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ABSTRACT The minimum weight vertex cover problem (MWVCP) is a fundamental combinatorial
optimization problem with various real-world applications. The MWVCP seeks a vertex cover of an
undirected graph such that the sum of the weights of the selected vertices is as small as possible. In this
paper, we present an effective algorithm to solve the MWVCP. First, a master-apprentice evolutionary
algorithm based on two individuals is conducted to enhance the diversity of solutions. Second, a hybrid
tabu search combined configuration checking and solution-based tabu search is introduced to intensify
local search procedure. Harnessing the power of the evolutionary strategy and a novel variant of hybrid
tabu search, Master-Apprentice Evolutionary Algorithm with Hybrid Tabu Search, MAE-HTS, is presented.
Results of extensive computational experiments using standard benchmark instances and other large-scale
instances demonstrate the efficacy of our algorithm in terms of solution quality, running time, and robustness
compared to state-of-the-art heuristics from the literature and the commercial MIP solver Gurobi. We also
systematically analyze the role of each individual component of the algorithm which when worked in unison
produced superior outcomes. In particular, MAE-HTS produced improved solutions for 2 out of 126 public
benchmark instances with better running time. In addition, our MAE-HTS outperforms other state-of-the-art
algorithms DLSWCC and NuMWVC for 72 large scale MWVCP instances by obtaining the best results for
64 ones, while other two reference algorithms can only obtain 27 best results at most.

INDEX TERMS Hybrid evolutionary algorithm, metaheuristics, minimum weight vertex cover problem,
solution-based tabu search.

I. INTRODUCTION
Let G = (V ,E) be an undirected graph with vertex set
V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . em}.
A weight function w : V → R+ ∪ {0} is also given. i.e., each
vertex v ∈ V is associated with a non-negative weight w(v).
Then, the minimum weight vertex cover problem (MWVCP)
is to find a vertex cover V ′ ⊆ V such that

∑
v∈V ′ w(v) is

minimized. The MWVCP is a fundamental NP-hard com-
binatorial optimization problem and equivalent to the max-
imum weight clique problem [17] on the complementary
graphs. The problem also plays a vital role in numerous
real-world applications [29], [33], [34]. It has been exten-
sively analyzed by researchers from various points of view,
including computational complexity [15], exact algorithms
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[35], [36], heuristic algorithms [2], [37], and polynomially
solvable special cases [4], [25].

Although exact algorithms have gained success in small
instances, they have difficulty to solve the real large instances.
Thus, heuristic method becomes a popular approach for tack-
ling such NP-hard problems. Various heuristic algorithms are
available in the literature to solve the MWVCP. Up to 2012,
a number of algorithms have been proposed based on greedy
constructions [31], ant colony optimization approaches
[14], [30] and population-based iterated greedy strategies [3].
In 2015, Zhou et al. proposed a multi-start iterative tabu
search algorithm (MS-ITS) to solve the MWVC prob-
lem [38]. In 2016, Li et al. proposed a diversion local search
procedure based on configuration checking (DLSWCC) to
solve the problem and improve the results [19]. In 2018,
Li et al. further improved their previous algorithm by
self-adaptive removing vertex strategy [18] and proposed a
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novel local search algorithm (NuMWVC). These can be con-
sidered as the best performing algorithms for the MWVCP in
the literature.

However, none of these algorithms uniformly outper-
formed others on standard benchmark instances. This sug-
gests that a more careful and systematic algorithm design
is necessary to achieve superior outcomes for the MWVCP.
Evolutionary algorithms [1], [6], [13] and tabu search
[8]–[10] are well established heuristic paradigms that have
been successfully applied in solving a wide variety of
hard combinatorial optimization problems of practical inter-
est. There are unique features inherent in each of these
approaches unshared by the other and hence hybridizing
them to exploit their unique and dominating features could
produce algorithms with superior outcomes. Hybridization
of local search and genetic algorithms is not a new idea.
In fact, memetic algorithms [12], [16], [23] do precisely
this to reduce the probability of premature convergence of
a genetic algorithm. In this paper, we investigate this line
of reasoning to develop an effective and robust algorithm to
solve the weighted vertex cover problem.

First, to make a better balance between diversity and
time consuming, we adapt a master-apprentice evolutionary
algorithm based on two individuals rather than traditional
population-based evolutionary algorithms. Second, to handle
the cycling problem during the local search, a hybrid tabu
search which combines the configuration checking strategy
and solution-based tabu search is presented. By carefully inte-
grating various algorithmic strategies described above, a fast
and robust algorithm, namely master-apprentice evolutionary
algorithm with hybrid tabu search (MAE-HTS) is presented.

Systematic experimental analysis of our algorithm using
four sets of 198 benchmark instances produced excel-
lent results. More specifically, for 126 public bench-
mark instances, MAE-HTS obtained improved solutions for
2 instances and matched the best known solutions for the
remaining 124 ones when compared with state-of-the-art ref-
erence algorithms [2], [3], [14], [19], [38] and the Gurobi
MIP solver, while for 72 additional large scale instances,
MAE-HTS is able to find the best solutions for 64 instances.
To obtain additional insights into the distinctive features of
the algorithm and computational bottlenecks, we examined
the role of each of the major components of our algorithm
individually through systematic experimentation. The results
show that suppressing any of these major features could dete-
riorate the performance of the algorithm while when all the
components worked in unison it resulted in a fast and robust
algorithm that outperformed state-of-the-art algorithms on a
variety of performance metrics.

The rest of the paper is organized as follows. A detailed
description of our main algorithm is presented in Section II.
Extensive computational analysis and comparisons with
the current best performing algorithms are presented in
Section III. Section IV investigates and analyzes the sensi-
tivity and efficacy of some of the crucial components of our
algorithm. Concluding remarks are presented in Section V.

II. MASTER-APPRENTICE EVOLUTIONARY ALGORITHM
WITH HYBRID TABU SEARCH
A. MAIN FRAMEWORK OF MAE-HTS
Recall those memetic algorithms that combine evolutionary
algorithms and local search are highly effective in solving
various combinatorial optimization problems [11], [20], [21],
[32]. The combined effect of global recombinant search and
the powerful local search offers the memetic framework suf-
ficient balance between intensification and diversification of
the search process. Traditional population-based evolutionary
algorithms have the disadvantage of slow convergence and
high consumption of computing resources due to the large
population size. The evolutionary part of our algorithm uses
the master-apprentice framework and manages only two indi-
viduals (apprentices) at each iteration, where the apprentices
evolve to becomemasters after a given number of generations
(a cycle). The idea of the two-individual based evolutionary
algorithm was first proposed in [22] for solving the graph
coloring problem and further formalized by Ding et al. [5] for
solving the flexible job shop scheduling problem. To absorb
the essence of the history of the search process and evolution,
one apprentice will be replaced by the master from the previ-
ous cycle. By adapting the two individual based formwork in
our evolutionary process, we partly control and manage the
issue of premature convergence, without sacrificing solution
quality significantly while achieving improved running time.
Any possibility of deterioration in the solution quality is
taken care of by the powerful hybrid tabu search. The general
architecture of ourmain algorithm,MAE-HTS is summarized
in Algorithm 1.

Algorithm 1 Framework of MAE-HTS
Input: a graph G
Output: a best solution V ′i
1: (G′,Vs)← Graph_Reduction(G); // Section II-B
2: S1, S2← Init(); // Section II-C
3: Sc, Sp, Sbest ← Init();
4: generation, cycle← 0;
5: while stop criterion is not satisfied do
6: (S ′1, S

′

2)← Crossover_Operator(S1, S2); // Section II-
D

7: S1← HTS(G′, S ′1); // Section II-E
8: S2← HTS(G′, S ′2); // Section II-E
9: Sc← saveBest(S1, S2, Sc);

10: Sbest ← saveBest(Sc, Sbest );
11: if generation%Itercycle = 0 then
12: S1← Sp;
13: Sp← Sc;
14: Sc← init();
15: cycle← cycle+ 1;
16: end if
17: generation← generation+ 1;
18: end while
19: return Sbest ∪ Vs;
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The MAE-HTS algorithm is composed of the following
components: A function Graph_Reduction() which with the
input graph G produces a potentially reduced graph G′ and
a set Vs of vertices the status of which are fixed (i.e., in the
output cover or not), a function Init() that generates random
initial solutions, an operator CrossOver() to generate child
solutions, and the hybrid tabu search HTS() to improve a
given solution. We will discuss in details each of these func-
tions and related procedures in the subsequent subsections.

For the time being, we simply want to discuss some
features of the functions discussed in Algorithm 1. At the
beginning, MAE-HTS invokes Graph_Reduction() to possi-
bly reduce the size of the original graph and Init() generates
two initial solutions S1 and S2. Then, at each generation,
MAE-HTS performs the CrossOver() operation to generate
two child solutions S ′1 and S

′

2, which will be optimized by the
hybrid tabu search procedure to obtain new local optimum
solutions S1 and S2. If solutions S1 or S2 is better than the
best solution Sbest obtained so far, Sbest is updated. After a
given number of generations, i.e., at the end of each cycle,
solution S1 is replaced by the best solution from the previous
cycle, which is stored in Sp. Meanwhile, the best solution
in the current cycle is stored in Sc, which will be initialized
before starting the next cycle. When the stop criterion (time
limit) is met, the algorithm returns Sbest ∪ Vs. A high-level
representation of one cycle of the MAE-HTS algorithm is
given in Fig. 1.

FIGURE 1. Diagram of MAE-HTS.

B. GRAPH REDUCTIONS
Graph reduction rules are sufficient conditions which if satis-
fied, we can determine the status of some associated vertices
in an optimal solution.We first consider two simple reduction
rules proposed by Wang et al in [35] for the MWVCP.

For any v ∈ V , let N (v) = {u|(u, v) ∈ E, u ∈ V }. i.e., N (v)
is the collection of all adjacent vertices of v in G. Recall that,
for any S ⊆ V , w(S) =

∑
v∈S w(v).

Adjacent rule. For any vertex v ∈ V , if w(N (v)) ≤ w(v),
then there exists an optimal solution V ′ of the MWVCP such
that v /∈ V ′ and N (v) ⊆ V ′ .
For any vertex v satisfying the condition of the adjacent

rule, construct the graph G′ = G \ N (v) \ {v}. Then, from an
optimal (heuristic) solution, say U ′, of the MWVCP on G′,
an optimal (heuristic) solution V ∗ of the MWVCP on G can
be recovered asV ∗ = U ′∪N (v). In the adjacent rule, if for any
vertex v ∈ V , if w(N (v)) < w(v) (i.e., strict inequality holds),
then every optimal solution V ′ of the MWVCP satisfies v /∈
V ′ and N (v) ⊆ V ′ .
For any vertex v ∈ V , let N1(v) = {u ∈ N (v), |N (u)| = 1}.

i.e., N1(v) is the collection of all adjacent vertices of v in G
whose degree is one. Note that N1(v) could be an empty set.

Degree-one rule. For each vertex v ∈ V with N1(v) 6= ∅,
if w(v) ≤ w(N1(v)), then there exists an optimal solution V ′

to the MWVCP such that v ∈ V ′ and N (v) ∩ V ′ = ∅.
For any vertex v ∈ V satisfying the degree-one rule,

construct the graph G′ = G \ N1(v) \ {v}. Then from an
optimal (heuristic) solution, say U ′, of the MWVCP on G′,
an optimal solution V ′ of theMWVCP onG can be recovered
as V ′ = U ′ ∪ {v}. Further, for any vertex v ∈ V with N1(v) 6=
∅, if w(v) < w(N1(v)) (i.e., strict inequality holds), then every
optimal solution V ′ of the MWVCP satisfies v ∈ V ′ and
N (v) ∩ V ′ = ∅.
The adjacent rule and degree one rule are special cases of

the more general LP-relaxation rule. Note that the MWVCP
can be formulated as an 0-1 programming problem (0-1 PP)

Minimize
∑
j∈V

wjxj (1)

Subject to xi + xj ≥ 1 for all (i, j) ∈ E (2)

xj ∈ {0, 1} for all j ∈ V (3)

where xj = 1 precisely when j is in the vertex cover repre-
sented by the corresponding solution x. We denote the linear
programming relaxation of 0-1 PP by LPR. It is well known
that if x∗ = (x∗1 , x

∗

2 , . . . , x
∗
n ) is an optimal basic feasible

solution of the LPR, then x∗j ∈ {0, 1, 1/2}. Let S
∗

0 = {j ∈
V : xj = 0} and S∗1 = {j ∈ V : xj = 1}. Then it is well
known [24], [26] that there exists an optimal solution S ⊆ V
to the MWVCP such that S∗1 ⊆ S and S ∩ S∗0 = ∅. This
leads to yet another graph reduction procedure. Let N ∗ =
∪v∈S∗0

N (v) and G′ = G \ {N ∗ ∪ S∗1 ∪ S
∗

0 }. Then from an
optimal (heuristic) solution, say U ′, of the MWVCP on G′,
an optimal solution V ′ of theMWVCP onG can be recovered
as V ′ = U ′ ∪ N ∗ ∪ S∗1 . Considering the time involved in
solving LPR, we did not implement this graph reduction in
our algorithm. However, it is not difficult to show that the
two graph reductions discussed earlier are special cases of
this rule.

Obviously, the graph reductions based on adjacent rule and
degree one rule are dependent on the weight and degree of
the adjacent vertices for each vertex in G. Once a vertex v is
removed from the graph G, for each u ∈ N (v), w(N (u)) and
w(N1(u)) with respect to the graph G \ {v} can be updated
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in O(1) time. As mentioned in [35], the graph reduction can
be applied step by step in a recursive fashion. Our graph
reduction procedure is summarized in Algorithm 2.

Algorithm 2 Framework of the Graph Reductions for the
MWVCP
Input: the graph G(V ,E,w)
Output: a reduced graph G′ and a vertex set
Vs
1: set Vs← ∅;
2: repeat
3: set G′← G;
4: for each vertex v ∈ V which satisfies the Adjacent

rule do
5: G = G \ N (v) \ {v};
6: Vs = Vs ∪ N (v);
7: end for
8: for each vertex v ∈ V which satisfies the Degree-one

rule do
9: G = G \ N1(v) \ {v};
10: Vs = Vs ∪ {v};
11: end for
12: until G′ = G;
13: return G′ and Vs;

C. INITIAL SOLUTION
Good initial solution for each ‘cycle’ of the algorithm plays an
important role in the effectiveness of the algorithm. For each
cycle, solutions (individuals) that form the initial population
are generated by a greedy randomized constructive scheme,
which is adapted from the GRASP algorithm [7], [27]. First,
we apply the concept of key-vertices introduced in [38] to
denote vertices that belong to set V ′ while non-key-vertices
denote the remaining ones. In fact, any vertex can be denoted
as a key-vertex or a non-key-vertex. A typical construction of
such a solution uses the following scheme. The algorithm
performs |V ′| iterations where V ′ is the generated vertex
cover. Thus the number of iterations is bounded by |V | − 1.
We initialize V ′ = ∅ and designate all edges as ‘uncovered’.
In a general iteration, the algorithm constructs a candidate list
Vc which consists of the end points of all uncovered edges
by the tentative solution V ′. Note that an edge is uncovered
by V ′ if both of its end points are not in V ′. For vertex v,
let ξ (v) denote the number of non-key-vertices adjacent to it.
Let Ve be the subset of Vc containing z0 vertices of Vc with
smallest ratio w(v)/ξ (v) (counting multiplicity) where z is a
prescribed parameter and z0 = min{z, |Vc|}. Now choose one
vertex, say v∗, from Ve with probability πv/((1+ z0)× z0/2)
for vertex v, where πv is the ranking of the vertex v when
elements of Ve are arranged in the ascending order based
on the ratio. This strategy ensures that a vertex with less
weight or the vertex which can cover more edges has a higher
probability of being chosen. Update V ′ as V ′ ∪ {v∗} and
designate all edges incident on v∗ as covered. With the built

in randomness, the process can generate different solutions
by repeated applications. We generate two such solutions as
the initial population.

Algorithm 3 Framework of the Initial Solution Generator
Algorithm for the MWVCP
1: Initialization: set V ′ = ∅ and E ′ = E
2: while |E ′| 6= 0 do
3: build the candidate set Vc
4: construct the elite candidates Ve
5: choose a vertex v∗ from Ve with a certain probability
6: undate V ′ to V ′ ∪ {v∗} and E ′ to E ′ \ {e ∈ E ′ :

e is incident on v∗}
7: end while
8: output V ′

D. CROSSOVER OPERATOR
The crossover operation generates offspring solutions from
parent solutions. It is designed in such a way that offsprings
inherit ‘elite’ components (qualities) from parents to a large
extent. The proposed crossover operator follows this general
principle and operates in two sequential steps:

• Step 1. Choose the common key-vertices from two par-
ent solutions as the key-vertices in the offspring solution:
For example, given two parents S1 = (1, 0, 1, 0, 1, 1)
and S2 = (0, 1, 1, 1, 1, 0) in Fig. 2, the third and fifth
vertices are the common key-vertices of the two parents.
Hence, the third and fifth vertices will be considered
as the key-vertices in the offspring solutions S ′1 and S ′2.
Since the offspring solutions generated from Step 1 may
be infeasible in some cases, it is necessary to modify it
to be feasible by Step 2.

• Step 2. Randomly inherit key-vertices to cover the
remaining uncovered edges from the two parents.
Specifically, as shown in Fig. 2, the offspring solution
S ′1 inherits v1 as key-vertex from parent S1 to cover the
uncovered edge (v1, v2) and meanwhile select v4 as
key-vertex from parent S2 to cover the uncovered edge
(v4, v6). This step is repeated until all the uncovered
edges are covered.

FIGURE 2. An illustration of the crossover operator.
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Although the procedure of this crossover operator is rela-
tively simple, it helps the offspring solutions to inherit elite
components from parents, which is advantageous in control-
ling the solution quality and convergence.

E. HYBRID TABU SEARCH
Another major component of our algorithm is the enhanced
local search part, which is called hybrid tabu search (HTS).
The HTS procedure integrates the weighted configuration
checking version of tabu search [19] with a solution-based
tabu search.

Li et al. [19] introduced a tabu search variation
with weighted configuration checking, named diversion
local search based on weighted configuration checking
(DLSWCC), to solve the MWVCP. The DLSWCC scheme
is one of the best performing algorithms for solving the
MWVCP. Although DLSWCC conducts the weighted con-
figuration checking to reduce the issue of cycling, it could
still get trapped in stagnation and falls into cycles in some
situations. To overcome this undesirable situation, our HTS
scheme further embeds a solution-based tabu search within
the DLSWCC framework. Before getting into a formal state-
ment of the HTS algorithm, we briefly discuss below some
crucial notations, definitions, and procedures.

1) VERTEX SCORING STRATEGY
Vertex scoring is a measure used in the selection of a vertex to
be added into or removed from a (partial) solution. This scor-
ing mechanism was used by Li et al. [19] in their DLSWCC
algorithm. For details on the application of the strategy we
refer to [19]. Note that our HTS algorithm systematically
adds and removes vertices from a candidate solution. After
a removal operation is performed, we could get an infeasible
solution which then forces back into feasibility with appro-
priate vertex additions. We use a dynamic scoring strategy
to measure the benefit of changing the state of a vertex (i.e.,
to be added into a solution or removed from a solution).

Given an undirected graph G(V ,E) and weight function
w from V → R+ ∪ {0}, for each edge e ∈ E , we associate
a weight denoted by dynamic_weight(e), which changes as
the algorithm progresses. The weight dynamic_weight(e) is
initially set to 1 for all e ∈ E . After adding a vertex to the
current solution, if e is still uncovered by the current solution,
dynamic_weight(e) will be increased by 1. For any S ⊆ V ,
let cost(S) =

∑
{dynamic_weight(e) : e is uncovered by S}.

Note that cost(S) = 0 if S is a vertex cover. Then, the score of
each vertex v with respect to a (partial) solution V ′, denoted
by score(v,V ′), is defined as follows.

score(v,V ′) =
cost(V ′)− cost(V ′t )

w(v)
. (4)

where V ′t = V ′ \ {v} if v ∈ V ′ and V ′t = V ′ ∪ {v}
otherwise. When the underlying solution V ′ is obvious from
the context, score(v,V ′) is simply denoted by score(v). (For
example, in the algorithm score(v) is calculated based on the
current (partial) solution.)

2) WEIGHTED CONFIGURATION CHECKING
The concept of weighted configuration checking as a way
to manage a tabu list has been described in details in [19].
We briefly discuss the concept here. Note that any tabu
search algorithm manages a tabu list in some form or other to
minimize the possibility of cycling. Weighted configuration
checking is a way to manage a tabu list efficiently for the
case of the MWVCP. We use this strategy in part of our HTS
algorithm. First, we shall introduce the concept of weighted
configuration.

Weighted configuration. For each vertex v, the weighted
configuration of a vertex v is a two-tuple < S,W >, where
S is a vector consisting of the states of all the vertices in
N (v) under the current candidate solution, and W is a vector
consisting of the weights of all the incident edges of all the
vertices in N (v).

When selecting a vertex v to add into the current solution,
if the weighted configuration of v has not been changed
since its last removal from the solution, which means the
circumstance of v remains stable, then v should not be added.
In details, for each vertex v ∈ V , the algorithm main-

tains an indicator function wconfig : V → {0, 1}. That is,
for each v ∈ V , wconfig[v] denotes whether the weighted
configuration of v has been changed since the last removal
of v from V ′ and wconfig[v] = 1 implies that the config-
uration has changed. Otherwise, wconfig[v] = 0. At the
beginning, wconfig[v] is initialized to 1 for each vertex v.
When removing v from V ′, wconfig[v] will be set to 0 and for
each u ∈ N (v),wconfig[u] will be set to 1.When adding v into
V ′, for each u ∈ N (v), wconfig[u] will be set to 1. Further-
more, when dynamic_weight(e) is increasing, the weighted
configuration of endpoints v and u of edge e will be set to 1
(i.e., set wconfig[v] and wconfig[u] to 1). Then, a vertex v
is tabu when wconfig[v] = 0. The selected vertex v to be
added into the current solution should have the property that
wconfig[v] = 1.

3) SOLUTION-BASED TABU SEARCH
Managing cycling is a central issue in any tabu search based
algorithm and researchers have used various techniques to
handle this efficiently, either using general purpose method-
ologies or by using problem specific ones. In our HTS algo-
rithm, we introduce a strategy which applies appropriate hash
functions to record ‘all visited solutions’ (instead of solution
attributes) to avoid cycling with high probability.

A solution V ′ can be expressed as a binary vector s =
(x1, x2, . . . , xn) where xi = 1 if and only if i ∈ V ′. We create
a special hash function h that maps a current solution s on to
the hash vector H . Each position of hash vector represents
either 0 or 1 to determine whether the solution has been
visited. That is, if H (h(s)) = 1, it indicates that solution s
has been previously visited and is classified as tabu. Note
that collisions could occur with a hash function. That is, two
different solutions s1 and s2 could have the same hash value
and will be mapped to the same position in H . This collision
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could lead to inaccurate identification of the tabu status of
candidate solutions (a non-visited solution could be forbidden
incorrectly).

To effectively reduce the collision rate, we use multiple
hash functions hk (k = 1, 2, 3) to keep track of the previously
visited solutions. At the beginning of the tabu search, the hash
vectors Hk (k = 1, 2, 3) are initialized to 0, implying that no
solution has been visited. Once the current feasible solution
s is updated, the values at indexes hk (s) on hash vector Hk
are set to 1, for k = 1, 2, 3. Then, a solution s is tabu if
and only if all the three values Hk [hk (s)] of solution s are
1. Obviously, collisions can hardly occur simultaneously for
different hash functions, resulting in reducing the probability
of the misclassifying the tabu status of candidate solutions.
For a given solution s = (x1, x2, . . . , xn), the hash functions
hk (s) is defined as:

hk (s) =

(
n∑
i=1

wki × xi

)
mod L. (5)

where wki = bi
γk c, L is the length of the hash vectors, and γk

is a parameter. The parameter values used in our algorithm
are given in Section III-A.
For a solution s, we can quickly calculate the hash function

value when removing or adding the ith vertex as follows:

hk (s) =

{
hk (s)− wki , (remove ith vertex)
hk (s)+ wki , (add ith vertex)

Obviously, the time complexity to calculate the hash value
of a neighborhood solution is O(1), which is computationally
cheap.

Then, when adding vertex v into the current solution s,
if s ∪ {v} is a feasible solution and hk (s ∪ {v})(k = 1, 2, 3)
all take 1, s ∪ {v} is regarded as a visited solution and vertex
v is forbidden to be added into the current solution.

4) VERTEX SELECTION STRATEGY
Using the dynamic scoring mechanism, the weighted con-
figuration checking and solution-based tabu search in the
previous sections, we develop the vertex selection strategy.
First, a concept of age is introduced. The age of a vertex is
defined as the number of search steps that have elapsed since
its state was last changed. Then, the vertex selection strategy
is defined as follows:

• Remove a vertex: For vertices in the current solution
s, select one vertex v with the greatest score, if there
exists more than one vertex, ties are broken in favor of
the oldest one, i.e., the one with the greatest value of age.

• Add a vertex. For vertices not in the current solution
s, select the eligible vertex v with the greatest score,
the eligible vertex v should take value 1 for wconfig[v],
and if s ∪ {v} is feasible, at least one of the three hash
values should take value 0 for hk (s ∪ {v}) (k = 1, 2, 3).
If there exists more than one vertex, ties are broken in
favor of the oldest one too.

From these two rules, we can see that HTS will delete the
vertices which cover less edges and have more weight values
and add the vertices which cover more edges and have less
weight values on the contrary. To avoid visiting the previous
encountered solutions, HTS conducts the weighted config-
uration checking to avoid adding recently deleted vertices
and conducts the solution-based tabu search to avoid further
cycling problem.

5) GENERAL PROCEDURE OF HYBRID TABU SEARCH
As described in Algorithm 4, our HTS is achieved using
perturbing method to find a new solution. First, HTS records
the objective value of the initial solution as IW (line 1) and
initializes the hash vectors. Then, starting from a feasible
solution, HTS repeatedly removes a vertex with the greatest
score to an infeasible solution and records the feasible solu-
tions in hash vectors (lines 11 and 12). Furthermore, HTS
selects another vertex and the selected vertex should not be
in tabu_list , which is used to avoid picking recently added
vertices in the last iteration that are to be removed from the

Algorithm 4 Framework of Hybrid Tabu Search
Input: a reduced graph G′, a initial solution V ′

Output: an improved solution V ′i
1: IW ← w(V ′);
2: initialize the improved solution V ′i ← V ′;
3: /* Initialize the hash vector for only once in the whole

MAE-HTS algorithm. */
4: initialize three hash vectors HK to 0;
5: Iter ← 0;
6: while Iter ≤ Max_Iter do
7: while V ′ is feasible do
8: if w(V ′) < w(V ′i ) then
9: V ′i ← V ′;

10: end if
11: Hk [hk (s(V ′))]← 1;
12: find vertex v with the greatest score in V ′, breaking

ties in favor of the oldest one;
13: V ′← V ′ \ {v};
14: end while
15: find vertex v with the greatest score in V ′ and not in

tabu_list;
16: V ′← V ′ \ {v};
17: clear tabu_list;
18: while V ′ is infeasible do
19: find eligible vertex v with the greatest score, break-

ing ties in favor of the oldest one;
20: if w(V ′)+ w(v) ≥ IW then break;
21: V ′← V ′ ∪ {v};
22: add v into tabu_list;
23: end while
24: Iter ← Iter + 1;
25: end while
26: return V ′i ;
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solution (line 15). Once such a vertex is removed from the
solution, HTS clears tabu_list (line 17). Then, HTS repeat-
edly tries to add an eligible vertex with the greatest score
into the current solution to fix it, where the eligible vertices
are determined by the weighted configuration checking and
solution-based tabu search (line 19). Meanwhile, if the addi-
tion of vertex v will lead to a worse solution (i.e., a solution
with objective value greater than IW ), the move is forbidden
and the inner loop will break (line 20). Note that HTS will
record all the added vertices in one loop by tabu_list (line
22). When the stopping criterion (the maximum number of
iterations) is reached, the improved solution V ′i is returned.
Compared to the previous DLSWCC, the main differences

of our HTS are the strategy for selecting a vertex to add into
the current solution (line 19) and the strategy for accepting
a new solution (line 20). Our HTS conducts solution-based
tabu search to avoid adding any vertex to revisit previous
encountered solutions. Because HTS has the memory of vis-
ited solutions and will hardly ever cycle in a local minimum,
the solutions with poor quality will have less impact dur-
ing the search. Therefore, HTS can accept all solutions better
than the initial solution while DLSWCC can only accept solu-
tions better than the current best solution, i.e., HTS breaks
the inner loop of adding vertices when w(V ′) + w(v) ≥ IW ,
while DLSWCC breaks the inner loop of adding vertices
when w(V ′)+ w(v) ≥ w(V ′i ).

III. EXPERIMENTAL RESULTS
In this section, we present our results of extensive experi-
mental analysis conducted using our MAE-HTS algorithm.
We also compared our algorithm with five best performing
heuristic algorithms for the MWVCP from the literature and
the commercial MIP solver Gurobi.

A. BENCHMARK INSTANCES AND PARAMETER SETTING
A collection of standard benchmark instances are provided
in [30]. The number of vertices in these instances varies from
10 to 1000, which are small compared to the real-world appli-
cations of the MWVCP. Therefore, 72 additional large scale
instances are obtained from Network Data Repository [28],
including well known DIMACS, BHOSLIB benchmarks and
different types of real-life graphs, which can be categorized
into biological networks, collaboration networks, interaction
networks, Amazon recommend networks, scientific compu-
tation networks, social networks, Facebook networks, tech-
nological networks, and web link networks. For 72 large
scale instances, the weight of each vertex is not provided.
Thus, the weight of each vertex is generated as Shyu et al.
[30] did, i.e., the vertex weights are randomly and uniformly
drawn from the interval [20,120]. Note that each test instance
consists of an undirected and vertex-weighted graph with n
vertices and m edges. To test the performance of MAE-HTS,
the following benchmark classes are used:

• Class SPI: the first set of benchmark (SPI) consists
of 400 small instances with 4 different values of
n (n = 10, 15, 20, and 25).

• Class MPI: the second set of benchmark (MPI) consists
of 710 middle size instances with 6 different values of n
(n = 50, 100, 150, 200, 250, and 300).

• Class LPI: the third set of benchmark (LPI) consists
of 15 large scale instances with 3 different values of n
(n = 500, 800, and 1000).

• Class ALPI: the fifth set of 72 large scale instances are
obtained from Network Data Repository with more than
1000 vertices.1

For the small and middle size benchmark classes SPI and
MPI, there are 10 problem instances for each combination of
n and m. Therefore, the results are reported as the average
value over all the 10 instances for each combination, and
the proposed algorithm is executed once for these two sets
of instances. For large benchmark classes LPI and ALPI,
the results are obtained over 10 independent runs. All com-
putational results of our MAE-HTS were obtained with the
parameter values as presented in Table 1.2

TABLE 1. Parameter settings.

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
MAE-HTS is coded in C++ and run on a PC with an
AMD Ryzen 7 1700X 3.40GHz and 16GB RAM under
the Windows 10 operating system. The following four best
performing algorithms from the literature are selected for
comparison:
• MS-ITS by Zhou et al. [38]
• DLSWCC by Li et al. [19]
• NuMWVC by Li et al. [18]

and an ILP solver Gurobi 9.1.
Gurobi is tested for solving the 0-1 programming problem

proposed in Section II-B. Since the executable files of three
reference algorithms (MS-ITS, DLSWCC and NuMWVC)
have been offered by the authors. All algorithms (include
Gurobi) are executed on the same PCwithMAE-HTS, i.e., an
AMD Ryzen 7 1700X 3.40GHz. In fact, the results obtained
by the reference algorithms are better than those reported in
the literature because faster computers are used in our experi-
ments. All results provided by each algorithm are obtained by
executing only once on each instance of class SPI and class

1available at https://github.com/HustWangYang/ALPI-class-for-
MWVCP

2Our executable code is available at: https://github.com/HustWang
Yang/MAE-HTS
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TABLE 2. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class SPI (Type I).

TABLE 3. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class SPI (Type II).

MPI, and 10 times on each instance of class LPI and class
ALPI. For each instance, each algorithm is terminated upon
reaching a given time limit (1000s) except for Gurobi. The
time limit for Gurobi is set as 10800s. Note that if the best
solution is found without reaching this time limit with normal
termination code for Gurobi, it must be an optimal solution
for the corresponding instance.

C. EXPERIMENTAL RESULTS ON SPI TYPE INSTANCES
The first experiment is conducted to evaluate the performance
of MAE-HTS in tackling the two sets of benchmark instances
(SPI Type I and Type II). For these instances, the number
of vertices ranges from 10 to 25 and the number of edges
ranges from 10 to 200. Tables 2 and 3 present the performance
of MAE-HTS in comparison to other reference algorithms
(i.e., MS-ITS, DLSWCC and NuMWVC) for the set of SPI

TABLE 4. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class MPI (Type I).

instances. Columns Avg and Time show the average objective
values and the average computing time in seconds by the
reference algorithmsMS-ITS, DLSWCC,NuMWVC and our
MAE-HTS, respectively. Since optimal solutions of these
instances are known, column OPT in both tables lists the
optimal solution values for each instance. Row AVG presents
the value averaged over one set of instances, while row BEST
denotes the number of objective values obtained by the algo-
rithmwhich are the best among all the algorithms. In addition,
the objective value which matches the best-known results is
indicated in bold.

From Tables 2 and 3, we observe that MS-ITS, DLSWCC,
NuMWVC and MAE-HTS obtain the same results in terms
of both Avg and Time while all these four algorithms could
yield best solutions on all the instances. Small instances have
no challenge for these algorithms.

D. EXPERIMENTAL RESULTS ON MPI TYPE INSTANCES
In order to further evaluate the performance of MAE-HTS,
it is tested on the second set of benchmark instances (MPI
type). We report the results of MAE-HTS in comparisons
with other reference algorithms in tackling this set of rela-
tively difficult instances in Tables 4 and 5. For these instances,

VOLUME 9, 2021 31939



Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

TABLE 5. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class MPI (Type II).

it is hard to obtain all the optimal solutions in short time.
Thus, we apply the ILP solver Gurobi to find a best solu-
tion with a reasonable time limit (10800 seconds for each
instance), which are reported in column Gurobi. The optimal
solution values found byGurobi in the time limit are indicated
with flag ‘‘+’’, and the best objective values among all the
algorithms are indicated in bold.

From Tables 4 and 5, we observe that MAE-HTS outper-
forms other algorithms by obtaining the best results on all
the instances. Indeed, MAE-HTS improves the previous best
known results for one instance (with n = 250 and m = 1000
on class MPI Type II) and matches the best known solutions

for the remaining 70 instances. More importantly, MAE-HTS
finds the best solutions in less computational time with an
average computational time of 0.006s for Type I and Type II.
Compared with the ILP solver Gurobi, MAE-HTS was able
to obtain all the optimal solutions and give better solutions
on two MPI instances that were not solved by Gurobi to
optimality.

E. EXPERIMENTAL RESULTS ON LPI TYPE INSTANCES
The third set of experiments is conducted using the LPI
of instances, which are considered as the most challeng-
ing MWVCP standard instances. For this set of benchmark
instances, each independent combination of n and m consists
of one instance which is different from the classes SPI and
MPI. Therefore, in this experiment, the proposed MAE-HTS
is conducted on each instance for 10 independent runs, while
the ILP solver Gurobi is still applied in the experiment with
time limit 10800 seconds for each instance. The optimal
objective values obtained by Gurobi are indicated with flag
‘‘+’’, and the best solution values among all the algorithms
are indicated in bold.

Computational results of our MAE-HTS algorithm and
other reference algorithms are reported in Table 6 where
we report the best objective values Best and the average
objective values Avg obtained over 10 independent runs for
each instance. The best values of Best and Avg are indi-
cated in bold. Table 6 discloses the superior performance
of our algorithm over the reference algorithms. Indeed,
MAE-HTS obtains the best results in terms of both Best
and Avg for all the 15 LPI instances, which outperforms
other reference algorithms. Compared with other reference
algorithms, MAE-HTS is much more stable with the same
values on the best and average values. MAE-HTS is signif-
icantly faster with average computational time 0.714s while
MS-ITS, DLSWCC and NuMWVC have the average compu-
tational time 19.356s, 2.618 and 2.116s, respectively. In par-
ticular, our MAE-HTS could improve the best known result
for one instance with n = 800 and m = 2000. There-
fore, this experiment discloses the highly competitive and

TABLE 6. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class LPI.
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TABLE 7. Comparison between MAE and other state-of-the-art algorithms on instances of ALPI.
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TABLE 8. Comparison between MAE-HTS with different strategies.

TABLE 9. Experiments for parameter settings.

superior performance of the proposed MAE-HTS algorithm
in terms of both solution quality, computational efficiency,
and robustness.

F. EXPERIMENTAL RESULTS ON ADDITIONAL
LARGE-SCALE INSTANCES
In this experiment, we test our MAE-HTS algorithm on
the instances obtained from the Network Data Repository,
which are based on the real-world graphs. We compared our
MAE-HTS algorithm with DLSWCC and NuMWVC which
are obviously the best performing algorithms in the literature.
These three algorithms were run under the same experimental
conditions. Because of the large scale nature of the instances,
the exact ILP solver Gurobi has difficulty in obtaining good
solutions in a time limit of 10800s. For the 72 large-scale
instances with different numbers of vertices and edges, all
algorithms are executed for 10 times. The performance of all
the three algorithms are reported in Table 7. Column Best
reports the best objective values over 10 runs and columns
Avg and Times show the average objective values and average
computing time, respectively. The best values are indicated in
bold too.

From Table 7, we can see that MAE-HTS and NuMWVC
are better than DLSWCC on class ALPI. MAE-HTS obtains
the best solutions on 64 instances while NuMWVC can find
the best solutions on 27 instances. Moreover, MAE-HTS is
more stable and robust than other reference algorithms with
better average objective values, and it obtains the best average
objective values on 64 instances of all 72 instances. Mean-
while, MAE-HTS achieves the best performance on class
ALPI in a reasonable time (285.165s). In general, MAE-HTS
demonstrates its effectiveness in solving these challenging
large scale instances.

IV. ANALYSIS AND DISCUSSION
In this section, we conduct additional experiments to demon-
strate the effectiveness of several important components in
our MAE-HTS, including the master-apprentice evolutionary
algorithm, the hybrid tabu search and the combination of the
two searching strategies.

A. EFFECTIVENESS OF SEARCHING STRATEGIES
IN MAE-HTS
The purpose of this experiment is to evaluate the effectiveness
of the main components in MAE-HTS: the master-apprentice
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evolutionary algorithm and the hybrid tabu search. Thus,
we compare MAE-HTS with two variants of MAE-HTS:
HTS and MAE, and the best reference algorithm NuMWVC.
HTS is based on the hybrid tabu search and does not conduct
the master-apprentice evolutionary procedure. MAE works
without solution-based tabu search, i.e., it does not conduct
the hash functions to record the visited solutions. In this
experiment, the HTS and MAE are tested on 23 large scale
representative instances from the class of ALPI instances over
10 runs. These instances include 10 instances fromBHOSLIB
and 13 instances from Facebook networks, which are difficult
for the best reference algorithm NuMWVC in the literature.

As shown in Table 8, MAE-HTS outperforms the best per-
forming algorithm NuMWVC as well as the two simplified
versions of our MAE-HTS algorithm: HTS and MAE. First,
HTS can obtain all the best solutions on 10 instances from
BHOSLIB while MAE can only find the best solutions for
3 out of 10 instances. This disclose that the solution-based
tabu search can progress a more precise search by using the
memory of all the visited solutions to avoid cycling problem
during the search. Second, for 13 instances from Facebook
networks, compared toHTS,MAEperforms better in terms of
the best objective value and the average objective value over
all 13 instances. Moreover, MAE is able to provide the best
solutions on 1 instance. This demonstrates the importance of
MAE especially for large scale instances, which increases the
diversity and stability of the search process. Thus, the hybrid
tabu search and the master-apprentice evolutionary algorithm
are both important components in our MAE-HTS.

In fact, for most instances, HTS and MAE can also pro-
vide high quality solutions. Interested readers are referred to
Table 10 in the Appendix for more details, which contains the
results for HTS and MAE on all 72 instances of class ALPI.

B. PARAMETER SETTINGS
In our MAE-HTS, an important issue is to make a balance
between local search and global search, i.e., how to decide the
values of two important parameters Iter_Cycle andMax_Iter .
In this experiment, we conduct experiments to fix the values
of the two key parameters of the MAE-HTS algorithm.

• Parameter coefficient α for Iter_Cycle
• Parameter coefficient β for Max_Iter

The parameter coefficient represents the ratio between the
new parameter in experiments and the original parameter.
For example, α = 0.6 means that the new parameter of
Iter_Cycle is set as 5× 0.6 = 3 while α = 1 means the new
parameter remains 5. We have chosen several representative
instances as the testbed. These instances include 5 largest
instances from BHOSLIB and 5 largest instances from Face-
book networks. For this experiment, The algorithm was run
for 10 times on each problem instance and each parameter
setting with 1000s as the time limit. The results are presented
in Table 9.
In Table 9, we notice that the algorithms with differ-

ent settings can find the best solutions on both the best

TABLE 10. Results on the class of ALPI by HTS and MAE.

objective value and the average objective value for BHOSLIB
instances. This indicates the stability of the MAE-HTS algo-
rithm to some extent. However, we observe that the combi-
nation (α = 1,β = 1) leads to better values for the 5 largest
instances from Facebook networks. Thus, the parameters of
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our algorithm are set as the initial value of Iter_Cycle and
Max_Iter .

V. CONCLUSION
In this paper, we presented our MAE-HTS algorithm for
solving the weighted vertex cover problem. By usingmultiple
hash functions, MAE-HTS records the previously visited
solutions effectively and thereby avoid cycling with high
probability and intensifies the search within the search area
of interest locally. By combining with a hybrid evolutionary
algorithm, the diversification capability and the robustness
of the MAE-HTS algorithm is enhanced significantly. The
performance of MAE-HTS is evaluated and compared with
the current best performing algorithms for the MWVCP on
a set of public benchmark instances as well as additional
large scale instances representing real-world graphs. The
experimental results demonstrate the efficacy of the proposed
MWVCP in terms of both solution quality and computational
efficiency. Interestingly, we demonstrated that each compo-
nent of the algorithm made a notable contribution to the
success of our hybrid algorithm. However, we notice that
NuMWVC has also achieved better results on some instances
of ALPI. The reason might be that our MAE-HTS is realized
by a two individual based evolutionary algorithm, a sim-
ple crossover operator and a greedy local search procedure,
which has strong capability in local search but its capability of
global search can be further enhanced. Thus, we can improve
our HTS procedure by introducing random strategies or com-
bining our HTS with other intelligence algorithms, such as
monarch butterfly optimization (MBO), earthworm optimiza-
tion algorithm (EWA), elephant herding optimization (EHO)
andmoth search (MS) algorithm, to enhance the global search
capability of our algorithm in the future.

APPENDIX.
Table 10 presents the comparison results between HTS,MAE
and MAE-HTS on 72 ALPI instances with 10 independent
runs under the time limit of 1000 seconds for each run.
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