the reconstruction of data
size for the thermal frame is essential for the cross-modality
person ReID. Based on this statement, we make the following
assumptions: (1) we expect that if the result of the super-
resolution (SR) generator is better than the bi-cubic, which
is one of the traditional interpolation methods, the person
ReID performance can be improved. (2) If the SR generator
is not always better than the bi-cubic, we can further improve
the performance of person ReID using the adaptive selection
method. Below, we introduce the proof of this assumption.
First, in Section III.A, we briefly review the overall AS-RIG
procedure. We describe the reconstructing input data by gen-
erator in Section III.B. The criteria for adaptive selection and
the baseline person ReID model are described in Sections
III.C and III.D, respectively.

A. OVERALL PROCEDURE OF AS-RIG
Fig. 1 shows the overall procedure of the AS-RIG method
proposed in this paper. AS-RIG aims to improve the person
ReID between visible-light frames captured during daytime
and thermal frames captured at night. In general, cross-
modality person ReID uses visible-light frames and thermal
frames as input data. In this case, the key goal of AS-RIG is
to reconstruct the input size of the thermal data using the SR
generator. Because person ReID is based on unpaired data,
the generator of AS-RIG is composed of CycleGAN [26].

However, there are cases where the output of the gener-
ator loses its identify features. To overcome this problem,
we designed a generator and bi-cubic to be selected according
to each scenario. We used MSE, FD, and SSIM for adap-
tive selection to evaluate the reliability of the reconstructed
thermal frame using a generator and resized the thermal
frame using a bi-cubic. Then, IPVT-1 [22] is created using
the thermal frame selected through the preprocessing and
the visible-light frame, which is one of the anchor sets.
IPVT-1, which is constructed as a result of adaptive selection,
is more advantageous in extracting cross-modality features
than IPVT-1, which is not. That is, the Person ReID network
can be facilitated in the direction of decreasing intra-class
variation and increasing inter-class variation.
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TABLE 1. Comparison of proposed and previous research on person ReID.

FIGURE 1. Overall procedure of AS-RIG.

B. RECONSTRUCTING INPUT DATA USING A GENERATOR
Thermal frames require reconstruction before the cross-
modality person ReID. This is because the resolution of
thermal frames is smaller than that of visible-light frames.
To solve this problem, we use the CycleGAN [26] that is
suitable for the unpaired dataset.

FIGURE 2. Structure of generator in CycleGAN.

Fig. 2 shows the structure of CycleGAN for reconstructing
thermal frames. Our goal is to train the mapping function
between two domains, X and Y, given downsized thermal
frames {xi}Ni=1 where xi ∈ X and original thermal frames
{yj}Mj=1 where yj ∈ Y . Our generator includes two mapping
functions GSR : X → Y and GDS : Y → X . GDS is only
used to trainGSR, andGSR is needed for our AS-RIG. To train
mapping functions GSR and GDS , we used two adversarial
discriminators DX and DY , where DX is designed to differ-
entiate between {x} and the generated frames GDS (Y)}, and
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DY is designed to differentiate between {y} and the generated
frames {GSR (X)}. In addition, we used the loss function to
CycleGAN as shown in Equation (1).

L (GSR,GDS ,DX ,DY ) = LGAN (GSR,DY ,X ,Y )
+LGAN (GDS ,DX ,Y ,X)+ λLcyc (GSR,GDS) (1)

LGAN is the adversarial loss to match the distribution of the
generated frames with the distribution of data in the target
domain. One ofLGAN ,LGAN (GSR,DY ,X ,Y ), can be defined
as

LGAN (GSR,DY ,X ,Y ) = Ey∼pdata(y)[logDY (y)]
+Ex∼pdata(x)[log(1− DY (GSR(x)))] (2)

whereGSR learns so thatGSR(x) maintains its identity, but has
a similar high-resolution quality as domain Y . At this time,
DY attempts to distinguish between generated framesGSR (x)
and real samples, y. That is, DY (GSR(x) attempts to converge
to 0 and DY (y) try to converge to 1. From that, adversarial
(discriminator) loss (LGAN (GSR,DY ,X ,Y )) can converge
to 0 when the discriminator sufficiently trains, which does
not mean that the model is collapsing.

Lcyc is the cycle consistency loss that prevents the trained
mapping function GSR to contradict GDS , and we express the
equation as:

Lcyc (GSR,GDS) = Ex∼pdata(x)
[
‖GDS (GSR)− x‖1

]
+Ey∼pdata(y)[‖GSR (GDS)− y‖1] (3)

Equation (3) closely matches the reconstructed frames
GDS (GSR) and GSR (GDS) to the input frames x and y,
respectively.

C. CRITERIA FOR ADAPTIVE SELECTION
As described in Section III.A, there are cases where the gen-
erated thermal frames, which are from CycleGAN, lose their
identify features. To overcome this problem, we propose an
adaptive selection that chooses a thermal frame, whether
generated by CycleGAN or resized by bi-cubic, using the
following methods.

1) CASE-I: MEAN-SQUARED ERROR
The MSE is a mathematical function that is used to estimate
mapping data against baseline data. In our case, MSE is
the average of the difference value of each pixel between
the generated thermal frame and the resized thermal frame.
In other words, it measures the visible similarity of their input
data. MSE is expressed as follows:

MSE =
1
WH

∑H−1

i=0

∑W−1

j=0
[GSR (x (i, j))− Ibi−cubic(i, j)]2

(4)

In Equation (4), GSR(x) is a generated thermal frame and
Ibi−cubic is a resized frame obtained using a bi-cubic, which is
one of the interpolation methods. H andW denote the height
and width of the frame, respectively.

2) CASE-II: FEAUTRE DISTANCE
The FD is obtained by calculating the Euclidean distance
between the output nodes of the last convolutional layer in the
deep network using the generated thermal frame and resized
thermal frame. The output nodes of the last convolutional
layer are high-dimensional feature sets that include the iden-
tity of each person.

The Euclidean distance of this feature set means that the
generated thermal frame is similar to the original frame.
We define the FD equation as

FD =

√∑n

k=1
[Olast_conv (GSR (x))− Olast_conv (Ibi−cubic)]2

(5)

In Equation (5),Olast_conv denotes the output nodes of the last
convolutional layer in the deep network, and n is the number
of output nodes.

3) CASE-III: STRUTURAL SIMILARITY
The SSIM [31] is used to measure the similarity between
two frames. This method compares local patterns of pixel
intensities that have been reconstructed for luminance and
contrast. Compared to other methods, such as MSE or PSNR
[32], the difference is that it estimates the absolute error. The
SSIM is expressed as follows:

SSIM =
(2µGµI + C1)(2σGI + C2)

(µ2
G + µ

2
I + C1)(σ 2

G + σ
2
I + C2)

(6)

Equation (6) combines the three comparisons of luminance
comparison, constant comparison, and structure comparison
for two signals GSR (x) and Ibi−cubic. In Equation (6), µG and
σ 2
G denote the average and variance of the generated thermal

frameGSR (x), respectively.µI and σ 2
I denote the average and

variance of the resized thermal frame Ibi−cubic, respectively.
σGI denotes the covariance of GSR (x) and Ibi−cubic. C1 =

(k1L)2 and C2 = (k2L)2 are two variables that are used to
stabilize the division with a weak denominator. L denotes the
dynamic range of pixel values. k � 1 is a small constant.

D. BASELINE PERSON ReID MODEL
To prove that our proposed AS-RIG can improve the per-
formance of the cross-modality person ReID, we choose a
baseline network, which consists of a one-stream network
with IPVT-1 [22]. This is because the network was shown
to have a higher performance of cross-modality person ReID
than others on two open-databases. That is, Ref. [22] is
appropriate to show that the performance can be improved
using AS-RIG.

Fig. 3 displays the structure of the cross-modality person
ReID [22]. Because this network is a one-stream network,
we used IPVT-1 composed of inter-channel pairs for hetero-
geneous data as a single input. ResNet-50 [33] was used for
the convolutional neural network structure.

As indicated in Fig. 3, the number of outputs of the fully
connected layer in the network defines two nodes. This is
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FIGURE 3. Structure of cross-modality person ReID.

to calculate the probability of a similarity between identities
using heterogeneous data as one input.

IV. EXPERIMENTAL RESULTS
To demonstrate the performance ofAS-RIG,we experimented
with two widely used open databases, DBPerson-Recog-
DB1 [9] and Sun Yat-set University multiple modality
Re-ID (SYSU-MM01) [10]. There are two main types
of experiments. First, we evaluated the quality of the
frame generated by the cycleGAN-based SR generator
described in Section III.B. Second, we compared the
performance of person ReID using AS-RIG with other
methods.

A. EXPERIMENTAL DATABASES
1) DBPERSON-RECOG-DB1
As indicated in Table 2, DBPerson-Recog-DB1 is a database
that is acquired by a multimodal camera composed of a
visible-light camera (Logitech C600 [34]) and a thermal cam-
era (FLIR Tau2 [35]). This database consists of 8240 frames
of visible-light frames and thermal frames, each including
various camera views such as front, side, and back views
of 412 people. It is a database that is acquired outdoors, and
the average size of visible-light frames is 37×102×3 pixels,
and the average size of the thermal frames is 42 × 112 × 3
pixels. Fig. 4 shows sample frames of DBPerson-Recog-
DB1 used to verify the AS-RIG. As shown in the sample
frames, DBPerson-Recog-DB1 is a database that is acquired
from the same viewpoint using a visible-light camera and a
thermal camera. To verify the AS-RIG performance, we used
a two-fold cross-validation method by dividing it into two
subsets, as shown in Table 2. However, this dataset has an
average size of visible-light frames similar to that of thermal
frames because a low-resolution visible-light camera is used.
Therefore, in order to fit the experimental environment that
we designed, the size of the thermal frames was arbitrarily
downsized to one quarter of its original size.

TABLE 2. Description of DBPerson-Recog-DB1.

FIGURE 4. Sample frames of DBPerson-Recog-DB1.

2) SYSU-MM01
As indicated in Table 3, SYSU-MM01 is also a cross-
modality dataset acquired by the Kinect V1 and IR cameras.
SYSU-MM01 consists of a total of 44,745, frames including
30,071 visible-light frames and 15,792 infrared frames. This
database has various viewpoints such as front, side, and back
views that are similar to DBPerson-Recog-DB1. The average
size of the visible-light frames is 112 × 284 × 3 pixels, and
the average size of the infrared frames is 108 × 303 × 3
pixels. However, unlike DBPerson-Recog-DB1, it has several
characteristics. First, it is a database that is composed of a
visible-light camera and an infrared camera independently.
Fig. 5 shows a sample frame of SYSU-MM01. As shown in
Figs. 5(a) and (b), unlike Fig. 4, it can be seen that the visible-
light frames and infrared frames are unpaired sets. Second,
it was captured both outdoors and indoors. Because of the first
and second characteristics described above, SYSU-MM01
makes person ReID more difficult because there are more
variables than DBPerson-Recog-DB1. Third, the databases
provided by [10] are already classified as training, set, vali-
dation set, and test set. Therefore, we used this configuration
as they were to determine the performance of AS-RIG in the
verification experiment. Fourth, because this dataset used an
infrared camera rather than a thermal camera, the average size
of infrared frames is similar to that of visible-light frames.
Therefore, we downsized infrared frames to one eighth of the
size to fit the designed experimental environment.

B. TRAINING
To train the generator described in Section III. B, CycleGAN
was scratch trained using the Pytorch framework (version
1.2 [42]). For generator training, we used adaptive moment
estimation [36] as the optimization function, which combines
the advantages of two methods: AdaGrad [37] to deal with
sparse gradients and the ability of RMSProp [38] to deal
with non-stationary objectives. All of the experiments were
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TABLE 3. Description of SYSU-MM01.

FIGURE 5. Sample frames of SYSU-MM01.

performed on a desktop computer having an Intelr CoreTM

i7-7700K CPU @ 3.60 GHz processor (4 cores), a main
memory of 32 GB, and an NVIDIA GeForce GTX 1070
(1920 compute unified device architecture (CUDA) cores)
with a graphics card that has a memory of 8 GB [39].

Fig. 6 shows the graphs of discriminator and generator
losses according to training epochs. As shown in the graphs,
it can be confirmed that the SR generator and discriminator
were sufficiently trained. DBPerson-Recog-DB1 is to recon-
struct from the average size of 11×28×3 pixels to 42×112×3
pixels, and SYSU-MM01 is to reconstruct from the average
size 14× 38× 3 pixels to 108× 303× 3 pixels.
Both databases have small amounts of data for reconstruct-

ing high-resolution frames, but there are different data types.
As indicated in Fig. 6, SYSU-MM01 converges faster than
DBPerson-Recog-DB1. This means that it is more difficult
to reconstruct high-resolution thermal frames than infrared
frames. Fig. 7 shows the sample of bi-cubic and recon-
structed thermal frames. Figs. 7 (a) and (b) are the results
of DBPerson-Recog-DB1, and Figs. 7 (c) and (d) are the
results of SYSU-MM01. For frames resized by bi-cubic,
high-frequency elements were reduced, and there was a blur
effect throughout the frames. However, in frames that are
reconstructed by generator, the high-frequency elements were
generated such that they are similar to the original frame, and
the edges were clearly displayed.

C. TESTING OF AS-RIG
1) DBPERSON-RECOG-DB1 (ABLATION STUDIES)
We conducted 12 experiments using DBPerson-Recog-DB1.
First, the three experiments are the evaluation of person ReID
using the interpolation of thermal frames in bi-linear or bi-
cubic, and using reconstruction with the generator proposed
in Section III. B. In the second experiment, the three adap-
tive selection methods in Section III. C , i.e., MSE, FD, and
SSIM, were compared. Each method of adaptive selection is

FIGURE 6. Graphs of discriminator (D_Y) and generator losses (G_SR) in
the training procedure: (a) first fold with DBPerson-Recog-DB1,
(b) second fold with DBPerson-Recog-DB1, and (c) SYSU-MM01.

needed as a criterion for selecting interpolation and generator.
To determine this criterion, we calculated the average value
µC of eachmethod from the training set. Based on the average
value {µC}, we define the threshold values A, B, and C that
satisfy A < B = {µC } < C .
We used Rank 1, Rank 10, Rank 20, and the mean average

Precision (mAP) for the experimental evaluations. Rank N
is the concept of evaluating the correct matching accuracy
for cases containing data of the positive class (true positive
data) out of N matching candidates. The mAP is the mean
of the average precision scores for each anchor [40]. The
average precision method indicates an area of the precision-
recall graph, evaluates the identification algorithm. The mAP
is expressed as follows:

mAP =

∑Q
q=1 AveP(q)

Q
(7)
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FIGURE 7. Sample of bi-cubic and reconstructed thermal frames: (a),
(b) DBPerson-Recog-DB1 and (c), (d) SYSU-MM01. The left frame is the
original frame, the middle frame is a result resized using the bi-cubic, and
the right frame is a result reconstructed using the generator.

TABLE 4. Comparison of Person ReID according to the number of image
pixels (unit: %).

In Equation (7), Q denotes the number of anchors and
AveP (q) indicates the average precision scores for each
anchor.

In Table 4, we compared the accuracies of person ReID
according to the number of image pixels. In this table, the
original means the original size of image. As shown in this
table, the accuracies are reduced according to the decrement
of the number of image pixels which causes the information
loss in image.

TABLE 5. Comparison of AS-RIG with DBPerson-Recog-DB1 (unit: %).

FIGURE 8. Examples of comparison bi-cubic with generator test result on
DBPerson-Recog-DB1: (a) The left frame is the original frame, the middle
frame is recorded rank 2 (reconstructed by generator), and the right
frame is recorded rank 104 (resized by bi-cubic). (b) The left frame is the
original frame, the middle frame is recorded rank 120 (reconstructed by
generator), and the right frame is recorded rank 1 (resized by bi-cubic).

Nevertheless, our proposed method shows the higher accu-
racies than those by only bi-linear, bi-cubic, and generator of
CycleGAN in all the cases of the reduction of image pixels.
Even in the case of 1/2 size of original image, the rank 1, 10,
and 20 by proposed AS-RIG are higher than those in the case
of the original size of image. That is because the noises can
be much reduced by the 1/2 size of original image compared
to the original size of image, which causes the enhancement
of accuracies.

In Table 5, we compared the accuracies according to var-
ious methods and thresholds in proposed AS-RIG, and also
compared them with original image, and only bi-linear, bi-
cubic, and generator.

As shown in Fig. 8, for all anchors, the bi-cubic method did
not always result in improved results when compared with the
generator method. To improve these cases, we conducted a
total of nine experiments by applying three criteria to AS-RIG
as shown in Table 5. Of the nine experiments, AS-RIG: SSIM
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TABLE 6. Comparison of AS-RIG with SYSU-MM01 (unit: %).

(Threshold C) showed the best performance with 57.60%
rank 1, 88.96% rank 10, 94.13% rank 20, and 41.34% mAP.
In addition, all nine of the experiments of AS-RIG showed
better results than the non-adaptive selection methods. Based
on this experimental result, it is shown that the adaptive
selectionmethod can improve the performance better than the
previous method of reconstructing input data.

2) SYSU-MM01 (ABLATION STUDIES)
To verify the AS-RIG proposed in this paper, we per-
formed the same experiment as DBPerson-Recog-DB1 using
SYSU-MM01 with more variables. As in the experiment of
DBPerson-Recog-DB1, we also used rank 1, rank 10, rank 20,
and mAP. The experimental results for SYSU-MM01 are dis-
played in Table 6. As with the original in Table 5, the original
[22] in Table 6 is the result of not considering the difference in
resolution between the visible-light frame and thermal frame.
In order to consider the actual environment, we experimented
by downsizing the infrared frames of SYSU-MM01 to one
eighth of the sizes. Among the non-adaptive selection meth-
ods in the first experiment, the ‘‘only generator’’ method
showed the best performances of 18.87% at rank 1, 59.30%
at rank 20, and 19.12% at mAP. However, the experimental
result showed that the ‘‘only bi-cubic’’ method had 41.80%,
which was the highest performance at rank 10.

As can be seen from these experimental results and Fig.
9, the generator method did not always have better results
than the bi-cubic method for all anchors. To improve the
performance of person ReID, we conducted a total of nine
experiments by applying three criteria. In the experiments
on DBPerson-Recog-DB1, excellent conditions existed in all
evaluation categories, whereas in the case of SYSU-MM01,
the conditions corresponding to the best case varied according
to the experimental evaluation criteria (Rank N and mAP).
In rank 1, AS-RIG: MSE (Threshold B) and AS-RIG: SSIM
(Threshold A) had the highest performance at 20.83%, and

FIGURE 9. Examples of comparison bi-cubic with generator test result on
SYSU-MM01: (a) The left frame is the original frame, the middle frame is
recorded rank 66 (reconstructed by generator), and the right frame is
recorded rank 4 (resized by bi-cubic). (b) The left frame is the original
frame, the middle frame is recorded rank 6 (reconstructed by generator),
and the right frame is recorded rank 141 (resized by bi-cubic).

TABLE 7. Comparisons with the state-of-the-art methods (unit: %).

in rank 10, AS-RIG: SSIM (Threshold B) had the best per-
formance at 56.60%. In rank 20, AS-RIG: SSIM (Threshold
C) and FD (Threshold B) showed the highest performance at
68.73%, and in mAP, AS-RIG: FD (Threshold B) showed the
best performance at 20.95%.

The reason for which the method of highest performance
varies for each evaluation category can be considered the
characteristics of SYSU-MM01. As it is a dataset with vari-
ous variables, it is possible to infer that there is an optimal cri-
terion for each environment. However, all nine experimental
results showed superiority to non-adaptive selectionmethods.
From this, AS-RIG confirmed the potential for improving the
performance better than the previous method of reconstruct-
ing input data.

3) COMPARISONS WITH STATE-OF-THE-ART METHODS
To verify the AS-RIG proposed in this paper, we performed
the comparison experiment with HI-CMD [30], one of the
state-of-the-art methods, using DBPerson-Recog-DB1 and
SYSU-MM01.

The experimental results are displayed in Table 7.
As shown in the results with original data in Tables 5 and 6,
the results with original in Table 7 are those in case of using
the high-resolution thermal images. HI-CMDmethod obtains
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FIGURE 10. Jetson TX2 embedded system.

the high-resolution thermal image from low-resolution ones
by bi-cubic method [30]. For fair comparisons, the same
method of person re-identification of HI-CMD was used for
all the methods. As shown in the results of Table 7, it was
proved that proposed AS-RIG to obtain the high-resolution
thermal image from low-resolution ones shows the higher
accuracies than those by the state-of-the-art method. In addi-
tion, the accuracies of rank 1 by proposed AS-RIG are similar
to those by using the original high-resolution thermal images.

4) COMPARISONS OF PROCESSING TIME
In the next experiment, the computing speed of the proposed
method was compared using a desktop computer including
an Intelr CoreTM i7-7700K CPU @ 3.60 GHz processor
(4 cores), a mainmemory of 32 GB, and an NVIDIAGeForce
GTX 1070 (1920 CUDA cores) with a graphic processing
unit (GPU) card that has a memory of 8 GB [39], and
Jetson TX2 embedded system [46] as shown in Figure 10.
Jetson TX2 system is equipped with NVIDIA PascalTM GPU
architecture with 256 NVIDIA CUDA cores, 8 GB 128-bit
LPDDR4 memory, and dual-core NVIDIA Denver 2 64-Bit
CPU. As shown in Figure 1, AS-RIG part includes the selec-
tion of the generator of CycleGAN or bi-cubic interpolation.
In our experiments, it takes 9.9 ms and 22.3 ms for the
generator of CycleGAN on desktop computer and Jetson TX2
embedded system, respectively. In addition, it takes 0.1 ms
and 1.2 ms for the bi-cubic interpolation on desktop computer
and Jetson TX2 embedded system, respectively. Because the
processing time of AS-RIG in Table 8 is almost similar to
the average time for the generator of CycleGAN and bi-cubic
interpolation, we can estimate that the number of selection for
the generator of CycleGAN is almost similar to that for the bi-
cubic interpolation in our AS-RIGwith all the testing images.
The reason why processing time for person ReID is larger
than that for AS-RIG is that the image of 224× 224 pixels is
used for the input to the ResNet-50 (pretrainedwith ImageNet
database [47] and fine-tuned with our training database) [33]
for person ReID.

As shown in Table 8, total processing time for one pair of
input visible and thermal images are 23.8 ms and 52.7 ms on
desktop computer and Jetson TX2 embedded system, respec-
tively, which corresponds to the processing speed of 42.02

TABLE 8. Comparisons of processing time of proposed method for one
pair of input visible and thermal images on desktop computer and Jetson
TX2 (unit: ms).

(1000/23.8) frames/sec and 18.98 (1000/52.7) frames/sec.
From this results, we can confirm that our proposed method
can be operated at fast speed on embedded system of limited
processing power in addition to desktop computer.

V. CONCLUSION
In this work, we proposed a new perspective for improv-
ing the performance of cross-modality person ReID using
AS-RIG. This study was optimized for an actual environ-
ment by considering the characteristics of a thermal camera
with a resolution that is lower than that of a visible-light
camera. In order to improve the cross-modality person
ReID using the traditional interpolation method, reconstruc-
tion by generator was applied as input data reconstruction.
In addition, we compared the generator and interpolation
(bi-linear and bi-cubic) methods. Based on the results of the
analysis, we found that reconstructed thermal frames are not
always more favorable to person ReID than reconstructed
thermal frames by bi-cubic. To apply this analysis result,
we proposed an adaptive selectionmethod usingMSE, SSIM,
and FD. AS-RIG was evaluated using two open databases,
namely DBPerson-Recog-DB1 and SYSU-MM01. Experi-
ment results confirmed that the performance improved sig-
nificantly in both databases compared to the non-adaptive
selection method. There are three reasons why we did not
train the system in an end-to-end manner as follows.

First, the purpose of our research is to raise an issue
that the many researchers miss the difference of physical
properties between visible-light and thermal cameras, and to
propose a way to solve it. The difference of image resolutions
between two cameras is also another challenge for person
ReID research, which was not dealt with by previous works.

Second, if we train the system in an end-to-end manner for
the identity information, the identity-information can highly
depend on the ReID network, which are not reliable enough
to train the generator of adaptive selection, and that makes the
network overfitted. It is confirmed that as shown in Table 7,
our method shows the higher accuracies than HI-CMD [30]
which is one of the state-of-the-art methods and trains the
system in an end-to-end manner.

Third, the system complexity and training time also
increase in the training of end-to-end manner. Because we do
not propose person ReID method itself, but mainly propose
themethod of adaptive selectionmodel of generator and inter-
polation method. Therefore, our proposed selection model
can be used for any kinds of person ReID method. That is
why we do not train the system in an end-to-end manner, but
separately train our selection model and ReID model.
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In future work, we would perform the experiments by
changing the number of testing samples, and check how
much these changes affect the accuracies of person ReID.
We would also have comparative experiments with the state-
of-the-art methods [8], [51]–[53] as future works. In addition,
we would research the method of applying proposed AS-RIG
to different tasks of image super-resolution reconstruction in
face or gender recognition at a distance.
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