IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 10, 2020, accepted January 1, 2021, date of publication January 14, 2021, date of current version March 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051741

A Fast and Robust Heuristic Algorithm for the
Minimum Weight Vertex Cover Problem

YANG WANG 1, ZHIPENG LU"“', AND ABRAHAM P. PUNNEN "2

'SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2Department of Mathematics, Simon Fraser University Surrey, Surrey, BC V3T 0A3, Canada

Corresponding author: Yang Wang (hust_wy @hust.edu.cn)

The work of Abraham P. Punnen was supported by the Natural Sciences and Engineering Research Council [Discovery Grant and

Discovery Accelerator Supplement].

ABSTRACT The minimum weight vertex cover problem (MWVCP) is a fundamental combinatorial
optimization problem with various real-world applications. The MWVCP seeks a vertex cover of an
undirected graph such that the sum of the weights of the selected vertices is as small as possible. In this
paper, we present an effective algorithm to solve the MWVCP. First, a master-apprentice evolutionary
algorithm based on two individuals is conducted to enhance the diversity of solutions. Second, a hybrid
tabu search combined configuration checking and solution-based tabu search is introduced to intensify
local search procedure. Harnessing the power of the evolutionary strategy and a novel variant of hybrid
tabu search, Master-Apprentice Evolutionary Algorithm with Hybrid Tabu Search, MAE-HTS, is presented.
Results of extensive computational experiments using standard benchmark instances and other large-scale
instances demonstrate the efficacy of our algorithm in terms of solution quality, running time, and robustness
compared to state-of-the-art heuristics from the literature and the commercial MIP solver Gurobi. We also
systematically analyze the role of each individual component of the algorithm which when worked in unison
produced superior outcomes. In particular, MAE-HTS produced improved solutions for 2 out of 126 public
benchmark instances with better running time. In addition, our MAE-HTS outperforms other state-of-the-art
algorithms DLSWCC and NuMWVC for 72 large scale MW VCP instances by obtaining the best results for
64 ones, while other two reference algorithms can only obtain 27 best results at most.

INDEX TERMS Hybrid evolutionary algorithm, metaheuristics, minimum weight vertex cover problem,

solution-based tabu search.

I. INTRODUCTION

Let G = (V,E) be an undirected graph with vertex set
V. = {vi,va,...,v,} and edge set E = {e1,ea,...en}.
A weight function w : V. — R™ U {0} is also given. i.e., each
vertex v € V is associated with a non-negative weight w(v).
Then, the minimum weight vertex cover problem (MWVCP)
is to find a vertex cover V' C V such that Y v w(v) is
minimized. The MWVCP is a fundamental NP-hard com-
binatorial optimization problem and equivalent to the max-
imum weight clique problem [17] on the complementary
graphs. The problem also plays a vital role in numerous
real-world applications [29], [33], [34]. It has been exten-
sively analyzed by researchers from various points of view,
including computational complexity [15], exact algorithms

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li

[35], [36], heuristic algorithms [2], [37], and polynomially
solvable special cases [4], [25].

Although exact algorithms have gained success in small
instances, they have difficulty to solve the real large instances.
Thus, heuristic method becomes a popular approach for tack-
ling such NP-hard problems. Various heuristic algorithms are
available in the literature to solve the MWVCP. Up to 2012,
a number of algorithms have been proposed based on greedy
constructions [31], ant colony optimization approaches
[14], [30] and population-based iterated greedy strategies [3].
In 2015, Zhou et al. proposed a multi-start iterative tabu
search algorithm (MS-ITS) to solve the MWVC prob-
lem [38]. In 2016, Li ef al. proposed a diversion local search
procedure based on configuration checking (DLSWCC) to
solve the problem and improve the results [19]. In 2018,
Li et al further improved their previous algorithm by
self-adaptive removing vertex strategy [18] and proposed a

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

31932 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0002-5442-6723
https://orcid.org/0000-0001-9185-3233
https://orcid.org/0000-0002-3859-9229
https://orcid.org/0000-0001-5486-5702

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

novel local search algorithm (NuMWVC). These can be con-
sidered as the best performing algorithms for the MWVCP in
the literature.

However, none of these algorithms uniformly outper-
formed others on standard benchmark instances. This sug-
gests that a more careful and systematic algorithm design
is necessary to achieve superior outcomes for the MW VCP.
Evolutionary algorithms [1], [6], [13] and tabu search
[8]-[10] are well established heuristic paradigms that have
been successfully applied in solving a wide variety of
hard combinatorial optimization problems of practical inter-
est. There are unique features inherent in each of these
approaches unshared by the other and hence hybridizing
them to exploit their unique and dominating features could
produce algorithms with superior outcomes. Hybridization
of local search and genetic algorithms is not a new idea.
In fact, memetic algorithms [12], [16], [23] do precisely
this to reduce the probability of premature convergence of
a genetic algorithm. In this paper, we investigate this line
of reasoning to develop an effective and robust algorithm to
solve the weighted vertex cover problem.

First, to make a better balance between diversity and
time consuming, we adapt a master-apprentice evolutionary
algorithm based on two individuals rather than traditional
population-based evolutionary algorithms. Second, to handle
the cycling problem during the local search, a hybrid tabu
search which combines the configuration checking strategy
and solution-based tabu search is presented. By carefully inte-
grating various algorithmic strategies described above, a fast
and robust algorithm, namely master-apprentice evolutionary
algorithm with hybrid tabu search (MAE-HTY) is presented.

Systematic experimental analysis of our algorithm using
four sets of 198 benchmark instances produced excel-
lent results. More specifically, for 126 public bench-
mark instances, MAE-HTS obtained improved solutions for
2 instances and matched the best known solutions for the
remaining 124 ones when compared with state-of-the-art ref-
erence algorithms [2], [3], [14], [19], [38] and the Gurobi
MIP solver, while for 72 additional large scale instances,
MAE-HTS is able to find the best solutions for 64 instances.
To obtain additional insights into the distinctive features of
the algorithm and computational bottlenecks, we examined
the role of each of the major components of our algorithm
individually through systematic experimentation. The results
show that suppressing any of these major features could dete-
riorate the performance of the algorithm while when all the
components worked in unison it resulted in a fast and robust
algorithm that outperformed state-of-the-art algorithms on a
variety of performance metrics.

The rest of the paper is organized as follows. A detailed
description of our main algorithm is presented in Section II.
Extensive computational analysis and comparisons with
the current best performing algorithms are presented in
Section III. Section IV investigates and analyzes the sensi-
tivity and efficacy of some of the crucial components of our
algorithm. Concluding remarks are presented in Section V.

VOLUME 9, 2021

Il. MASTER-APPRENTICE EVOLUTIONARY ALGORITHM
WITH HYBRID TABU SEARCH

A. MAIN FRAMEWORK OF MAE-HTS

Recall those memetic algorithms that combine evolutionary
algorithms and local search are highly effective in solving
various combinatorial optimization problems [11], [20], [21],
[32]. The combined effect of global recombinant search and
the powerful local search offers the memetic framework suf-
ficient balance between intensification and diversification of
the search process. Traditional population-based evolutionary
algorithms have the disadvantage of slow convergence and
high consumption of computing resources due to the large
population size. The evolutionary part of our algorithm uses
the master-apprentice framework and manages only two indi-
viduals (apprentices) at each iteration, where the apprentices
evolve to become masters after a given number of generations
(a cycle). The idea of the two-individual based evolutionary
algorithm was first proposed in [22] for solving the graph
coloring problem and further formalized by Ding et al. [5] for
solving the flexible job shop scheduling problem. To absorb
the essence of the history of the search process and evolution,
one apprentice will be replaced by the master from the previ-
ous cycle. By adapting the two individual based formwork in
our evolutionary process, we partly control and manage the
issue of premature convergence, without sacrificing solution
quality significantly while achieving improved running time.
Any possibility of deterioration in the solution quality is
taken care of by the powerful hybrid tabu search. The general
architecture of our main algorithm, MAE-HTS is summarized
in Algorithm 1.

Algorithm 1 Framework of MAE-HTS
Input: a graph G
Output: a best solution V/
1: (G, Vi) < Graph_Reduction(G); // Section 1I-B
S1, 82 <« Init(); // Section II-C
Se, Spv Spest < Init();
generation, cycle < 0;
while stop criterion is not satisfied do
(S, Sé) < Crossover_Operator(Sy, S); // Section I1-
D
7. S} < HTS(G, Si); // Section II-E
8: Sy < HTS(G', S}); // Section II-E
9: S, < saveBest(S1, S2, S¢);
10: Spest < saveBest(S., Spest);
11: if generation%lteryc. = 0 then

A o

12: S1 < Sp;

13: Sp < S¢;

14: S¢ <« init();

15: cycle < cycle + 1;
16: endif

17: generation <— generation + 1;
18: end while
19: return Spe U Vi,

31933

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

The MAE-HTS algorithm is composed of the following
components: A function Graph_Reduction() which with the
input graph G produces a potentially reduced graph G’ and
a set V; of vertices the status of which are fixed (i.e., in the
output cover or not), a function Init() that generates random
initial solutions, an operator CrossOver() to generate child
solutions, and the hybrid tabu search HTS() to improve a
given solution. We will discuss in details each of these func-
tions and related procedures in the subsequent subsections.

For the time being, we simply want to discuss some
features of the functions discussed in Algorithm 1. At the
beginning, MAE-HTS invokes Graph_Reduction() to possi-
bly reduce the size of the original graph and Init() generates
two initial solutions S7 and S>. Then, at each generation,
MAE-HTS performs the CrossOver() operation to generate
two child solutions S| and S, which will be optimized by the
hybrid tabu search procedure to obtain new local optimum
solutions S| and S,. If solutions S; or S, is better than the
best solution Spes; Obtained so far, Spes is updated. After a
given number of generations, i.e., at the end of each cycle,
solution S is replaced by the best solution from the previous
cycle, which is stored in S,. Meanwhile, the best solution
in the current cycle is stored in S., which will be initialized
before starting the next cycle. When the stop criterion (time
limit) is met, the algorithm returns Sp.s; U V. A high-level
representation of one cycle of the MAE-HTS algorithm is
given in Fig. 1.

= One cycle(p Generations)
One Generation
S1 S,
~_ _—
Crossover Operator
s; S5
Hybrid
Tabu Search
S) (S
Save Best
S.) S. = best(S;,52,5.)
s,)
Step2 ‘
('S,) Step3: Iit S,
Step1 ‘
S . (s2)

FIGURE 1. Diagram of MAE-HTS.

B. GRAPH REDUCTIONS
Graph reduction rules are sufficient conditions which if satis-
fied, we can determine the status of some associated vertices
in an optimal solution. We first consider two simple reduction
rules proposed by Wang et al in [35] for the MW VCP.
Foranyv e V,let Nv) = {u|(u,v) € E,u € V}.ie., Nv)
is the collection of all adjacent vertices of v in G. Recall that,
forany S €V, w(S) =) g w().

31934

Adjacent rule. For any vertex v € V, if w(N(v)) < w(v),
then there exists an optimal solution V' of the MW VCP such
thatv ¢ V' and N(v) C V'

For any vertex v satisfying the condition of the adjacent
rule, construct the graph G’ = G\ N(v) \ {v}. Then, from an
optimal (heuristic) solution, say U’, of the MWVCP on G,
an optimal (heuristic) solution V* of the MWVCP on G can
berecovered as V* = U'UN (v). In the adjacent rule, if for any
vertex v € V, if w(N(v)) < w(v) (i.e., strict inequality holds),
then every optimal solution V' of the MW VCP satisfies v ¢
ViandNv) C V'.

For any vertex v € V, let N1 (v) = {u € N(v), IN(u)| = 1}.
i.e., N1(v) is the collection of all adjacent vertices of v in G
whose degree is one. Note that N1(v) could be an empty set.

Degree-one rule. For each vertex v € V with N1(v) # 0,
if w(v) < w(N1(v)), then there exists an optimal solution V’
to the MWVCP such thatv € V and No) NV’ = @.

For any vertex v € V satisfying the degree-one rule,
construct the graph G’ = G \ Ni(v) \ {v}. Then from an
optimal (heuristic) solution, say U’, of the MWVCP on G/,
an optimal solution V' of the MWVCP on G can be recovered
as V' = U’ U {v}. Further, for any vertex v € V with N{(v) #
@, if w(v) < w(N1(v)) (i.e., strict inequality holds), then every
optimal solution V’ of the MWVCP satisfies v € V' and
Nv)NV' =4g.

The adjacent rule and degree one rule are special cases of
the more general LP-relaxation rule. Note that the MWVCP
can be formulated as an 0-1 programming problem (0-1 PP)

Minimize Z WiX; (D
jev

Subject to x; +x; > 1 forall (i,j) € E 2)
xj€{0, 1} forallj eV 3)

where x; = 1 precisely when j is in the vertex cover repre-
sented by the corresponding solution x. We denote the linear
programming relaxation of 0-1 PP by LPR. It is well known
that if x* = (x{,x3,...,x;) is an optimal basic feasible
solution of the LPR, then xj* e {0,1,1/2}. Let SS ={ €
Vi:ixp=0land S = {j € V : x; = 1}. Then it is well
known [24], [26] that there exists an optimal solution § € V
to the MWVCP such that S§ € S and S N S; = . This
leads to yet another graph reduction procedure. Let N* =
UvesgN(v) and G' = G\ {N* US{ U S;}. Then from an
optimal (heuristic) solution, say U’, of the MWVCP on G,
an optimal solution V' of the MWVCP on G can be recovered
as V/ = U’ UN* U S;. Considering the time involved in
solving LPR, we did not implement this graph reduction in
our algorithm. However, it is not difficult to show that the
two graph reductions discussed earlier are special cases of
this rule.

Obviously, the graph reductions based on adjacent rule and
degree one rule are dependent on the weight and degree of
the adjacent vertices for each vertex in G. Once a vertex v is
removed from the graph G, for each u € N(v), w(N(u)) and
w(N1(u)) with respect to the graph G \ {v} can be updated

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

in O(1) time. As mentioned in [35], the graph reduction can
be applied step by step in a recursive fashion. Our graph
reduction procedure is summarized in Algorithm 2.

in randomness, the process can generate different solutions
by repeated applications. We generate two such solutions as
the initial population.

Algorithm 2 Framework of the Graph Reductions for the
MWVCP
Input: the graph G(V, E, w)
Output: a reduced graph G’ and a
Vs

1: setVy < @,

2: repeat
3 setG <« G;
4: for each vertex v € V which satisfies the Adjacent
rule do

G=G\NW\ {v};

Vs =V UN(©);

end for
for each vertex v € V which satisfies the Degree-one
rule do

9: G=G\NW\ {v};
10: Ve =V, U {v};
11: end for
12: until G’ = G;
13: return G’ and Vi,

vertex set

C. INITIAL SOLUTION

Good initial solution for each ‘cycle’ of the algorithm plays an
important role in the effectiveness of the algorithm. For each
cycle, solutions (individuals) that form the initial population
are generated by a greedy randomized constructive scheme,
which is adapted from the GRASP algorithm [7], [27]. First,
we apply the concept of key-vertices introduced in [38] to
denote vertices that belong to set V’ while non-key-vertices
denote the remaining ones. In fact, any vertex can be denoted
as a key-vertex or a non-key-vertex. A typical construction of
such a solution uses the following scheme. The algorithm
performs |V’| iterations where V' is the generated vertex
cover. Thus the number of iterations is bounded by |[V| — 1.
We initialize V/ = ¢ and designate all edges as ‘uncovered’.
In a general iteration, the algorithm constructs a candidate list
V. which consists of the end points of all uncovered edges
by the tentative solution V’. Note that an edge is uncovered
by V' if both of its end points are not in V'. For vertex v,
let £(v) denote the number of non-key-vertices adjacent to it.
Let V, be the subset of V. containing 20 vertices of V, with
smallest ratio w(v)/&(v) (counting multiplicity) where z is a
prescribed parameter and z° = min{z, |V,|}. Now choose one
vertex, say v¥, from V, with probability ,/((1 +z°) x 2°/2)
for vertex v, where m, is the ranking of the vertex v when
elements of V, are arranged in the ascending order based
on the ratio. This strategy ensures that a vertex with less
weight or the vertex which can cover more edges has a higher
probability of being chosen. Update V' as V' U {v*} and
designate all edges incident on v* as covered. With the built

VOLUME 9, 2021

Algorithm 3 Framework of the Initial Solution Generator
Algorithm for the MWVCP

1: Initialization: set V' =@ and E' = E

2: while |[E’| # 0 do

3: build the candidate set V.

4: construct the elite candidates V,

5

6

choose a vertex v* from V, with a certain probability
undate V' to V' U {v*} and E' to E’ \ {e € E’
e is incident on v*}

7: end while

8: output V'

D. CROSSOVER OPERATOR

The crossover operation generates offspring solutions from
parent solutions. It is designed in such a way that offsprings
inherit ‘elite’ components (qualities) from parents to a large
extent. The proposed crossover operator follows this general
principle and operates in two sequential steps:

o Step 1. Choose the common key-vertices from two par-
ent solutions as the key-vertices in the offspring solution:
For example, given two parents S = (1,0,1,0, 1, 1)
and S = (0,1, 1,1, 1,0) in Fig. 2, the third and fifth
vertices are the common key-vertices of the two parents.
Hence, the third and fifth vertices will be considered
as the key-vertices in the offspring solutions S| and SJ.
Since the offspring solutions generated from Step 1 may
be infeasible in some cases, it is necessary to modify it
to be feasible by Step 2.

o Step 2. Randomly inherit key-vertices to cover the
remaining uncovered edges from the two parents.
Specifically, as shown in Fig. 2, the offspring solution
S| inherits v as key-vertex from parent Sy to cover the
uncovered edge (vi, v2) and meanwhile select v4 as
key-vertex from parent S» to cover the uncovered edge
(v4, ve). This step is repeated until all the uncovered
edges are covered.

vi|
|

51 V5
|
V2101 v3 va Wve

(101011) S

vi 1 V5 el 5
. op2 V1 V5
Stepl Step2 : | ,
v3 va Ove | SNONI
v2
V2 Qlvg var O’ Ve

(101110)"
Vi Sy V5

%
Vi

N
V20~ vz va' O ve
(011110)

FIGURE 2. An illustration of the crossover operator.

31935

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

Although the procedure of this crossover operator is rela-
tively simple, it helps the offspring solutions to inherit elite
components from parents, which is advantageous in control-
ling the solution quality and convergence.

E. HYBRID TABU SEARCH

Another major component of our algorithm is the enhanced
local search part, which is called hybrid tabu search (HTS).
The HTS procedure integrates the weighted configuration
checking version of tabu search [19] with a solution-based
tabu search.

Li et al [19] introduced a tabu search variation
with weighted configuration checking, named diversion
local search based on weighted configuration checking
(DLSWCC), to solve the MWVCP. The DLSWCC scheme
is one of the best performing algorithms for solving the
MWVCP. Although DLSWCC conducts the weighted con-
figuration checking to reduce the issue of cycling, it could
still get trapped in stagnation and falls into cycles in some
situations. To overcome this undesirable situation, our HTS
scheme further embeds a solution-based tabu search within
the DLSWCC framework. Before getting into a formal state-
ment of the HTS algorithm, we briefly discuss below some
crucial notations, definitions, and procedures.

1) VERTEX SCORING STRATEGY
Vertex scoring is a measure used in the selection of a vertex to
be added into or removed from a (partial) solution. This scor-
ing mechanism was used by Li et al. [19] in their DLSWCC
algorithm. For details on the application of the strategy we
refer to [19]. Note that our HTS algorithm systematically
adds and removes vertices from a candidate solution. After
a removal operation is performed, we could get an infeasible
solution which then forces back into feasibility with appro-
priate vertex additions. We use a dynamic scoring strategy
to measure the benefit of changing the state of a vertex (i.e.,
to be added into a solution or removed from a solution).
Given an undirected graph G(V, E) and weight function
w from V — RT U {0}, for each edge ¢ € E, we associate
a weight denoted by dynamic_weight(e), which changes as
the algorithm progresses. The weight dynamic_weight(e) is
initially set to 1 for all e € E. After adding a vertex to the
current solution, if e is still uncovered by the current solution,
dynamic_weight(e) will be increased by 1. For any § C V,
let cost(S) = Y_{dynamic_weight(e) : e is uncovered by S}.
Note that cost(S) = 0if S is a vertex cover. Then, the score of
each vertex v with respect to a (partial) solution V’, denoted
by score(v, V'), is defined as follows.

cost(V") — cost (V)
w(v) '

score(v, V') = 4
where V/ = V' \ {v}if v € V' and V/ = V' U {v}
otherwise. When the underlying solution V” is obvious from
the context, score(v, V') is simply denoted by score(v). (For
example, in the algorithm score(v) is calculated based on the
current (partial) solution.)

31936

2) WEIGHTED CONFIGURATION CHECKING

The concept of weighted configuration checking as a way
to manage a tabu list has been described in details in [19].
We briefly discuss the concept here. Note that any tabu
search algorithm manages a tabu list in some form or other to
minimize the possibility of cycling. Weighted configuration
checking is a way to manage a tabu list efficiently for the
case of the MWVCP. We use this strategy in part of our HTS
algorithm. First, we shall introduce the concept of weighted
configuration.

Weighted configuration. For each vertex v, the weighted
configuration of a vertex v is a two-tuple < §, W >, where
S is a vector consisting of the states of all the vertices in
N (v) under the current candidate solution, and W is a vector
consisting of the weights of all the incident edges of all the
vertices in N (v).

When selecting a vertex v to add into the current solution,
if the weighted configuration of v has not been changed
since its last removal from the solution, which means the
circumstance of v remains stable, then v should not be added.

In details, for each vertex v € V, the algorithm main-
tains an indicator function wconfig : V. — {0, 1}. That is,
for each v € V, wconfig[v] denotes whether the weighted
configuration of v has been changed since the last removal
of v from V' and wconfig[v] = 1 implies that the config-
uration has changed. Otherwise, wconfig[v] = 0. At the
beginning, wconfig[v] is initialized to 1 for each vertex v.
When removing v from V', wconfig[v] will be set to 0 and for
eachu € N(v), wconfig[u] will be set to 1. When adding v into
V', for each u € N(v), wconfig[u] will be set to 1. Further-
more, when dynamic_weight(e) is increasing, the weighted
configuration of endpoints v and u of edge e will be set to 1
(i.e., set wconfig[v] and wconfig[u] to 1). Then, a vertex v
is tabu when wconfig[v] = 0. The selected vertex v to be
added into the current solution should have the property that
wceonfig[v] = 1.

3) SOLUTION-BASED TABU SEARCH

Managing cycling is a central issue in any tabu search based
algorithm and researchers have used various techniques to
handle this efficiently, either using general purpose method-
ologies or by using problem specific ones. In our HTS algo-
rithm, we introduce a strategy which applies appropriate hash
functions to record ‘all visited solutions’ (instead of solution
attributes) to avoid cycling with high probability.

A solution V' can be expressed as a binary vector s =
(x1,x2,...,x;) where x; = 1 if and only if i € V’. We create
a special hash function /4 that maps a current solution s on to
the hash vector H. Each position of hash vector represents
either 0 or 1 to determine whether the solution has been
visited. That is, if H(h(s)) = 1, it indicates that solution s
has been previously visited and is classified as tabu. Note
that collisions could occur with a hash function. That is, two
different solutions s; and s> could have the same hash value
and will be mapped to the same position in H. This collision

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

could lead to inaccurate identification of the tabu status of
candidate solutions (a non-visited solution could be forbidden
incorrectly).

To effectively reduce the collision rate, we use multiple
hash functions & (k = 1, 2, 3) to keep track of the previously
visited solutions. At the beginning of the tabu search, the hash
vectors Hy (k = 1, 2, 3) are initialized to 0, implying that no
solution has been visited. Once the current feasible solution
s is updated, the values at indexes & (s) on hash vector Hy
are set to 1, for k = 1,2, 3. Then, a solution s is tabu if
and only if all the three values Hy[hy(s)] of solution s are
1. Obviously, collisions can hardly occur simultaneously for
different hash functions, resulting in reducing the probability
of the misclassifying the tabu status of candidate solutions.
For a given solution s = (x1, x2, ..., X,), the hash functions
hy(s) is defined as:

hi(s) = (Z Wk, X x,) mod L. 5)

i=1
where wy, = [i7*], L is the length of the hash vectors, and yx
is a parameter. The parameter values used in our algorithm
are given in Section III-A.
For a solution s, we can quickly calculate the hash function
value when removing or adding the ith vertex as follows:

mmz{mw—wﬂ

(remove ith vertex)

hi(s) + wg,, (add ith vertex)

Obviously, the time complexity to calculate the hash value
of a neighborhood solution is O(1), which is computationally
cheap.

Then, when adding vertex v into the current solution s,
if s U {v} is a feasible solution and h;(s U {v})(k = 1,2, 3)
all take 1, s U {v} is regarded as a visited solution and vertex
v is forbidden to be added into the current solution.

4) VERTEX SELECTION STRATEGY

Using the dynamic scoring mechanism, the weighted con-
figuration checking and solution-based tabu search in the
previous sections, we develop the vertex selection strategy.
First, a concept of age is introduced. The age of a vertex is
defined as the number of search steps that have elapsed since
its state was last changed. Then, the vertex selection strategy
is defined as follows:

« Remove a vertex: For vertices in the current solution
s, select one vertex v with the greatest score, if there
exists more than one vertex, ties are broken in favor of
the oldest one, i.e., the one with the greatest value of age.

o Add a vertex. For vertices not in the current solution
s, select the eligible vertex v with the greatest score,
the eligible vertex v should take value 1 for wconfig[v],
and if s U {v} is feasible, at least one of the three hash
values should take value O for Ax(s U {v}) (k = 1, 2, 3).
If there exists more than one vertex, ties are broken in
favor of the oldest one too.

VOLUME 9, 2021

From these two rules, we can see that HTS will delete the
vertices which cover less edges and have more weight values
and add the vertices which cover more edges and have less
weight values on the contrary. To avoid visiting the previous
encountered solutions, HTS conducts the weighted config-
uration checking to avoid adding recently deleted vertices
and conducts the solution-based tabu search to avoid further
cycling problem.

5) GENERAL PROCEDURE OF HYBRID TABU SEARCH

As described in Algorithm 4, our HTS is achieved using
perturbing method to find a new solution. First, HTS records
the objective value of the initial solution as /W (line 1) and
initializes the hash vectors. Then, starting from a feasible
solution, HTS repeatedly removes a vertex with the greatest
score to an infeasible solution and records the feasible solu-
tions in hash vectors (lines 11 and 12). Furthermore, HTS
selects another vertex and the selected vertex should not be
in tabu_list, which is used to avoid picking recently added
vertices in the last iteration that are to be removed from the

Algorithm 4 Framework of Hybrid Tabu Search

Input: a reduced graph G/, a initial solution V’
Output: an improved solution V/
1 IW <~ w(V');
2: initialize the improved solution V/ < V’;
3: /* Initialize the hash vector for only once in the whole
MAE-HTS algorithm. */

4: initialize three hash vectors Hg to O;

5. Iter < 0;

6: while Iter < Max_Iter do

7. while V' is feasible do

8: if w(V') < w(V/) then

9: Vi/ <~ V/;

10: end if

11: Hy[hi(s(V')] < 1;

12: find vertex v with the greatest score in V', breaking

ties in favor of the oldest one;
13: V <~ V'\ v}
14: end while
15: find vertex v with the greatest score in V’ and not in
tabu_list;
16: V' < V'\{}
17: clear tabu_list;
18: while V' is infeasible do

19: find eligible vertex v with the greatest score, break-
ing ties in favor of the oldest one;

20: if w(V') +w(v) > IW then break;

21: V <~ V' U}

22: add v into tabu_list;

23: end while
24: [ter < Iter + 1;
25: end while

26: return V/;

31937

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

solution (line 15). Once such a vertex is removed from the
solution, HTS clears tabu_list (line 17). Then, HTS repeat-
edly tries to add an eligible vertex with the greatest score
into the current solution to fix it, where the eligible vertices
are determined by the weighted configuration checking and
solution-based tabu search (line 19). Meanwhile, if the addi-
tion of vertex v will lead to a worse solution (i.e., a solution
with objective value greater than /W), the move is forbidden
and the inner loop will break (line 20). Note that HTS will
record all the added vertices in one loop by tabu_list (line
22). When the stopping criterion (the maximum number of
iterations) is reached, the improved solution Vl.’ is returned.

Compared to the previous DLSWCC, the main differences
of our HTS are the strategy for selecting a vertex to add into
the current solution (line 19) and the strategy for accepting
a new solution (line 20). Our HTS conducts solution-based
tabu search to avoid adding any vertex to revisit previous
encountered solutions. Because HTS has the memory of vis-
ited solutions and will hardly ever cycle in a local minimum,
the solutions with poor quality will have less impact dur-
ing the search. Therefore, HTS can accept all solutions better
than the initial solution while DLSWCC can only accept solu-
tions better than the current best solution, i.e., HTS breaks
the inner loop of adding vertices when w(V’) + w(v) > IW,
while DLSWCC breaks the inner loop of adding vertices
when w(V') + w(v) = w(V/).

Ill. EXPERIMENTAL RESULTS

In this section, we present our results of extensive experi-
mental analysis conducted using our MAE-HTS algorithm.
We also compared our algorithm with five best performing
heuristic algorithms for the MW VCP from the literature and
the commercial MIP solver Gurobi.

A. BENCHMARK INSTANCES AND PARAMETER SETTING
A collection of standard benchmark instances are provided
in [30]. The number of vertices in these instances varies from
10 to 1000, which are small compared to the real-world appli-
cations of the MWVCP. Therefore, 72 additional large scale
instances are obtained from Network Data Repository [28],
including well known DIMACS, BHOSLIB benchmarks and
different types of real-life graphs, which can be categorized
into biological networks, collaboration networks, interaction
networks, Amazon recommend networks, scientific compu-
tation networks, social networks, Facebook networks, tech-
nological networks, and web link networks. For 72 large
scale instances, the weight of each vertex is not provided.
Thus, the weight of each vertex is generated as Shyu et al.
[30] did, i.e., the vertex weights are randomly and uniformly
drawn from the interval [20,120]. Note that each test instance
consists of an undirected and vertex-weighted graph with n
vertices and m edges. To test the performance of MAE-HTS,
the following benchmark classes are used:

31938

o Class SPI: the first set of benchmark (SPI) consists
of 400 small instances with 4 different values of
n (n =10, 15, 20, and 25).

o Class MPI. the second set of benchmark (MPI) consists
of 710 middle size instances with 6 different values of n
(n =50, 100, 150, 200, 250, and 300).

o Class LPI: the third set of benchmark (LPI) consists
of 15 large scale instances with 3 different values of n
(n =500, 800, and 1000).

o Class ALPI: the fifth set of 72 large scale instances are
obtained from Network Data Repository with more than
1000 vertices.!

For the small and middle size benchmark classes SPI and
MPI, there are 10 problem instances for each combination of
n and m. Therefore, the results are reported as the average
value over all the 10 instances for each combination, and
the proposed algorithm is executed once for these two sets
of instances. For large benchmark classes LPI and ALPI,
the results are obtained over 10 independent runs. All com-
putational results of our MAE-HTS were obtained with the
parameter values as presented in Table 1.

TABLE 1. Parameter settings.

Parameter ~ Description Value

Iter_cycle the number of generations for each cycle 5

z a prescribed parameter for initial solution 5

Maz_Iter the number of the maximum iterations Min(10%,100%n)
L the length of hash vectors Min(10%,n3)

Y1 constant parameter in hash functions 1.3

Y2 constant parameter in hash functions 1.5

Y3 constant parameter in hash functions 1.8

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
MAE-HTS is coded in C++ and run on a PC with an
AMD Ryzen 7 1700X 3.40GHz and 16GB RAM under
the Windows 10 operating system. The following four best
performing algorithms from the literature are selected for
comparison:

o MS-ITS by Zhou et al. [38]

« DLSWCC by Liet al. [19]

e NuMWVC by Li et al. [18]
and an ILP solver Gurobi 9.1.

Gurobi is tested for solving the 0-1 programming problem
proposed in Section II-B. Since the executable files of three
reference algorithms (MS-ITS, DLSWCC and NuMWVC)
have been offered by the authors. All algorithms (include
Gurobi) are executed on the same PC with MAE-HTS, i.e., an
AMD Ryzen 7 1700X 3.40GHz. In fact, the results obtained
by the reference algorithms are better than those reported in
the literature because faster computers are used in our experi-
ments. All results provided by each algorithm are obtained by
executing only once on each instance of class SPI and class

Lavailable at
MWVCP

20ur executable code is available at: https://github.com/HustWang
Yang/MAE-HTS

https://github.com/HustWang Yang/ALPI-class-for-

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

TABLE 2. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class SPI (Type I).

TABLE 4. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class MPI (Type I).

n m OPT MS-ITS DLSWCC NuMWVC MAE-HTS

Avg Time Avg Time Avg Time Avg Time

MS-ITS DLSWCC NuMWVC MAE-HTS
Avg Time Avg Time Avg Time Avg Time

n m Gurobi

10 10 284.0 284.0 0.000 284.0 0.000 284.0 0.000 284.0 0.000
20 3987 3987 0.000 398.7 0.000 398.7 0.000 398.7 0.000
30 4313 431.3 0.000 431.3 0.000 431.3 0.000 431.3 0.000
40 508.5 508.5 0.000 508.5 0.000 431.3 0.000 431.3 0.000
15 20 4419 4419 0.000 4419 0.000 441.9 0.000 441.9 0.000
40 5704 5704 0.000 5704 0.000 5704 0.000 570.4 0.000
60 7262 7262 0.000 726.2 0.000 7262 0.000 726.2 0.000
80 807.5 807.5 0.000 807.5 0.000 807.5 0.000 807.5 0.000
100 880.0 880.0 0.000 880.0 0.000 880.0 0.000 880.0 0.000
20 20 473.0 473.0 0.000 473.0 0.000 473.0 0.000 473.0 0.000
40 659.3 659.3 0.000 659.3 0.000 659.3 0.000 659.3 0.000
60 861.8 861.8 0.000 861.8 0.000 861.8 0.000 861.8 0.000
80 898.0 898.0 0.000 898.0 0.000 898.0 0.000 898.0 0.000
100 10262 1026.2 0.000 1026.2 0.000 1026.2 0.000 1026.2 0.000
120 1038.2 1038.2 0.000 1038.2 0.000 1038.2 0.000 1038.2 0.000
25 40 756.6 756.6 0.000 756.6 0.000 756.6 0.000 756.6 0.000
80 1008.1 1008.1 0.000 1008.1 0.000 1008.1 0.000 1008.1 0.000
100 1106.9 1106.9 0.000 1106.9 0.000 1106.9 0.000 1106.9 0.000
150 1264.0 1264.0 0.000 1264.0 0.000 1264.0 0.000 1264.0 0.000
200 13734 1373.4 0.000 13734 0.000 1373.4 0.000 1373.4 0.000
AVG 775.7 7757 0.000 775.7 0.000 775.7 0.000 775.7 0.000
BEST 20 20 20 20

TABLE 3. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class SPI (Type II).

n m OPT MS-ITS DLSWCC NuMWVC MAE-HTS
Avg Time Avg Time Avg Time Avg Time
10 10 188 188 0.000 18.8 0.000 188 0.000 18.8 0.000
20 51.1 511 0.000 511 0.000 511 0.000 511 0.000
30 1279 1279 0.000 127.9 0.000 127.9 0.000 127.9 0.000
40 2683 268.3 0.000 268.3 0.000 268.3 0.000 268.3 0.000
15 20 347 347 0.000 347 0.000 347 0.000 34.7 0.000
40 1705 170.5 0.000 170.5 0.000 170.5 0.000 170.5 0.000
60 360.5 360.5 0.000 360.5 0.000 360.5 0.000 360.5 0.000
80 6979 6979 0.000 697.9 0.000 697.9 0.000 697.9 0.000
100 11304 1130.4 0.000 1130.4 0.000 1130.4 0.000 1130.4 0.000
20 20 329 329 0.000 329 0000 329 0.000 329 0.000
40 111.6 111.6 0.000 111.6 0.000 111.6 0.000 111.6 0.000
60 254.1 2541 0.000 254.1 0.000 254.1 0.000 254.1 0.000
80 4522 4522 0.000 4522 0.000 4522 0.000 452.2 0.000
100 775.2 7752 0.000 7752 0.000 7752 0.000 775.2 0.000
120 1123.1 1123.1 0.000 1123.1 0.000 1123.1 0.000 1123.1 0.000
25 40 98.7 987 0.000 987 0.000 98.7 0.000 98.7 0.000
80 327.7 327.7 0.000 327.7 0.000 327.7 0.000 327.7 0.000
100 595.0 595.0 0.000 595.0 0.000 595.0 0.000 595.0 0.000
150 1289.9 1289.9 0.000 1289.9 0.000 1289.9 0.000 1289.9 0.000
200 2709.5 2709.5 0.000 2709.5 0.000 2709.5 0.000 2709.5 0.000
AVG 533.8 533.8 0.000 533.8 0.000 533.8 0.000 533.8 0.000
BEST 20 20 20 20

MPI, and 10 times on each instance of class LPI and class
ALPI. For each instance, each algorithm is terminated upon
reaching a given time limit (1000s) except for Gurobi. The
time limit for Gurobi is set as 10800s. Note that if the best
solution is found without reaching this time limit with normal
termination code for Gurobi, it must be an optimal solution
for the corresponding instance.

C. EXPERIMENTAL RESULTS ON SPI TYPE INSTANCES

The first experiment is conducted to evaluate the performance
of MAE-HTS in tackling the two sets of benchmark instances
(SPI Type I and Type II). For these instances, the number
of vertices ranges from 10 to 25 and the number of edges
ranges from 10 to 200. Tables 2 and 3 present the performance
of MAE-HTS in comparison to other reference algorithms
(i.e., MS-ITS, DLSWCC and NuMWVC) for the set of SPI

VOLUME 9, 2021

50 50 1280.0(+) 1280.0 0.000 1280.0 0.000 1280.0 0.000 1280.0 0.000
100 1735.3(+) 1735.3 0.000 1735.3 0.000 1735.3 0.000 1735.3 0.000
250 2272.3(+) 2272.3 0.000 2272.3 0.000 2272.3 0.000 2272.3 0.000
500 2661.9(+) 2661.9 0.001 2661.9 0.000 2661.9 0.000 2661.9 0.000
750 2951.0(+) 2951.0 0.002 2951.0 0.000 2951.0 0.000 2951.0 0.000
1000 3193.7(+) 3193.7 0.000 3193.7 0.000 3193.7 0.000 3193.7 0.000
100 100 2534.2(+) 2534.2 0.003 2534.2 0.000 2534.2 0.001 2534.2 0.000
250 3601.6(+) 3601.6 0.009 3601.6 0.000 3601.6 0.001 3601.6 0.004
500 4600.6(+) 4600.6 0.051 4600.6 0.000 4600.6 0.002 4600.6 0.001
750 5045.5(+) 5045.5 0.020 5045.5 0.000 5045.5 0.000 5045.5 0.001
1000 5508.2(+) 5508.2 0.004 5508.2 0.000 5508.2 0.001 5508.2 0.001
2000 6051.9(+) 6051.9 0.002 6051.9 0.000 6051.9 0.001 6051.9 0.001
150 150 3666.9(+) 3667.0 0.022 3666.9 0.001 3666.9 0.001 3666.9 0.000
250 4719.9(+) 4719.9 0.038 4719.9 0.001 4719.9 0.001 4719.9 0.001
500 6165.4(+) 6165.4 0.100 6165.4 0.005 61654 0.002 6165.4 0.001
750 6956.4(+) 6956.4 0.196 6956.4 0.003 6956.4 0.005 6956.4 0.001
1000 7359.7(+) 7359.7 0.034 7359.7 0.006 7359.7 0.003 7359.7 0.002
2000 8549.4(+) 8549.4 0.083 8549.4 0.010 8549.4 0.004 8549.4 0.002
3000 8899.8(+) 8899.8 0.080 8899.8 0.009 8899.8 0.003 8899.8 0.002
200 250 5551.6(+) 5551.6 0.071 5551.6 0.005 5551.6 0.003 5551.6 0.005
500 7191.9(+) 71919 0.112 7191.9 0.010 7191.9 0.011 7191.9 0.001
750 8269.9(+) 8269.9 0.220 8269.9 0.006 8269.9 0.004 8269.9 0.002
1000 9145.5(+) 9145.5 0.195 9145.5 0.012 9145.5 0.009 91455 0.003
2000 10830.0(+) 10830.0 0.401 10830.0 0.024 10830.0 0.012 10830.0 0.004
3000 11595.8(+) 11595.8 0.046 11595.8 0.015 11595.8 0.013 11595.8 0.005
250 250 6148.7(+) 6148.7 0.031 6148.7 0.014 6148.7 0.002 6148.7 0.004
500 8436.2(+) 8436.2 0.292 8436.2 0.016 8436.2 0.009 8436.2 0.002
750 9745.6(+) 9747.8 0.203 9745.6 0.241 9745.6 0.013 9745.6 0.004
1000 10751.7(+) 10752.1 0.361 10751.7 0.037 10751.7 0.028 10751.7 0.015
2000 12751.5(+) 12753.7 0.932 12751.5 0.033 12751.5 0.021 12751.5 0.013
3000 13723.3(+) 13723.3 0.527 13723.3 0.057 13723.3 0.019 13723.3 0.017
5000 14669.7(+) 14669.7 0.222 14669.7 0.043 14669.7 0.012 14669.7 0.007
300 300 7295.8(+) 7299.4 0.123 7295.8 0.021 7295.8 0.004 72958 0.002
500 9403.1(+) 9404.8 0.321 9403.1 0.024 9403.1 0.013 9403.1 0.002
750 11029.3(+) 11029.3 0.561 11029.3 0.038 11029.3 0.018 11029.3 0.005
1000 12098.5(+) 12105.8 0.216 12098.5 0.040 12098.5 0.026 12098.5 0.003
2000 14732.2(+) 14734.8 0.537 14732.2 0.099 14732.2 0.022 14732.2 0.008
3000 15843.2 15840.8 0.383 15840.8 0.172 15840.8 0.028 15840.8 0.027
5000 17354.4 17342.9 1.243 17342.9 0.195 17342.9 0.061 17342.9 0.069
AVG 7848.5 7803.3 0.196 7802.8 0.028 7802.8 0.009 7802.8 0.006
BEST 37 31 39 39 39

instances. Columns Avg and Time show the average objective
values and the average computing time in seconds by the
reference algorithms MS-ITS, DLSWCC, NuMW VC and our
MAE-HTS, respectively. Since optimal solutions of these
instances are known, column OPT in both tables lists the
optimal solution values for each instance. Row AVG presents
the value averaged over one set of instances, while row BEST
denotes the number of objective values obtained by the algo-
rithm which are the best among all the algorithms. In addition,
the objective value which matches the best-known results is
indicated in bold.

From Tables 2 and 3, we observe that MS-ITS, DLSWCC,
NuMWVC and MAE-HTS obtain the same results in terms
of both Avg and Time while all these four algorithms could
yield best solutions on all the instances. Small instances have
no challenge for these algorithms.

D. EXPERIMENTAL RESULTS ON MPI TYPE INSTANCES

In order to further evaluate the performance of MAE-HTS,
it is tested on the second set of benchmark instances (MPI
type). We report the results of MAE-HTS in comparisons
with other reference algorithms in tackling this set of rela-
tively difficult instances in Tables 4 and 5. For these instances,

31939

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

TABLE 5. Comparison between MAE-HTS and other state-of-the-art
algorithms on instances of class MPI (Type II).

n m Gurobi MS-ITS DLSWCC NuMWVC MAE-HTS
Avg Time Avg Time Avg Time Avg Time
50 50 83.7(+) 83.7 0.000 83.7 0.000 83.7 0.000 83.7 0.000
100 271.2(+) 271.2 0.001 2712 0.000 271.2 0.000 271.2 0.000
250 1853.4(+) 18534 0.001 1853.4 0.000 1853.4 0.000 1853.4 0.000
500 7825.1(+) 7825.1 0.002 7825.1 0.000 7825.1 0.000 7825.1 0.000
750 20079.0(+) 20079.0 0.000 20079.0 0.000 20079.0 0.000 20079.0 0.000
100 50 67.2(+) 67.2 0.003 67.2 0.000 67.2 0.000 67.2 0.000
100 166.6(+) 166.6 0.001 166.6 0.000 166.6 0.001 166.6 0.001
250 886.5(+) 886.5 0.003 886.5 0.002 886.5 0.001 886.5 0.002
500 3693.6(+) 3693.6 0.007 3693.6 0.001 3693.6 0.001 3693.6 0.001
750 8680.2(+) 8680.2 0.031 8680.2 0.002 8680.2 0.001 8680.2 0.001
150 50 65.8(+) 65.8 0.002 65.8 0.000 65.8 0.000 65.8 0.000
100 144.0(+) 1440 0.008 144.0 0.002 144.0 0.001 144.0 0.000
250 6158(+) 6163 0.021 6158 0.002 615.8 0.046 615.8 0.001
500 2331.5(+) 2331.5 0.049 2331.5 0.002 2331.5 0.002 23315 0.001
750 5698.5(+) 5700.2 0.055 5698.5 0.004 5698.5 0.005 5698.5 0.005
200 50 59.6(+) 59.6 0.005 59.6 0.000 59.6 0.000 59.6 0.000
100 134.5(+) 1345 0.010 1345 0.000 1345 0.000 1345 0.000
250 483.1(+) 483.1 0.065 483.1 0.002 4833 0.011 4831 0.001
500 1803.9(+) 1804 0.059 1803.9 0.002 1804.4 0.089 1803.9 0.003
750 4043.5(+) 4043.5 0.178 4043.5 0.004 4043.5 0.074 4043.5 0.002
250 250 419.0(+) 419.0 0.047 419.0 0.012 419.0 0.006 419.0 0.000
500 1434.2(+) 14343 0.052 1434.2 0.201 1435.2 0.378 1434.2 0.003
750 3256.1(+) 3256.1 0.140 3256.1 0.115 3256.1 0.024 3256.1 0.002
1000 5986.1(+) 5986.5 0.347 5986.4 0.120 5986.4 0.035 5986.1 0.040
2000 25636.5(+) 25636.5 0.471 25636.5 0.066 25636.5 0.042 25636.5 0.022

5000 170269.1(+)170269.10.450

170269.10.006

170269.10.014

170269.10.032

300 250 399.4(+) 3994 0.079
500 1216.4(+) 12164 0.339
750 2639.3(+) 2639.3 0.368
1000 4795.0(+) 4795.0 0.275
2000 20881.3(+) 20885.5 0.647

3000 141220.4(+)141223.20.792

399.4
1216.4
2639.3
4795.0
20881.3

141220.40.084

0.016
0.074
0.259
0.203
0.056

399.4
1217.4 0.066
2639.3 0.197
47955 0.156
20881.3 0.037
141220.40.132

0.009

399.4
1216.4
2639.3
4795.0
20881.3

0.006
0.003
0.003
0.010
0.007

141220.40.040

AVG
BEST

13660.6(+) 13660.9 0.141
32 24

13660.6
31

0.452
26

13660.7 0.041

13660.6
32

0.006

it is hard to obtain all the optimal solutions in short time.
Thus, we apply the ILP solver Gurobi to find a best solu-
tion with a reasonable time limit (10800 seconds for each
instance), which are reported in column Gurobi. The optimal
solution values found by Gurobi in the time limit are indicated
with flag “+”, and the best objective values among all the
algorithms are indicated in bold.

From Tables 4 and 5, we observe that MAE-HTS outper-
forms other algorithms by obtaining the best results on all
the instances. Indeed, MAE-HTS improves the previous best
known results for one instance (with n = 250 and m = 1000
on class MPI Type II) and matches the best known solutions

for the remaining 70 instances. More importantly, MAE-HTS
finds the best solutions in less computational time with an
average computational time of 0.006s for Type I and Type II.
Compared with the ILP solver Gurobi, MAE-HTS was able
to obtain all the optimal solutions and give better solutions
on two MPI instances that were not solved by Gurobi to
optimality.

E. EXPERIMENTAL RESULTS ON LPI TYPE INSTANCES

The third set of experiments is conducted using the LPI
of instances, which are considered as the most challeng-
ing MWVCP standard instances. For this set of benchmark
instances, each independent combination of n and m consists
of one instance which is different from the classes SPI and
MPI. Therefore, in this experiment, the proposed MAE-HTS
is conducted on each instance for 10 independent runs, while
the ILP solver Gurobi is still applied in the experiment with
time limit 10800 seconds for each instance. The optimal
objective values obtained by Gurobi are indicated with flag
“+4>, and the best solution values among all the algorithms
are indicated in bold.

Computational results of our MAE-HTS algorithm and
other reference algorithms are reported in Table 6 where
we report the best objective values Best and the average
objective values Avg obtained over 10 independent runs for
each instance. The best values of Best and Avg are indi-
cated in bold. Table 6 discloses the superior performance
of our algorithm over the reference algorithms. Indeed,
MAE-HTS obtains the best results in terms of both Best
and Avg for all the 15 LPI instances, which outperforms
other reference algorithms. Compared with other reference
algorithms, MAE-HTS is much more stable with the same
values on the best and average values. MAE-HTS is signif-
icantly faster with average computational time 0.714s while
MS-ITS, DLSWCC and NuMWVC have the average compu-
tational time 19.356s, 2.618 and 2.116s, respectively. In par-
ticular, our MAE-HTS could improve the best known result
for one instance with n 800 and m 2000. There-
fore, this experiment discloses the highly competitive and

TABLE 6. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class LPI.

n m Gurobi MS-ITS DLSWCC NuMWVC MAE-HTS
Val Best Avg Time Best Avg Time Best Avg Time Best Avg Time
500 500 12616(+) 12621 12634.5 1.904 12616 12616.0 3.304 12616 12616.0 0.200 12616 12616.0 0.004
1000 12465(+) 16480 16482.6 1.408 16465 16465.0 0.142 16465 16465.0 0.554 16465 16465.0 0.026
2000 20863(+) 20863 20863.6 3.972 20863 20863.6 6.739 20863 20863.0 0.978 20863 20863.0 0.031
5000 27241 27241 27241.0 2.990 27241 27241.0 2.331 27241 272410 0.812 27241 27241.0 0.054
10000 29848 29573 29573.0 8.747 29573 29573.0 2.614 29573 29573.0 0.304 29573 29573.0 0.034
800 500 15025(+) 15046 15046.0 2.807 15025 15025.0 0.199 15025 15025.0 0.184 15025 15025.0 0.077
1000 22747(+) 22760 22760.0 3.405 22747 22747.0 1.738 22747 22747.0 0.320 22747 22747.0 0.008
2000 31283(+) 31310 313422 15919 31285 31302.0 2.482 31285 312975 3.431 31283 31283.0 2.184
5000 38698 38553 38562.7 13914 38553 385639 1.857 38553 38557.1 2.483 38553 38553.0 0.259
10000 44473 44351 44363.1 31.339 44351 443540 1.523 44351 44355.0 2.495 44351 44351.0 1.407
1000 1000 24723(+) 24735 247515 4.321 24723 24723.0 0.551 24723 24723.0 0.401 24723 24723.0 0.003
5000 45260 45230 452589 31.283 45203 45231.3 4.986 45215 452374 6.114 45203 45203.0 1.067
10000 51690 51378 514545 50.418 51378 51398.8 4.958 51378 51389.3 3.729 51378 51378.0 0.898
15000 58647 58014 58072.2 61.503 57994 57995.0 2.583 57994 57994.0 4.050 57994 57994.0 0.616
20000 60574 59675 59735.6 56.415 59651 59656.4 3.262 59651 59655.3 5.689 59651 59651.0 4.033
AVG 33076.9 33188.7 33209.4 19.356 33177.7 33183.7 2.618 33178.7 33182.6 2.116 33177.7 331777 0.714
BEST 8 6 2 14 7 13 9 15 15

31940

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP I E E E ACC@SS

TABLE 7. Comparison between MAE and other state-of-the-art algorithms on instances of ALPI.

Graph n m DLSWCC NuMWVC MAE-HTS

Best Avg Time Best Avg Time Best Avg Time
C2000.5 2000 999836 136452 136644.3 1010.002 136452 136461.5 47.277 136452 136452.0 46.498
C2000.9 2000 1799532 139595 139625.5 3465.349 139464 139464.0 0.552 139464 139464.0 0.667
MANN-a45 1035 533115 71923 71923.0 117.112 71923 71923.0 0.214 71923 71923.0 0.000
MANN-ag81 3321 5506380 234304 234304.0 776.9 234192 234192.0 0.275 234192 234192.0 0.310
keller6 3361 4619898 230608 230608.0 734.1 231054 231054.0 0.205 230574 230601.2 80.840
p-hat1500-1 1500 284923 96959 96959.0 28.060 96959 96959.0 0.968 96959 96959.0 0.097
p-hat1500-2 1500 568960 100664 100664.0 155.075 100664 100664.0 12.415 100664 100664.0 0.288
p-hat1500-3 1500 847244 103593 103593.0 753.134 103593 103593.0 1.333 103593 103593.0 0.331
frb56-25-1 1400 13422 96573 96573.0 383.261 96602 96602.0 0.152 96479 96479.0 9.227
frb56-25-2 1400 117619 97136 97136.0 308.293 97650 97705.2 0.154 97136 97136.0 0.032
frb56-25-3 1400 820644 94660 94660.0 318.132 95178 95178.0 0.154 94638 94638.0 106.242
frb56-25-4 1400 54397 95757 95757.0 316.254 95840 95840.0 0.156 95476 95476.0 1.088
frb56-25-5 1400 54397 98029 98031.1 338.183 98172 98172.0 0.152 97978 97978.0 4.836
frb59-26-1 1534 1049256 108121 108121.0 504.196 108122 108122.0 0.151 107857 107857.0 306.848
frb59-26-2 1534 1049648 106447 106447.0 540.756 106390 106390.0 0.153 106154 106154.0 30.083
frb59-26-3 1534 1049729 102452 102579.8 517.542 102897 102897.0 0.150 102452 102452.0 1.176
frb59-26-5 1534 1048800 104573 104639.6 514.362 104576 104618.6 0.145 104445 104445.0 7.239
frb59-26-6 1534 1049829 105725 105725.0 510.527 105583 1057235 0.149 105533 105533.0 97.605
bio-dmela 7393 25569 168720 168747.0 64.550 168703 168705.6 29.286 168697 168704.7 470.927
bio-yeast 1458 1948 29557 29557.0 0.827 29557 29557.0 0.191 29557 29557.0 0.001
ca-AstroPh 17903 196972 760431 760798.8 216.919 758512 758588.6 276.425 759176 759272.0 403.658
ca-citeseer 227320 814134 8198352 8198575.7 567.714 8181199 8182268.9 119.648 8192170 8192470.4 742.248
ca-CondMat 21363 91286 806738 807326.8 255.180 804022 804138.8 377.597 804848 805055.3 334.742
ca-CSphd 1882 1740 33272 33272.0 1.748 33272 33272.0 0.189 33272 33272.0 0.000
ca-dblp-2010 226413 716460 7735228 7735499.9 355.806 7715662 7716127.0 101.238 7728136 77282559 516.009
ca-dblp-2012 317080 1049866 10464425 10464798.3 942.208 10438989 10442716.5 193.597 10454064 10454171.3 618.833
ca-Erdos992 6100 7515 32550 32550.0 0.141 32550 32550.0 0.152 32550 32550.0 0.001
ca-GrQc 4158 13422 139716 139748.9 39.388 139694 139695.7 45.142 139693 139694.6 168.317
ca-HepPh 11204 117619 432360 4325509 136.579 430594 430615.8 184.248 430518 430899.3 382.431
ca-MathSciNet 332689 820644 8944557 8944859.5 651.722 8913041 8913490.4 136.543 8912824 8912960.7 847.960
ia-email-EU 32430 54397 57326 57326.0 2.860 57326 57326.0 0.280 57326 57326.0 0.000
ia-email-univ 1133 5451 38443 38443.0 0.851 38443 38443.0 0.822 38443 38443.0 0.028
ia-enron-large 33696 180811 813177 813480.2 373.036 809005 809115.1 500.093 809620 809822.7 681.047
ia-fb-messages 1266 6451 37016 37016.0 0.632 37016 37016.0 0.436 37016 37016.0 0.024
ia-reality 6809 7680 5880 5880.0 0.010 5880 5880.0 0.005 5880 5880.0 0.002
ia-wiki-Talk 92117 360767 1118854 1119095.7 423.125 1108740 1108790.5 868.007 1108764 1108773.1 569.748
rec-amazon 91813 125704 3050870 3051545.8 1334.450 3033106 3034416.1 997.478 2995015 2995183.3 525.404
sc-nasasrb 54870 1311227 3523027 3524019.3 1266.714 3520549 3521430.4 400.714 3504644 3504777 479.549
sc-shipsecl 140385 1707759 7987397 7988452.1 1674.865 7969093 7971518.3 467.152 7875579 7876523.5 888.297
soc-brightkite 56739 212945 1384903 1385510.5 614.468 1369082 1369431.4 684.541 1368691 1368702.7 478.993
soc-delicious 536108 1365961 5797888 5800068.8 5628.291 5750871 57592219 838.759 5711358 5711713.5 247.451
soc-douban 154908 327162 608827 608859.6 518.752 608796 608796.0 10.740 608796 608796.0 0.003
soc-epinions 26588 100120 631556 631934.8 272.571 626101 626128.6 324.005 626066 626075.7 710.537
soc-gowalla 196591 950327 5523350 5523903.8 2526.080 5503745 5505979.3 101.642 5449285 5454981.6 556.549
soc-slashdot 70068 358647 1449480 1449723.2 718.976 1433264 1433727.5 587.851 1433158 1433201.6 386.192
soc-twitter-follows 404719 713319 161186 161186.0 247.003 161186 161186.0 0.178 161186 161186.0 0.002
socfb-Berkeley13 22900 852419 1176301 1176862.4 530.388 1175604 1176900.9 216.025 1173277 1173342.5 255.889
socfb-CMU 6621 249959 340361 340437.2 68.700 340348 3404237 42.409 340209 3402134 463.651
socfb-Duke14 9885 506437 525565 525688.1 189.879 525533 5257689 69.673 525152 525169.7 317.137
socfb-Indiana 29732 1305757 1604493 1605228.4 1119.006 1603310 1605360.3 273.519 1599150 1599232.6 572.276
socfb-MIT 6402 251230 318517 318594.0 73.355 318495 3185822 47.264 318385 318389.4 458.666
socfb-OR 63392 816886 2461916 2463781.4 1094.764 2448921 2450014.3 786.518 2439133 24393034 415.601
socfb-Penn94 41536 1362220 2141044 2141785.4 1341.867 2138559 2139372.7 386.119 2129692 2129770.7 490.641
socfb-Stanford3 11586 568309 587331 587460.0 242.657 587172 587506.3 97.030 586742 586757.6 347.590
socfb-UCLA 20453 747604 1037334 1037767.7 444.288 1036682 1037344.7 187.955 1034894 1034924.5 522.520
socfb-UConn 17206 604867 905791 906142.1 302.252 906372 906646.7 140.204 904002 904073.1 413.709
socfb-UCSB37 14917 482215 767461 767990.0 226.634 767543 767986.7 120.634 766323 766391.8 843.657
socfb-Ulllinois 30795 1264421 1645857 1646541.0 1079.695 1645037 1646354.0 270.752 1639934 1640015.4 569.303
socfb-Wisconsin87 23831 835946 1261878 1262382.0 518.802 1261014 1261970.3 240.069 1257975 1258031.3 474.024
tech-internet-as 40164 85123 362224 362330.1 242.812 360081 360085.6 227.229 360076 360076.0 101.423
tech-p2p-gnutella 62561 147878 1087625 1087882.7 567.099 1085103 1085105.4 681.142 1085103 1085103.0 136.011
tech-RL-caida 190914 607610 4926187 4926618.8 2785.616 4896788 4904101.0 989.890 4860898 4861210.6 180.821
tech-routers-rf 2113 6632 52114 52116.2 7.826 52115 521159 4.273 52114 52114.0 13.758
tech-WHOIS 7476 56943 147568 147591.3 62.579 147563 1475663 24.174 147559 147559.3 411.475
web-arabic-2005 163598 1747269 7701067 7701573.7 1764.834 7682204 76832262 319.448 7678576 7679167.6 839.651
web-BerkStan 12305 19500 334037 3344053 135.070 332835 332840.8 136.255 332827 332840.0 511.640
web-edu 3031 6474 90152 90181.9 16.695 90124 90133.4 5.866 90108 90114.0 390.409
web-google 1299 2773 31942 31942.0 2.264 31942 31942.0 0.516 31942 31942.0 0.012
web-indochina-2004 11358 47606 471007 4712884 102.091 469636 469776.4 147.799 469872 469963.0 361.5283
web-sk-2005 121422 334419 3665046 3665222.8 78.833 3666386 3666719.8 982.408 3654734 3655057.7 336.661
web-spam 4767 37375 150351 150363.1 40.879 150342 150354.1 38.178 150341 150342.6 435.529
web-webbase-2001 16062 25593 165983 166088.0 88.659 165701 165707.9 58.021 165701 165704.4 251.068
AVG 1452665.2 1452927.8 592.542 1448157.1 1448717.1 189.113 1444106.4 1444257.8 285.165
BEST 17 15 27 24 64 64

VOLUME 9, 2021 31941

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

TABLE 8. Comparison between MAE-HTS with different strategies.

Graph NuMWwWVC HTS MAE MAE-HTS
Best Avg Time Best Avg Time Best Avg Time Best Avg Time
frb56-25-1 96602 96602.0 0.152 96479 96479.0 6.731 96573 96575.9 2.152 96479 96479.0 9.227
frb56-25-2 97650 97705.2 0.154 97136 97136.0 0.040 97136 97136.0 0.033 97136 97136.0 0.032
frb56-25-3 95178 95178.0 0.154 94638 94644.6 10.073 94660 94660.0 2.159 94638 94638.0 106.242
frb56-25-4 95840 95840.0 0.156 95476 95476.0 5.299 95476 95669.3 110.723 95476 95476.0 1.088
frb56-25-5 98172 98172.0 0.152 97978 97982.8 10.74 98029 98033.2 25.362 97978 97978.0 4.836
frb59-26-1 108122 108122.0 0.151 107857 107917.2 8.701 108121 108121.0 0.036 107857 107857.0 306.848
frb59-26-2 106390 106390.0 0.153 106154 106154.0 5.404 106265 106288.4 148.931 106154 106154.0 30.083
frb59-26-3 102897 102897.0 0.150 102452 102452.0 1.213 102452 102494.6 106.481 102452 102452.0 1.176
frb59-26-4 104576 104618.6 0.145 104445 104445.0 2.130 104576 104623.5 36.953 104445 104445.0 7.239
frb59-26-5 105583 105723.5 0.149 105533 105625.6 3.977 105725 105725.0 7.540 105533 105533.0 97.605
socfb-Berkeley13 1175604 11769009 216.025 1173323 11734659 15.982 1173269 1173329.2 529.194 1173277 1173342.5 255.889
socfb-CMU 340348 340423.7 42.409 340230 340258.8 2.945 340211 3402241 555.719 340209 340213.4 463.651
socfb-Duke14 525533 5257689 69.673 525195 525238.6 7.807 525160 525203.7 465.840 525152 525169.7 317.137
socfb-Indiana 1603310 1605360.3 273.519 1599408 15995759 25.746 1599187 1599269.8 580.571 1599150 1599232.6 572.276
socfb-MIT 318495 318582.2 47.264 318401 3184246 3.179 318387 318394.6 484.797 318385 318389.4 458.666
socfb-OR 2448921 2450014.3 786.518 2439214 24394583 45.719 2439248 2439376.3 208.364 2439133 2439303.4 415.601
socfb-Penn94 2138559 2139372.7 386.119 2129897 2130057.5 32.965 2129724 2129811.4 454.033 2129692 2129770.7 490.641
socfb-Stanford3 587172 5875063 97.030 586778 586821.8 7.755 586744 586762.0 439.417 586742 586757.6 347.590
socfb-UCLA 1036682 1037344.7 187.955 1034916 1035031.9 11.718 1034906 1034940.0 474.586 1034894 1034924.5 522.520
socfb-UConn 906372 906646.7 140.204 904141 904245.6 8.499 904005 904072.2 650.338 904002 904073.1 413.709
socfb-UCSB37 767543 767986.7 120.634 766490 7665842 11.299 766325 766414.6 531.335 766323 766391.8 843.657
socfb-Ulllinois 1645037 1646354.0 270.752 1640115 1640287.4 25.097 1639943 1640071.3 683.668 1639934 1640015.4 569.303
socfb-Wisconsin87 1261014 1261970.3 240.069 1258250 1258277.0 16.860 1258050 1258092.4 658.095 1257975 1258031.3 474.024
BEST 0 0 10 6 4 2 22 22
TABLE 9. Experiments for parameter settings.
Graph a=1=1 a=18=0.6 a=1=2 a=063=1 a=2=1
Best Avg Best Avg Best Avg Best Avg Best Avg

frb59-26-1 107857 107857.0 107857 107857.0 107857 107857.0 107857 107857.0 107857 107857.0

frb59-26-2 106154 106154.0 106154 106154.0 106154 106154.0 106154 106154.0 106154 106154.0

frb59-26-3 102452 102452.0 102452 102452.0 102452 102452.0 102452 102452.0 102452 102452.0

frb59-26-4 104445 104445.0 104445 104445.0 104445 104445.0 104445 104445.0 104445 104445.0

frb59-26-5 105533 105533.0 105533 105533.0 105533 105533.0 105533 105533.0 105533 105533.0

socfb-Berkeley13 1173277 11733425 1173291 1173339.3 1173249 1173318.9 1173288 1173341.5 1173277 1173327.4

socfb-Indiana 1599150 1599232.6 1599217 1599299.1 1599184 1599258.3 1599186 1599262.9 1599162 1599275.9

socfb-OR 2439133 2439303.4 2439292 2439459.1 2439175 2439257.7 2439333 2439475.1 2439286 2439328.4

socfb-Penn94 2129692 2129770.7 2129633 2129844.2 2129692 2129785.9 2129722 2129849.3 2129753 2129829.4

socfb-Ulllinois 1639934 1640015.4 1639937 1640063 1639942 1640067.3 1639978 1640063.4 1639980 1640043.9

BEST 8 8 6 5 6 7 5 5 5 5

superior performance of the proposed MAE-HTS algorithm
in terms of both solution quality, computational efficiency,
and robustness.

F. EXPERIMENTAL RESULTS ON ADDITIONAL
LARGE-SCALE INSTANCES

In this experiment, we test our MAE-HTS algorithm on
the instances obtained from the Network Data Repository,
which are based on the real-world graphs. We compared our
MAE-HTS algorithm with DLSWCC and NuMWYVC which
are obviously the best performing algorithms in the literature.
These three algorithms were run under the same experimental
conditions. Because of the large scale nature of the instances,
the exact ILP solver Gurobi has difficulty in obtaining good
solutions in a time limit of 10800s. For the 72 large-scale
instances with different numbers of vertices and edges, all
algorithms are executed for 10 times. The performance of all
the three algorithms are reported in Table 7. Column Best
reports the best objective values over 10 runs and columns
Avg and Times show the average objective values and average
computing time, respectively. The best values are indicated in
bold too.

31942

From Table 7, we can see that MAE-HTS and NuMWVC
are better than DLSWCC on class ALPI. MAE-HTS obtains
the best solutions on 64 instances while NuMWVC can find
the best solutions on 27 instances. Moreover, MAE-HTS is
more stable and robust than other reference algorithms with
better average objective values, and it obtains the best average
objective values on 64 instances of all 72 instances. Mean-
while, MAE-HTS achieves the best performance on class
ALPI in a reasonable time (285.165s). In general, MAE-HTS
demonstrates its effectiveness in solving these challenging
large scale instances.

IV. ANALYSIS AND DISCUSSION

In this section, we conduct additional experiments to demon-
strate the effectiveness of several important components in
our MAE-HTS, including the master-apprentice evolutionary
algorithm, the hybrid tabu search and the combination of the
two searching strategies.

A. EFFECTIVENESS OF SEARCHING STRATEGIES
IN MAE-HTS

The purpose of this experiment is to evaluate the effectiveness
of the main components in MAE-HTS: the master-apprentice

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

evolutionary algorithm and the hybrid tabu search. Thus,
we compare MAE-HTS with two variants of MAE-HTS:
HTS and MAE, and the best reference algorithm NuMWVC.
HTS is based on the hybrid tabu search and does not conduct
the master-apprentice evolutionary procedure. MAE works
without solution-based tabu search, i.e., it does not conduct
the hash functions to record the visited solutions. In this
experiment, the HTS and MAE are tested on 23 large scale
representative instances from the class of ALPI instances over
10 runs. These instances include 10 instances from BHOSLIB
and 13 instances from Facebook networks, which are difficult
for the best reference algorithm NuMWVC in the literature.

As shown in Table 8§, MAE-HTS outperforms the best per-
forming algorithm NuMWVC as well as the two simplified
versions of our MAE-HTS algorithm: HTS and MAE. First,
HTS can obtain all the best solutions on 10 instances from
BHOSLIB while MAE can only find the best solutions for
3 out of 10 instances. This disclose that the solution-based
tabu search can progress a more precise search by using the
memory of all the visited solutions to avoid cycling problem
during the search. Second, for 13 instances from Facebook
networks, compared to HT'S, MAE performs better in terms of
the best objective value and the average objective value over
all 13 instances. Moreover, MAE is able to provide the best
solutions on 1 instance. This demonstrates the importance of
MAE especially for large scale instances, which increases the
diversity and stability of the search process. Thus, the hybrid
tabu search and the master-apprentice evolutionary algorithm
are both important components in our MAE-HTS.

In fact, for most instances, HTS and MAE can also pro-
vide high quality solutions. Interested readers are referred to
Table 10 in the Appendix for more details, which contains the
results for HTS and MAE on all 72 instances of class ALPI.

B. PARAMETER SETTINGS

In our MAE-HTS, an important issue is to make a balance
between local search and global search, i.e., how to decide the
values of two important parameters Iter_Cycle and Max_Iter.
In this experiment, we conduct experiments to fix the values
of the two key parameters of the MAE-HTS algorithm.

o Parameter coefficient « for Iter_Cycle
o Parameter coefficient 8 for Max_Iter

The parameter coefficient represents the ratio between the
new parameter in experiments and the original parameter.
For example, « = 0.6 means that the new parameter of
Iter _Cycle is set as 5 x 0.6 = 3 while @ = 1 means the new
parameter remains 5. We have chosen several representative
instances as the testbed. These instances include 5 largest
instances from BHOSLIB and 5 largest instances from Face-
book networks. For this experiment, The algorithm was run
for 10 times on each problem instance and each parameter
setting with 1000s as the time limit. The results are presented
in Table 9.

In Table 9, we notice that the algorithms with differ-
ent settings can find the best solutions on both the best

VOLUME 9, 2021

TABLE 10. Results on the class of ALPI by HTS and MAE.

Graph HTS MAE MAE-HTS
Best Avg Best Avg Best Avg
C2000-5 136452 136455.3 136452 136454.2 136452 136452
C2000-9 139464 139464 139464 139464 139464 139464
MANN-a45 71923 71923 71923 71923 71923 71923
MANN-a81 234192 234192 234192 234192 234192 234192
keller6 230574 230598.6 230608 2306314 230574 230601.2
p-hat1500-1 96959 96959 96959 96959 96959 96959
p-hat1500-2 100664 100664 100664 100664 100664 100664
p-hat1500-3 103593 103593 103593 103593 103593 103593
frb56-25-1 96479 96479 96573 96575.9 96479 96479
frb56-25-2 97136 97136 97136 97136 97136 97136
frb56-25-3 94638 94644.6 94660 94660 94638 94638
frb56-25-4 95476 95476 95476 95669.3 95476 95476
frb56-25-5 97978 97982.8 98029 98033.2 97978 97978
frb59-26-1 107857 107917.2 108121 108121 107857 107857
frb59-26-2 106154 106154 106265 106288.4 106154 106154
frb59-26-3 102452 102452 102452 102494.6 102452 102452
frb59-26-4 104445 104445 104576 104623.5 104445 104445
frb59-26-5 105533 105625.6 105725 105725 105533 105533
bio-dmela 168722 168730 168704 168711.2 168697 168704.7
bio-yeast 29557 29557 29557 29557 29557 29557
ca-AstroPh 759257 759437.9 759198 7592629 759176 759272
ca-citeseer 8192407 8192687.4 8192415 8192652.3 8192170 8192470.4
ca-CondMat 805922 806052.2 804905 805012.8 804848 805055.3
ca-CSphd 33272 33272 33272 33272 33272 33272

ca-dblp-2010
ca-dblp-2012

7727831 7728165.6 7727693 77279457 7728136 7728255.9
10453866 10454043.9 10453875 10454117.7 10454064 10454171.3

ca-Erdos992 32550 32550 32550 32550 32550 32550
ca-GrQc 139705 139716.1 139696 139696 139694 139695.2
ca-HepPh 431155 431360.8 430525 430895.3 430518 430899.3
ca-MathSciNet 8914783 8914869.1 8912834 8912925.1 8912824 8912960.7
ia-email-EU 57326 57326 57326 57326 57326 57326
ia-email-univ 38443 38443 38443 38443 38443 38443
ia-enron-large 810460 810644.5 809816 809929.5 809620 809822.7
ia-fb-messages 37016 37016 37016 37016 37016 37016
ia-reality 5880 5880 5880 5880 5880 5880
ia-wiki-Talk 1108805 1108821.5 1108780 1108790 1108764 1108773.1
rec-amazon 3037585 3038484.1 2995257 2995365 2995015 2995183.3
sc-nasasrb 3504816 3504920.7 3504620 3504701.5 3504644 3504777

7878463 7879438 7876944 7877538.9 7875579 7876523.5
soc-brightkite 1368681 1368712.7 1368704 1368716.2 1368691 1368702.7
soc-delicious 5711658 5711847.3 5712341 5712915 5711358 5711713.5
soc-douban 608796 608796 608796 608796 608796 608796

soc-epinions 626096 626212.8 626072 626083.5 626066 626075.7
soc-gowalla 5450207 5500865.5 5449525 54901253 5449285 5454981.6
soc-slashdot 1433267 1433964.6 1433231 1433273 1433158 1433201.6
soc-twitter-follows 161186 161186 161186 161186 161186 161186

soctb-Berkeley13 1173323 11734659 1173269 1173329.2 1173277 1173342.5

sc-shipsecl

soctb-CMU 340230 340258.8 340211 340224.1 340209 3402134
soctb-Dukel4 525195 525238.6 525160 525203.7 525152 525169.7
soctb-Indiana 1599408 15995759 1599187 1599269.8 1599150 1599232.6
soctb-MIT 318401 318424.6 318387 318394.6 318385 318389.4

soctb-OR 2439214 24394583 2439248 24393763 2439133 2439303.4
soctb-Penn94 2129897 2130057.5 2129724 2129811.4 2129692 2129770.7
soctb-Stanford3 586778 586821.8 586744 586762 586742 586757.6

soctb-UCLA 1034916 10350319 1034906 1034940 1034894 1034924.5
soctb-UConn 904141 904245.6 904005 904072.2 904002 904073.1
soctb-UCSB37 766490 766584.2 766325 766414.6 766323 766391.8

soctb-Ulllinois 1640115 1640287.4 1639943 1640071.3 1639934 1640015.4
soctb-Wisconsin87 1258250 1258277 1258050 1258092.4 1257975 1258031.3
tech-internet-as 360079 360080.8 360076 360076.1 360076 360076

tech-p2p-gnutella 1085111 1085119.6 1085103 1085103.4 1085103 1085103
tech-RL-caida 4861135 4861518.7 4862181 48627732 4860898 4861210.6

tech-routers-rf 52117 521227 52114 52114 52114 52114
tech-WHOIS 147563 147571.8 147559 147560 147559 147559.3
web-arabic-2005 7679872 76801359 7678909 7679262.2 7678576 7679167.6
web-BerkStan 333010 333076 332839 332866.7 332827 332841
web-edu 90150 901723 90114 90115.9 90108 90114
web-google 31942 31942 31942 31942 31942 31942

web-indochina-2004 470043 470201.1 469912 469955 469872 469963

web-sk-2005 3655175 3655344.3 3654832 3655141.9 3654734 3655057.7
web-spam 150343 150358.3 150342 150350.7 150341 150342.6
web-webbase-2001 165785 165825.7 165706 165709.2 165701 165704.4
BEST 30 24 27 27 67 61

objective value and the average objective value for BHOSLIB
instances. This indicates the stability of the MAE-HTS algo-
rithm to some extent. However, we observe that the combi-
nation (¢ = 1,8 = 1) leads to better values for the 5 largest
instances from Facebook networks. Thus, the parameters of

31943

IEEE Access

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

our algorithm are set as the initial value of Iter_Cycle and
Max_lIter.

V. CONCLUSION

In this paper, we presented our MAE-HTS algorithm for
solving the weighted vertex cover problem. By using multiple
hash functions, MAE-HTS records the previously visited
solutions effectively and thereby avoid cycling with high
probability and intensifies the search within the search area
of interest locally. By combining with a hybrid evolutionary
algorithm, the diversification capability and the robustness
of the MAE-HTS algorithm is enhanced significantly. The
performance of MAE-HTS is evaluated and compared with
the current best performing algorithms for the MWVCP on
a set of public benchmark instances as well as additional
large scale instances representing real-world graphs. The
experimental results demonstrate the efficacy of the proposed
MWYVCEP in terms of both solution quality and computational
efficiency. Interestingly, we demonstrated that each compo-
nent of the algorithm made a notable contribution to the
success of our hybrid algorithm. However, we notice that
NuMWVC has also achieved better results on some instances
of ALPI. The reason might be that our MAE-HTS is realized
by a two individual based evolutionary algorithm, a sim-
ple crossover operator and a greedy local search procedure,
which has strong capability in local search but its capability of
global search can be further enhanced. Thus, we can improve
our HTS procedure by introducing random strategies or com-
bining our HTS with other intelligence algorithms, such as
monarch butterfly optimization (MBO), earthworm optimiza-
tion algorithm (EWA), elephant herding optimization (EHO)
and moth search (MS) algorithm, to enhance the global search
capability of our algorithm in the future.

APPENDIX.

Table 10 presents the comparison results between HTS, MAE
and MAE-HTS on 72 ALPI instances with 10 independent
runs under the time limit of 1000 seconds for each run.

REFERENCES

[1]1 T. Bick, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation. Boca Raton, FL, USA: CRC Press, 1997.

[2] S.R. Balachandar and K. Kannan, “A meta-heuristic algorithm for vertex
covering problem based on gravity,” Int. J. Math. Stat. Sci., vol. 1, no. 3,
pp. 130-136, 2009.

[3] S.Bouamama, C. Blum, and A. Boukerram, ““A population-based iterated
greedy algorithm for the minimum weight vertex cover problem,” Appl.
Soft Comput., vol. 12, no. 6, pp. 1632-1639, Jun. 2012.

[4] J. Chen, I. A. Kanj, and G. Xia, “Improved parameterized upper bounds
for vertex cover,” in Proc. Int. Conf. Math. Found. Comput. Sci., 2006,
pp. 238-249.

[5] J.Ding, Z. Lii, C. M. Li, L. Shen, L. Xu, and F. Glover, “A two-individual
based evolutionary algorithm for the flexible job shop scheduling prob-
lem,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 2262-2271.

[6] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer, 2003.

[71 T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” J. Global Optim., vol. 6, no. 2, pp. 109-133, Mar. 1995.

[8] F. Glover, “Tabu search—Part 1, ORSA J. Comput., vol. 1, no. 3,
pp. 190-206, 1989.

31944

[9]
[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]
[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

F. Glover, “Tabu search—Part II,” ORSA J. Comput., vol. 2, no. 1,
pp. 4-32, Feb. 1990.

F. Glover and M. Laguna, ““Tabu search,” in Handbook of Combinatorial
Optimization. Boston, MA, USA: Springer, 1998, pp. 2093-2229.

G. Gong, Q. Deng, R. Chiong, X. Gong, and H. Huang, “An effec-
tive memetic algorithm for multi-objective job-shop scheduling,” Knowl.-
Based Syst., vol. 182, Oct. 2019, Art. no. 104840.

J. K. Hao, “Memetic algorithms in discrete optimization,” in Handbook of
Memetic Algorithms. Berlin, Germany: Springer, 2012, pp. 73-94.

J. H. Holland, “Adaptation in natural and artificial systems,” Quart. Rev.
Biol., vol. 6, no. 2, pp. 126-137, 1975.

R. Jovanovic and M. Tuba, “An ant colony optimization algorithm with
improved pheromone correction strategy for the minimum weight ver-
tex cover problem,” Appl. Soft Comput., vol. 11, no. 8, pp. 5360-5366,
Dec. 2011.

R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations. Boston, MA, USA: Springer, 1972,
pp. 85-103.

N. Krasnogor and J. Smith, ““A tutorial for competent memetic algorithms:
Model, taxonomy, and design issues,” IEEE Trans. Evol. Comput., vol. 9,
no. 5, pp. 474-488, Oct. 2005.

C. M. Li, H. Jiang, and R. C. Xu, “Incremental MaxSAT reasoning to
reduce branches in a branch-and-bound algorithm for MaxClique,” in
Proc. Int. Conf. Learn. Intell. Optim. Cham, Switzerland: Springer, 2015,
pp. 268-274.

R.Li, S. Hu, S. Cai, J. Gao, and M. Yin, “NuMWVC: A novel local search
for minimum weighted vertex cover problem,” J. Oper. Res. Soc., vol. 71,
pp. 1498-1509, Sep. 2020.

R. Li, S. Hu, H. Zhang, and M. Yin, “An efficient local search framework
for the minimum weighted vertex cover problem,” Inf. Sci., vol. 372,
pp. 428-445, Dec. 2016.

Z.Li, F. Glover, and J.-K. Hao, ‘A hybrid Metaheuristic approach to solv-
ing the UBQP problem,” Eur. J. Oper. Res., vol. 207, no. 3, pp. 1254-1262,
Dec. 2010.

Z. Lii and J.-K. Hao, ““A memetic algorithm for graph coloring,” Eur. J.
Oper. Res., vol. 203, no. 1, pp. 241-250, May 2010.

L. Moalic and A. Gondran, *Variations on memetic algorithms for graph
coloring problems,” J. Heuristics, vol. 24, no. 1, pp. 1-24, Feb. 2018.

P. Moscato and C. Cotta, “A gentle introduction to memetic algorithms,”
in Handbook of Metaheuristics. Boston, MA, USA: Springer, 2003,
pp. 105-144.

G. L. Nemhauser and L. E. Trotter, *“Vertex packings: Structural properties
and algorithms,” Math. Program., vol. 8, no. 1, pp. 232-248, Dec. 1975.
R. Niedermeier and P. Rossmanith, “On efficient fixed-parameter algo-
rithms for weighted vertex cover,” J. Algorithms, vol. 47, no. 2, pp. 63-77,
Jul. 2003.

P. Pandey and A. P. Punnen, “The generalized vertex cover problem and
some variations,” Discrete Optim., vol. 30, pp. 121-143, Nov. 2018.

M. G. Resende and C. C. Ribeiro, “Greedy randomized adaptive search
procedures: Advances, hybridizations, and applications,” in Handbook of
Metaheuristics. Boston, MA, USA: Springer, 2010, pp. 283-319.

R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. 29th AAAI Conf. Artif. Intell.,
2015, pp. 31-49.

W.-T. Shiue, “Novel state minimization and state assignment in finite state
machine design for low-power portable devices,” Integr. VLSI J., vol. 38,
no. 4, pp. 549-570, Apr. 2005.

S. J. Shyu, P-Y. Yin, and B. M. T. Lin, “An ant colony optimization
algorithm for the minimum weight vertex cover problem,” Ann. Oper. Res.,
vol. 131, nos. 1-4, pp. 283-304, Oct. 2004.

A. Singh and A. K. Gupta, ‘A hybrid heuristic for the minimum weight ver-
tex cover problem,” Asia—Pacific J. Oper. Res., vol. 23, no. 2, pp. 273-285,
Jun. 2006.

W. Sun, J.-K. Hao, W. Wang, and Q. Wu, “Memetic search for the
equitable coloring problem,” Knowl.-Based Syst., vol. 188, Jan. 2020,
Art. no. 105000.

C. Tang, A. Li, and X. Li, “Asymmetric game: A silver bullet to
weighted vertex cover of networks,” IEEE Trans. Cybern., vol. 48, no. 10,
pp. 2994-3005, Oct. 2018.

L. Wang, W. Du, Z. Zhang, and X. Zhang, “A ptas for minimum weighted
connected vertex cover P3 problem in 3-dimensional wireless sensor net-
works,” J. Combinat. Optim., vol. 33, no. 1, pp. 106-122. 2017.

VOLUME 9, 2021

Y. Wang et al.: Fast and Robust Heuristic Algorithm for the MWVCP

IEEE Access

[35] L. Wang, C.-M. Li, J. Zhou, B. Jin, and M. Yin, “An exact algo-
rithm for minimum weight vertex cover problem in large graphs,” 2019,
arXiv:1903.05948. [Online]. Available: http://arxiv.org/abs/1903.05948

[36] H. Xu, T. S. Kumar, and S. Koenig, “A new solver for the
minimum weighted vertex cover problem,” in Proc. Int. Conf. Al
OR Techn. Constraint Program. Combinat. Optim. Problem. Cham,
Switzerland: Springer, 2016, pp. 392-405.

[37] X. Xu and J. Ma, “An efficient simulated annealing algorithm for the
minimum vertex cover problem,” Neurocomputing, vol. 69, nos. 7-9,
pp. 913-916, Mar. 2006.

[38] T. Zhou, Z. Lii, Y. Wang, J. Ding, and B. Peng, ‘“Multi-start iterated
tabu search for the minimum weight vertex cover problem,” J. Combinat.
Optim., vol. 32, no. 2, pp. 368-384, Aug. 2016.

YANG WANG was born in Hubei, China, in 1994.
He received the B.S. degree in computer science
from the Huazhong University of Science and
Technology, Wuhan, China, in 2015, where he is
currently pursuing the Ph.D. degree in computer
software and theory. His research interests include
combinatorial optimization, global optimization,
and heuristic search algorithms.

VOLUME 9, 2021

ZHIPENG LU received the B.S. degree in applied
mathematics from Jilin University, China, in 2001,
and the Ph.D. degree in computer software and
theory from the Huazhong University of Sci-
ence and Technology, China, in 2007. From
2007 to 2011, he was a Postdoctoral Research
Fellow with LERIA, Department of Computer Sci-
ence, University of Angers, France. He is currently
a Professor with the School of Computer Science
and Technology, Huazhong University of Science
and Technology, and the Director of the Institute of Artificial Intelligence
and Optimization. His research interests include artificial intelligence, com-
putational intelligence, operations research, and adaptive metaheuristics for
solving large scale real-world and theoretical combinatorial optimization and
constrained satisfaction problems.

ABRAHAM P. PUNNEN received the Ph.D.
degree in operations research from IIT Kanpur,
in 1990. Prior to joining SFU, he was a Pro-
fessor with the University of New Brunswick,
Saint John, Canada. He held visiting appointments
at University Colorado, Denver, USA, Univer-
sity of Kentucky, Lexington, USA, and Universite
Catholique de Louvain, Belgium, under the presti-
gious CORE Fellowship. He is currently a Profes-
sor with the Department of Mathematics, Simon
Fraser University, Surrey, BC, Canada, and the Founding Director of the
Center for Operations Research and Decision Sciences, SFU. He published
over 100 articles in major research journals and books, and is well known for
the book he edited jointly with G. Gutin on the traveling salesman problem.
He holds various research grants from industry and government. He has
supervised many graduate students and postdoctoral fellows. He is also a
member of the NSERC Grant Evaluation Group in Civil, Environmental, and
Industrial Engineering.

31945

