

Received December 10, 2020, accepted January 1, 2021, date of publication January 14, 2021, date of current version March 1, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3051741

A Fast and Robust Heuristic Algorithm for the Minimum Weight Vertex Cover Problem

YANG WANG¹, ZHIPENG LÜ¹, AND ABRAHAM P. PUNNEN²

¹SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China ²Department of Mathematics, Simon Fraser University Surrey, Surrey, BC V3T 0A3, Canada

Corresponding author: Yang Wang (hust_wy@hust.edu.cn)

The work of Abraham P. Punnen was supported by the Natural Sciences and Engineering Research Council [Discovery Grant and Discovery Accelerator Supplement].

ABSTRACT The minimum weight vertex cover problem (MWVCP) is a fundamental combinatorial optimization problem with various real-world applications. The MWVCP seeks a vertex cover of an undirected graph such that the sum of the weights of the selected vertices is as small as possible. In this paper, we present an effective algorithm to solve the MWVCP. First, a master-apprentice evolutionary algorithm based on two individuals is conducted to enhance the diversity of solutions. Second, a hybrid tabu search combined configuration checking and solution-based tabu search is introduced to intensify local search procedure. Harnessing the power of the evolutionary strategy and a novel variant of hybrid tabu search, Master-Apprentice Evolutionary Algorithm with Hybrid Tabu Search, MAE-HTS, is presented. Results of extensive computational experiments using standard benchmark instances and other large-scale instances demonstrate the efficacy of our algorithm in terms of solution quality, running time, and robustness compared to state-of-the-art heuristics from the literature and the commercial MIP solver Gurobi. We also systematically analyze the role of each individual component of the algorithm which when worked in unison produced superior outcomes. In particular, MAE-HTS produced improved solutions for 2 out of 126 public benchmark instances with better running time. In addition, our MAE-HTS outperforms other state-of-the-art algorithms DLSWCC and NuMWVC for 72 large scale MWVCP instances by obtaining the best results for 64 ones, while other two reference algorithms can only obtain 27 best results at most.

INDEX TERMS Hybrid evolutionary algorithm, metaheuristics, minimum weight vertex cover problem, solution-based tabu search.

I. INTRODUCTION

Let G = (V, E) be an undirected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = \{e_1, e_2, \ldots, e_m\}$. A weight function $w : V \to R^+ \cup \{0\}$ is also given. i.e., each vertex $v \in V$ is associated with a non-negative weight w(v). Then, the *minimum weight vertex cover problem* (MWVCP) is to find a vertex cover $V' \subseteq V$ such that $\sum_{v \in V'} w(v)$ is minimized. The MWVCP is a fundamental NP-hard combinatorial optimization problem and equivalent to the maximum weight clique problem [17] on the complementary graphs. The problem also plays a vital role in numerous real-world applications [29], [33], [34]. It has been extensively analyzed by researchers from various points of view, including computational complexity [15], exact algorithms

The associate editor coordinating the review of this manuscript and approving it for publication was Xujie Li¹⁰.

[35], [36], heuristic algorithms [2], [37], and polynomially solvable special cases [4], [25].

Although exact algorithms have gained success in small instances, they have difficulty to solve the real large instances. Thus, heuristic method becomes a popular approach for tackling such NP-hard problems. Various heuristic algorithms are available in the literature to solve the MWVCP. Up to 2012, a number of algorithms have been proposed based on greedy constructions [31], ant colony optimization approaches [14], [30] and population-based iterated greedy strategies [3]. In 2015, Zhou *et al.* proposed a multi-start iterative tabu search algorithm (MS-ITS) to solve the MWVC problem [38]. In 2016, Li *et al.* proposed a diversion local search procedure based on configuration checking (DLSWCC) to solve the problem and improve the results [19]. In 2018, Li *et al.* further improved their previous algorithm by self-adaptive removing vertex strategy [18] and proposed a novel local search algorithm (NuMWVC). These can be considered as the best performing algorithms for the MWVCP in the literature.

However, none of these algorithms uniformly outperformed others on standard benchmark instances. This suggests that a more careful and systematic algorithm design is necessary to achieve superior outcomes for the MWVCP. Evolutionary algorithms [1], [6], [13] and tabu search [8]-[10] are well established heuristic paradigms that have been successfully applied in solving a wide variety of hard combinatorial optimization problems of practical interest. There are unique features inherent in each of these approaches unshared by the other and hence hybridizing them to exploit their unique and dominating features could produce algorithms with superior outcomes. Hybridization of local search and genetic algorithms is not a new idea. In fact, memetic algorithms [12], [16], [23] do precisely this to reduce the probability of premature convergence of a genetic algorithm. In this paper, we investigate this line of reasoning to develop an effective and robust algorithm to solve the weighted vertex cover problem.

First, to make a better balance between diversity and time consuming, we adapt a master-apprentice evolutionary algorithm based on two individuals rather than traditional population-based evolutionary algorithms. Second, to handle the cycling problem during the local search, a hybrid tabu search which combines the configuration checking strategy and solution-based tabu search is presented. By carefully integrating various algorithmic strategies described above, a fast and robust algorithm, namely master-apprentice evolutionary algorithm with hybrid tabu search (MAE-HTS) is presented.

Systematic experimental analysis of our algorithm using four sets of 198 benchmark instances produced excellent results. More specifically, for 126 public benchmark instances, MAE-HTS obtained improved solutions for 2 instances and matched the best known solutions for the remaining 124 ones when compared with state-of-the-art reference algorithms [2], [3], [14], [19], [38] and the Gurobi MIP solver, while for 72 additional large scale instances, MAE-HTS is able to find the best solutions for 64 instances. To obtain additional insights into the distinctive features of the algorithm and computational bottlenecks, we examined the role of each of the major components of our algorithm individually through systematic experimentation. The results show that suppressing any of these major features could deteriorate the performance of the algorithm while when all the components worked in unison it resulted in a fast and robust algorithm that outperformed state-of-the-art algorithms on a variety of performance metrics.

The rest of the paper is organized as follows. A detailed description of our main algorithm is presented in Section II. Extensive computational analysis and comparisons with the current best performing algorithms are presented in Section III. Section IV investigates and analyzes the sensitivity and efficacy of some of the crucial components of our algorithm. Concluding remarks are presented in Section V.

II. MASTER-APPRENTICE EVOLUTIONARY ALGORITHM WITH HYBRID TABU SEARCH

A. MAIN FRAMEWORK OF MAE-HTS

Recall those memetic algorithms that combine evolutionary algorithms and local search are highly effective in solving various combinatorial optimization problems [11], [20], [21], [32]. The combined effect of global recombinant search and the powerful local search offers the memetic framework sufficient balance between intensification and diversification of the search process. Traditional population-based evolutionary algorithms have the disadvantage of slow convergence and high consumption of computing resources due to the large population size. The evolutionary part of our algorithm uses the master-apprentice framework and manages only two individuals (apprentices) at each iteration, where the apprentices evolve to become masters after a given number of generations (a cycle). The idea of the two-individual based evolutionary algorithm was first proposed in [22] for solving the graph coloring problem and further formalized by Ding et al. [5] for solving the flexible job shop scheduling problem. To absorb the essence of the history of the search process and evolution, one apprentice will be replaced by the master from the previous cycle. By adapting the two individual based formwork in our evolutionary process, we partly control and manage the issue of premature convergence, without sacrificing solution quality significantly while achieving improved running time. Any possibility of deterioration in the solution quality is taken care of by the powerful hybrid tabu search. The general architecture of our main algorithm, MAE-HTS is summarized in Algorithm 1.

Algorithm 1 Framework of MAE-HTS
Input: a graph <i>G</i>
Output: a best solution V'_i
1: $(G', V_s) \leftarrow Graph_Reduction(G); // Section II-B$
2: $S_1, S_2 \leftarrow Init(); // \text{Section II-C}$
3: $S_c, S_p, S_{best} \leftarrow Init();$
4: generation, cycle $\leftarrow 0$;
5: while stop criterion is not satisfied do
6: $(S'_1, S'_2) \leftarrow Crossover_Operator(S_1, S_2); // Section II-$
D
7: $S_1 \leftarrow HTS(G', S'_1); //$ Section II-E
8: $S_2 \leftarrow HTS(G', S_2'); //$ Section II-E
9: $S_c \leftarrow saveBest(S_1, S_2, S_c);$
10: $S_{best} \leftarrow saveBest(S_c, S_{best});$
11: if generation% $Iter_{cycle} = 0$ then
12: $S_1 \leftarrow S_p;$
13: $S_p \leftarrow S_c;$
14: $S_c \leftarrow init();$
15: $cycle \leftarrow cycle + 1;$
16: end if
17: generation \leftarrow generation + 1;
18: end while
19: return $S_{best} \cup V_s$;

The MAE-HTS algorithm is composed of the following components: A function $Graph_Reduction()$ which with the input graph G produces a potentially reduced graph G' and a set V_s of vertices the status of which are fixed (i.e., in the output cover or not), a function Init() that generates random initial solutions, an operator CrossOver() to generate child solutions, and the hybrid tabu search HTS() to improve a given solution. We will discuss in details each of these functions and related procedures in the subsequent subsections.

For the time being, we simply want to discuss some features of the functions discussed in Algorithm 1. At the beginning, MAE-HTS invokes Graph_Reduction() to possibly reduce the size of the original graph and *Init()* generates two initial solutions S_1 and S_2 . Then, at each generation, MAE-HTS performs the CrossOver() operation to generate two child solutions S'_1 and S'_2 , which will be optimized by the hybrid tabu search procedure to obtain new local optimum solutions S_1 and S_2 . If solutions S_1 or S_2 is better than the best solution Sbest obtained so far, Sbest is updated. After a given number of generations, i.e., at the end of each cycle, solution S_1 is replaced by the best solution from the previous cycle, which is stored in S_p . Meanwhile, the best solution in the current cycle is stored in S_c , which will be initialized before starting the next cycle. When the stop criterion (time limit) is met, the algorithm returns $S_{best} \cup V_s$. A high-level representation of one cycle of the MAE-HTS algorithm is given in Fig. 1.

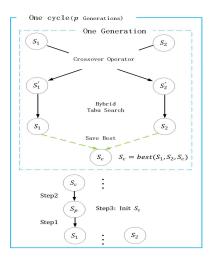


FIGURE 1. Diagram of MAE-HTS.

B. GRAPH REDUCTIONS

Graph reduction rules are sufficient conditions which if satisfied, we can determine the status of some associated vertices in an optimal solution. We first consider two simple reduction rules proposed by Wang et al in [35] for the MWVCP.

For any $v \in V$, let $N(v) = \{u | (u, v) \in E, u \in V\}$. i.e., N(v) is the collection of all adjacent vertices of v in G. Recall that, for any $S \subseteq V$, $w(S) = \sum_{v \in S} w(v)$.

31934

Adjacent rule. For any vertex $v \in V$, if $w(N(v)) \le w(v)$, then there exists an optimal solution V' of the MWVCP such that $v \notin V'$ and $N(v) \subseteq V'$.

For any vertex *v* satisfying the condition of the adjacent rule, construct the graph $G' = G \setminus N(v) \setminus \{v\}$. Then, from an optimal (heuristic) solution, say *U'*, of the MWVCP on *G'*, an optimal (heuristic) solution *V*^{*} of the MWVCP on *G* can be recovered as $V^* = U' \cup N(v)$. In the adjacent rule, if for any vertex $v \in V$, if w(N(v)) < w(v) (i.e., strict inequality holds), then every optimal solution *V'* of the MWVCP satisfies $v \notin$ *V'* and $N(v) \subseteq V'$.

For any vertex $v \in V$, let $N_1(v) = \{u \in N(v), |N(u)| = 1\}$. i.e., $N_1(v)$ is the collection of all adjacent vertices of v in G whose degree is one. Note that $N_1(v)$ could be an empty set.

Degree-one rule. For each vertex $v \in V$ with $N_1(v) \neq \emptyset$, if $w(v) \leq w(N_1(v))$, then there exists an optimal solution V' to the MWVCP such that $v \in V'$ and $N(v) \cap V' = \emptyset$.

For any vertex $v \in V$ satisfying the degree-one rule, construct the graph $G' = G \setminus N_1(v) \setminus \{v\}$. Then from an optimal (heuristic) solution, say U', of the MWVCP on G', an optimal solution V' of the MWVCP on G can be recovered as $V' = U' \cup \{v\}$. Further, for any vertex $v \in V$ with $N_1(v) \neq \emptyset$, if $w(v) < w(N_1(v))$ (i.e., strict inequality holds), then every optimal solution V' of the MWVCP satisfies $v \in V'$ and $N(v) \cap V' = \emptyset$.

The adjacent rule and degree one rule are special cases of the more general LP-relaxation rule. Note that the MWVCP can be formulated as an 0-1 programming problem (0-1 PP)

$$\text{Minimize } \sum_{i \in V} w_j x_j \tag{1}$$

Subject to $x_i + x_j \ge 1$ for all $(i, j) \in E$ (2)

$$x_j \in \{0, 1\} \text{ for all } j \in V \tag{3}$$

where $x_i = 1$ precisely when j is in the vertex cover represented by the corresponding solution x. We denote the linear programming relaxation of 0-1 PP by LPR. It is well known that if $x^* = (x_1^*, x_2^*, \dots, x_n^*)$ is an optimal basic feasible solution of the LPR, then $x_i^* \in \{0, 1, 1/2\}$. Let $S_0^* = \{j \in$ $V : x_j = 0$ and $S_1^* = \{j \in V : x_j = 1\}$. Then it is well known [24], [26] that there exists an optimal solution $S \subseteq V$ to the MWVCP such that $S_1^* \subseteq S$ and $S \cap S_0^* = \emptyset$. This leads to yet another graph reduction procedure. Let $N^* =$ $\cup_{v \in S_0^*} N(v)$ and $G' = G \setminus \{N^* \cup S_1^* \cup S_0^*\}$. Then from an optimal (heuristic) solution, say U', of the MWVCP on G', an optimal solution V' of the MWVCP on G can be recovered as $V' = U' \cup N^* \cup S_1^*$. Considering the time involved in solving LPR, we did not implement this graph reduction in our algorithm. However, it is not difficult to show that the two graph reductions discussed earlier are special cases of this rule.

Obviously, the graph reductions based on adjacent rule and degree one rule are dependent on the weight and degree of the adjacent vertices for each vertex in *G*. Once a vertex *v* is removed from the graph *G*, for each $u \in N(v)$, w(N(u)) and $w(N_1(u))$ with respect to the graph $G \setminus \{v\}$ can be updated

in O(1) time. As mentioned in [35], the graph reduction can be applied step by step in a recursive fashion. Our graph reduction procedure is summarized in Algorithm 2.

Algorithm 2 Framework of the Graph Reductions for the MWVCP

Input: the graph G(V, E, w)**Output:** a reduced graph G'and а vertex set V_s 1: set $V_s \leftarrow \emptyset$; 2: repeat 3: set $G' \leftarrow G$; 4: for each vertex $v \in V$ which satisfies the Adjacent rule do $G = G \setminus N(v) \setminus \{v\};$ 5: $V_s = V_s \cup N(v);$ 6: 7: end for 8: for each vertex $v \in V$ which satisfies the **Degree-one** rule do 9: $G = G \setminus N_1(v) \setminus \{v\};$ $V_s = V_s \cup \{v\};$ 10: end for 11: 12: **until** G' = G; 13: return G' and V_s ;

C. INITIAL SOLUTION

Good initial solution for each 'cycle' of the algorithm plays an important role in the effectiveness of the algorithm. For each cycle, solutions (individuals) that form the initial population are generated by a greedy randomized constructive scheme, which is adapted from the GRASP algorithm [7], [27]. First, we apply the concept of key-vertices introduced in [38] to denote vertices that belong to set V' while non-key-vertices denote the remaining ones. In fact, any vertex can be denoted as a key-vertex or a non-key-vertex. A typical construction of such a solution uses the following scheme. The algorithm performs |V'| iterations where V' is the generated vertex cover. Thus the number of iterations is bounded by |V| - 1. We initialize $V' = \emptyset$ and designate all edges as 'uncovered'. In a general iteration, the algorithm constructs a candidate list V_c which consists of the end points of all uncovered edges by the tentative solution V'. Note that an edge is uncovered by V' if both of its end points are not in V'. For vertex v, let $\xi(v)$ denote the number of *non-key-vertices* adjacent to it. Let V_e be the subset of V_c containing z^0 vertices of V_c with smallest ratio $w(v)/\xi(v)$ (counting multiplicity) where z is a prescribed parameter and $z^0 = \min\{z, |V_c|\}$. Now choose one vertex, say v^* , from V_e with probability $\pi_v/((1+z^0) \times z^0/2)$ for vertex v, where π_v is the ranking of the vertex v when elements of V_e are arranged in the ascending order based on the ratio. This strategy ensures that a vertex with less weight or the vertex which can cover more edges has a higher probability of being chosen. Update V' as $V' \cup \{v^*\}$ and designate all edges incident on v^* as covered. With the built in randomness, the process can generate different solutions by repeated applications. We generate two such solutions as the initial population.

Algorithm 3 Framework of the Initial Solution Generator Algorithm for the MWVCP

- 1: Initialization: set $V' = \emptyset$ and E' = E
- 2: while $|E'| \neq 0$ do
- 3: build the candidate set V_c
- 4: construct the elite candidates V_e
- 5: choose a vertex v^* from V_e with a certain probability
- 6: undate V' to $V' \cup \{v^*\}$ and E' to $E' \setminus \{e \in E' : e \text{ is incident on } v^*\}$
- 7: end while
- 8: output V'

D. CROSSOVER OPERATOR

The crossover operation generates offspring solutions from parent solutions. It is designed in such a way that offsprings inherit 'elite' components (qualities) from parents to a large extent. The proposed crossover operator follows this general principle and operates in two sequential steps:

- Step 1. Choose the common *key-vertices* from two parent solutions as the *key-vertices* in the offspring solution: For example, given two parents $S_1 = (1, 0, 1, 0, 1, 1)$ and $S_2 = (0, 1, 1, 1, 1, 0)$ in Fig. 2, the third and fifth vertices are the common *key-vertices* of the two parents. Hence, the third and fifth vertices will be considered as the *key-vertices* in the offspring solutions S'_1 and S'_2 . Since the offspring solutions generated from Step 1 may be infeasible in some cases, it is necessary to modify it to be feasible by Step 2.
- Step 2. Randomly inherit *key-vertices* to cover the remaining uncovered edges from the two parents. Specifically, as shown in Fig. 2, the offspring solution S'_1 inherits v_1 as *key-vertex* from parent S_1 to cover the uncovered edge (v_1, v_2) and meanwhile select v_4 as *key-vertex* from parent S_2 to cover the uncovered edge (v_4, v_6) . This step is repeated until all the uncovered edges are covered.

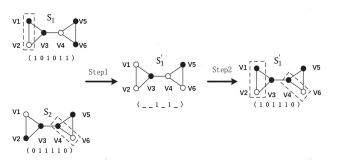


FIGURE 2. An illustration of the crossover operator.

Although the procedure of this crossover operator is relatively simple, it helps the offspring solutions to inherit elite components from parents, which is advantageous in controlling the solution quality and convergence.

E. HYBRID TABU SEARCH

Another major component of our algorithm is the enhanced local search part, which is called hybrid tabu search (HTS). The HTS procedure integrates the weighted configuration checking version of tabu search [19] with a solution-based tabu search.

Li *et al.* [19] introduced a tabu search variation with weighted configuration checking, named diversion local search based on weighted configuration checking (DLSWCC), to solve the MWVCP. The DLSWCC scheme is one of the best performing algorithms for solving the MWVCP. Although DLSWCC conducts the weighted configuration checking to reduce the issue of cycling, it could still get trapped in stagnation and falls into cycles in some situations. To overcome this undesirable situation, our HTS scheme further embeds a solution-based tabu search within the DLSWCC framework. Before getting into a formal statement of the HTS algorithm, we briefly discuss below some crucial notations, definitions, and procedures.

1) VERTEX SCORING STRATEGY

Vertex scoring is a measure used in the selection of a vertex to be added into or removed from a (partial) solution. This scoring mechanism was used by Li *et al.* [19] in their DLSWCC algorithm. For details on the application of the strategy we refer to [19]. Note that our HTS algorithm systematically adds and removes vertices from a candidate solution. After a removal operation is performed, we could get an infeasible solution which then forces back into feasibility with appropriate vertex additions. We use a dynamic scoring strategy to measure the benefit of changing the state of a vertex (i.e., to be added into a solution or removed from a solution).

Given an undirected graph G(V, E) and weight function w from $V \rightarrow R^+ \cup \{0\}$, for each edge $e \in E$, we associate a weight denoted by $dynamic_weight(e)$, which changes as the algorithm progresses. The weight $dynamic_weight(e)$ is initially set to 1 for all $e \in E$. After adding a vertex to the current solution, if e is still uncovered by the current solution, $dynamic_weight(e)$ will be increased by 1. For any $S \subseteq V$, let $cost(S) = \sum \{dynamic_weight(e) : e$ is uncovered by S}. Note that cost(S) = 0 if S is a vertex cover. Then, the *score of each vertex v* with respect to a (partial) solution V', denoted by score(v, V'), is defined as follows.

$$score(v, V') = \frac{cost(V') - cost(V'_t)}{w(v)}.$$
(4)

where $V'_t = V' \setminus \{v\}$ if $v \in V'$ and $V'_t = V' \cup \{v\}$ otherwise. When the underlying solution V' is obvious from the context, score(v, V') is simply denoted by score(v). (For example, in the algorithm score(v) is calculated based on the current (partial) solution.)

2) WEIGHTED CONFIGURATION CHECKING

The concept of weighted configuration checking as a way to manage a tabu list has been described in details in [19]. We briefly discuss the concept here. Note that any tabu search algorithm manages a tabu list in some form or other to minimize the possibility of cycling. Weighted configuration checking is a way to manage a tabu list efficiently for the case of the MWVCP. We use this strategy in part of our HTS algorithm. First, we shall introduce the concept of weighted configuration.

Weighted configuration. For each vertex v, the weighted configuration of a vertex v is a two-tuple $\langle S, W \rangle$, where S is a vector consisting of the states of all the vertices in N(v) under the current candidate solution, and W is a vector consisting of the weights of all the incident edges of all the vertices in N(v).

When selecting a vertex v to add into the current solution, if the weighted configuration of v has not been changed since its last removal from the solution, which means the circumstance of v remains stable, then v should not be added.

In details, for each vertex $v \in V$, the algorithm maintains an indicator function wconfig : $V \rightarrow \{0, 1\}$. That is, for each $v \in V$, wconfig[v] denotes whether the weighted configuration of v has been changed since the last removal of v from V' and wconfig[v] = 1 implies that the configuration has changed. Otherwise, wconfig[v] = 0. At the beginning, wconfig[v] is initialized to 1 for each vertex v. When removing v from V', wconfig[v] will be set to 0 and for each $u \in N(v)$, wconfig[u] will be set to 1. When adding v into V', for each $u \in N(v)$, wconfig[u] will be set to 1. Furthermore, when *dynamic_weight(e)* is increasing, the weighted configuration of endpoints v and u of edge e will be set to 1 (i.e., set wconfig[v] and wconfig[u] to 1). Then, a vertex v is tabu when wconfig[v] = 0. The selected vertex v to be added into the current solution should have the property that wconfig[v] = 1.

3) SOLUTION-BASED TABU SEARCH

Managing cycling is a central issue in any tabu search based algorithm and researchers have used various techniques to handle this efficiently, either using general purpose methodologies or by using problem specific ones. In our HTS algorithm, we introduce a strategy which applies appropriate hash functions to record 'all visited solutions' (instead of solution attributes) to avoid cycling with high probability.

A solution V' can be expressed as a binary vector $s = (x_1, x_2, ..., x_n)$ where $x_i = 1$ if and only if $i \in V'$. We create a special hash function h that maps a current solution s on to the hash vector H. Each position of hash vector represents either 0 or 1 to determine whether the solution has been visited. That is, if H(h(s)) = 1, it indicates that solution shas been previously visited and is classified as tabu. Note that collisions could occur with a hash function. That is, two different solutions s_1 and s_2 could have the same hash value and will be mapped to the same position in H. This collision could lead to inaccurate identification of the tabu status of candidate solutions (a non-visited solution could be forbidden incorrectly).

To effectively reduce the collision rate, we use multiple hash functions h_k (k = 1, 2, 3) to keep track of the previously visited solutions. At the beginning of the tabu search, the hash vectors H_k (k = 1, 2, 3) are initialized to 0, implying that no solution has been visited. Once the current feasible solution s is updated, the values at indexes $h_k(s)$ on hash vector H_k are set to 1, for k = 1, 2, 3. Then, a solution s is tabu if and only if all the three values $H_k[h_k(s)]$ of solution s are 1. Obviously, collisions can hardly occur simultaneously for different hash functions, resulting in reducing the probability of the misclassifying the tabu status of candidate solutions. For a given solution $s = (x_1, x_2, \dots, x_n)$, the hash functions $h_k(s)$ is defined as:

$$h_k(s) = \left(\sum_{i=1}^n w_{k_i} \times x_i\right) \mod L.$$
(5)

where $w_{k_i} = \lfloor i^{\gamma_k} \rfloor$, L is the length of the hash vectors, and γ_k is a parameter. The parameter values used in our algorithm are given in Section III-A.

For a solution s, we can quickly calculate the hash function value when removing or adding the *i*th vertex as follows:

$$h_k(s) = \begin{cases} h_k(s) - w_{k_i}, & \text{(remove ith vertex)} \\ h_k(s) + w_{k_i}, & \text{(add ith vertex)} \end{cases}$$

Obviously, the time complexity to calculate the hash value of a neighborhood solution is O(1), which is computationally cheap.

Then, when adding vertex v into the current solution s, if $s \cup \{v\}$ is a feasible solution and $h_k(s \cup \{v\})(k = 1, 2, 3)$ all take 1, $s \cup \{v\}$ is regarded as a visited solution and vertex *v* is forbidden to be added into the current solution.

4) VERTEX SELECTION STRATEGY

Using the dynamic scoring mechanism, the weighted configuration checking and solution-based tabu search in the previous sections, we develop the vertex selection strategy. First, a concept of age is introduced. The age of a vertex is defined as the number of search steps that have elapsed since its state was last changed. Then, the vertex selection strategy is defined as follows:

- Remove a vertex: For vertices in the current solution s, select one vertex v with the greatest score, if there exists more than one vertex, ties are broken in favor of the oldest one, i.e., the one with the greatest value of age.
- Add a vertex. For vertices not in the current solution s, select the eligible vertex v with the greatest score, the eligible vertex v should take value 1 for wconfig[v], and if $s \cup \{v\}$ is feasible, at least one of the three hash values should take value 0 for $h_k(s \cup \{v\})$ (k = 1, 2, 3). If there exists more than one vertex, ties are broken in favor of the oldest one too.

From these two rules, we can see that HTS will delete the vertices which cover less edges and have more weight values and add the vertices which cover more edges and have less weight values on the contrary. To avoid visiting the previous encountered solutions, HTS conducts the weighted configuration checking to avoid adding recently deleted vertices and conducts the solution-based tabu search to avoid further cycling problem.

5) GENERAL PROCEDURE OF HYBRID TABU SEARCH

As described in Algorithm 4, our HTS is achieved using perturbing method to find a new solution. First, HTS records the objective value of the initial solution as IW (line 1) and initializes the hash vectors. Then, starting from a feasible solution, HTS repeatedly removes a vertex with the greatest score to an infeasible solution and records the feasible solutions in hash vectors (lines 11 and 12). Furthermore, HTS selects another vertex and the selected vertex should not be in tabu list, which is used to avoid picking recently added vertices in the last iteration that are to be removed from the

Algorithm 4 Framework of Hybrid Tabu Search
Input: a reduced graph G' , a initial solution V'
Output: an improved solution V'_i
1: $IW \leftarrow w(V');$
2: initialize the improved solution $V'_i \leftarrow V'$;
3: /* Initialize the hash vector for only once in the whole
MAE-HTS algorithm. */
4: initialize three hash vectors H_K to 0;
5: Iter $\leftarrow 0$;
6: while <i>Iter</i> \leq <i>Max_Iter</i> do
7: while V' is feasible do
8: if $w(V') < w(V'_i)$ then
9: $V'_i \leftarrow V';$
10: end if
11: $H_k[h_k(s(V'))] \leftarrow 1;$
12: find vertex v with the greatest score in V' , breaking
ties in favor of the oldest one;
13: $V' \leftarrow V' \setminus \{v\};$
14: end while
15: find vertex v with the greatest score in V' and not in
tabu_list;
16: $V' \leftarrow V' \setminus \{v\};$
17: clear <i>tabu_list</i> ;
18: while V' is infeasible do
19: find eligible vertex v with the greatest score, break-
ing tics in favor of the oldest one:

- ing ties in favor of the oldest one; if $w(V') + w(v) \ge IW$ then break; 20:
- $V' \leftarrow V' \cup \{v\};$
- 21:
- 22: add v into tabu_list;
- end while 23:
- *Iter* \leftarrow *Iter* + 1; 24:
- 25: end while
- 26: return V'_i ;

solution (line 15). Once such a vertex is removed from the solution, HTS clears *tabu_list* (line 17). Then, HTS repeatedly tries to add an eligible vertex with the greatest score into the current solution to fix it, where the eligible vertices are determined by the weighted configuration checking and solution-based tabu search (line 19). Meanwhile, if the addition of vertex v will lead to a worse solution (i.e., a solution with objective value greater than *IW*), the move is forbidden and the inner loop will break (line 20). Note that HTS will record all the added vertices in one loop by *tabu_list* (line 22). When the stopping criterion (the maximum number of iterations) is reached, the improved solution V'_i is returned.

Compared to the previous DLSWCC, the main differences of our HTS are the strategy for selecting a vertex to add into the current solution (line 19) and the strategy for accepting a new solution (line 20). Our HTS conducts solution-based tabu search to avoid adding any vertex to revisit previous encountered solutions. Because HTS has the memory of visited solutions and will hardly ever cycle in a local minimum, the solutions with poor quality will have less impact during the search. Therefore, HTS can accept all solutions better than the initial solution while DLSWCC can only accept solutions better than the current best solution, i.e., HTS breaks the inner loop of adding vertices when $w(V') + w(v) \ge IW$, while DLSWCC breaks the inner loop of adding vertices when $w(V') + w(v) \ge w(V'_i)$.

III. EXPERIMENTAL RESULTS

In this section, we present our results of extensive experimental analysis conducted using our MAE-HTS algorithm. We also compared our algorithm with five best performing heuristic algorithms for the MWVCP from the literature and the commercial MIP solver Gurobi.

A. BENCHMARK INSTANCES AND PARAMETER SETTING

A collection of standard benchmark instances are provided in [30]. The number of vertices in these instances varies from 10 to 1000, which are small compared to the real-world applications of the MWVCP. Therefore, 72 additional large scale instances are obtained from Network Data Repository [28], including well known DIMACS, BHOSLIB benchmarks and different types of real-life graphs, which can be categorized into biological networks, collaboration networks, interaction networks, Amazon recommend networks, scientific computation networks, social networks, Facebook networks, technological networks, and web link networks. For 72 large scale instances, the weight of each vertex is not provided. Thus, the weight of each vertex is generated as Shyu et al. [30] did, i.e., the vertex weights are randomly and uniformly drawn from the interval [20,120]. Note that each test instance consists of an undirected and vertex-weighted graph with n vertices and *m* edges. To test the performance of MAE-HTS, the following benchmark classes are used:

- Class SPI: the first set of benchmark (SPI) consists of 400 small instances with 4 different values of n (n = 10, 15, 20, and 25).
- **Class MPI**: the second set of benchmark (MPI) consists of 710 middle size instances with 6 different values of n (n = 50, 100, 150, 200, 250, and 300).
- Class LPI: the third set of benchmark (LPI) consists of 15 large scale instances with 3 different values of n (n = 500, 800, and 1000).
- Class ALPI: the fifth set of 72 large scale instances are obtained from Network Data Repository with more than 1000 vertices.¹

For the small and middle size benchmark classes SPI and MPI, there are 10 problem instances for each combination of n and m. Therefore, the results are reported as the average value over all the 10 instances for each combination, and the proposed algorithm is executed once for these two sets of instances. For large benchmark classes LPI and ALPI, the results are obtained over 10 independent runs. All computational results of our MAE-HTS were obtained with the parameter values as presented in Table 1.²

TABLE 1. Parameter settings.

Parameter	Description	Value
Iter_cycle	the number of generations for each cycle	5
z	a prescribed parameter for initial solution	5
Max_Iter	the number of the maximum iterations	$Min(10^{6}, 100*n)$
L	the length of hash vectors	$Min(10^{8}, n^{3})$
γ_1	constant parameter in hash functions	1.3
γ_2	constant parameter in hash functions	1.5
γ_3	constant parameter in hash functions	1.8

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS MAE-HTS is coded in C++ and run on a PC with an AMD Ryzen 7 1700X 3.40GHz and 16GB RAM under the Windows 10 operating system. The following four best performing algorithms from the literature are selected for comparison:

- MS-ITS by Zhou et al. [38]
- DLSWCC by Li *et al.* [19]
- NuMWVC by Li et al. [18]

and an ILP solver Gurobi 9.1.

Gurobi is tested for solving the 0-1 programming problem proposed in Section II-B. Since the executable files of three reference algorithms (MS-ITS, DLSWCC and NuMWVC) have been offered by the authors. All algorithms (include Gurobi) are executed on the same PC with MAE-HTS, i.e., an AMD Ryzen 7 1700X 3.40GHz. In fact, the results obtained by the reference algorithms are better than those reported in the literature because faster computers are used in our experiments. All results provided by each algorithm are obtained by executing only once on each instance of class SPI and class

¹available at https://github.com/HustWangYang/ALPI-class-for-MWVCP

 $^{^2 \}rm Our$ executable code is available at: https://github.com/HustWang Yang/MAE-HTS

TABLE 2. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class SPI (Type I).

n	m	OPT	MS-I	TS	DLSW	/CC	NuMW	/VC	MAE-	ITS
			Avg	Time	Avg	Time	Avg	Time	Avg	Time
10	10	284.0	284.0	0.000	284.0	0.000	284.0	0.000	284.0	0.000
	20	398.7	398.7	0.000	398.7	0.000	398.7	0.000	398.7	0.000
	30	431.3	431.3	0.000	431.3	0.000	431.3	0.000	431.3	0.000
	40	508.5	508.5	0.000	508.5	0.000	431.3	0.000	431.3	0.000
15	20	441.9	441.9	0.000	441.9	0.000	441.9	0.000	441.9	0.000
	40	570.4	570.4	0.000	570.4	0.000	570.4	0.000	570.4	0.000
	60	726.2	726.2	0.000	726.2	0.000	726.2	0.000	726.2	0.000
	80	807.5	807.5	0.000	807.5	0.000	807.5	0.000	807.5	0.000
	100	880.0	880.0	0.000	880.0	0.000	880.0	0.000	880.0	0.000
20	20	473.0	473.0	0.000	473.0	0.000	473.0	0.000	473.0	0.000
	40	659.3	659.3	0.000	659.3	0.000	659.3	0.000	659.3	0.000
	60	861.8	861.8	0.000	861.8	0.000	861.8	0.000	861.8	0.000
	80	898.0	898.0	0.000	898.0	0.000	898.0	0.000	898.0	0.000
	100	1026.2	1026.2	0.000	1026.2	0.000	1026.2	0.000	1026.2	0.000
	120	1038.2	1038.2	0.000	1038.2	0.000	1038.2	0.000	1038.2	0.000
25	40	756.6	756.6	0.000	756.6	0.000	756.6	0.000	756.6	0.000
	80	1008.1	1008.1	0.000	1008.1	0.000	1008.1	0.000	1008.1	0.000
	100	1106.9	1106.9	0.000	1106.9	0.000	1106.9	0.000	1106.9	0.000
	150	1264.0	1264.0	0.000	1264.0	0.000	1264.0	0.000	1264.0	0.000
	200	1373.4	1373.4	0.000	1373.4	0.000	1373.4	0.000	1373.4	0.000
AVO	3	775.7	775.7	0.000	775.7	0.000	775.7	0.000	775.7	0.000
BES	5T		20		20		20		20	

TABLE 3. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class SPI (Type II).

n	m	OPT	MS-I	ТS	DLSW	/CC	NuMW	/VC	MAE-	HTS
			Avg	Time	Avg	Time	Avg	Time	Avg	Time
10	10	18.8	18.8	0.000	18.8	0.000	18.8	0.000	18.8	0.000
	20	51.1	51.1	0.000	51.1	0.000	51.1	0.000	51.1	0.000
	30	127.9	127.9	0.000	127.9	0.000	127.9	0.000	127.9	0.000
	40	268.3	268.3	0.000	268.3	0.000	268.3	0.000	268.3	0.000
15	20	34.7	34.7	0.000	34.7	0.000	34.7	0.000	34.7	0.000
	40	170.5	170.5	0.000	170.5	0.000	170.5	0.000	170.5	0.000
	60	360.5	360.5	0.000	360.5	0.000	360.5	0.000	360.5	0.000
	80	697.9	697.9	0.000	697.9	0.000	697.9	0.000	697.9	0.000
	100	1130.4	1130.4	0.000	1130.4	0.000	1130.4	0.000	1130.4	0.000
20	20	32.9	32.9	0.000	32.9	0.000	32.9	0.000	32.9	0.000
	40	111.6	111.6	0.000	111.6	0.000	111.6	0.000	111.6	0.000
	60	254.1	254.1	0.000	254.1	0.000	254.1	0.000	254.1	0.000
	80	452.2	452.2	0.000	452.2	0.000	452.2	0.000	452.2	0.000
	100	775.2	775.2	0.000	775.2	0.000	775.2	0.000	775.2	0.000
	120	1123.1	1123.1	0.000	1123.1	0.000	1123.1	0.000	1123.1	0.000
25	40	98.7	98.7	0.000	98.7	0.000	98.7	0.000	98. 7	0.000
	80	327.7	327.7	0.000	327.7	0.000	327.7	0.000	327.7	0.000
	100	595.0	595.0	0.000	595.0	0.000	595.0	0.000	595.0	0.000
	150	1289.9	1289.9	0.000	1289.9	0.000	1289.9	0.000	1289.9	0.000
	200	2709.5	2709.5	0.000	2709.5	0.000	2709.5	0.000	2709.5	0.000
AVG	j	533.8	533.8	0.000	533.8	0.000	533.8	0.000	533.8	0.000
BES	Т		20		20		20		20	

MPI, and 10 times on each instance of class LPI and class ALPI. For each instance, each algorithm is terminated upon reaching a given time limit (1000s) except for Gurobi. The time limit for Gurobi is set as 10800s. Note that if the best solution is found without reaching this time limit with normal termination code for Gurobi, it must be an optimal solution for the corresponding instance.

C. EXPERIMENTAL RESULTS ON SPI TYPE INSTANCES

The first experiment is conducted to evaluate the performance of MAE-HTS in tackling the two sets of benchmark instances (SPI Type I and Type II). For these instances, the number of vertices ranges from 10 to 25 and the number of edges ranges from 10 to 200. Tables 2 and 3 present the performance of MAE-HTS in comparison to other reference algorithms (i.e., MS-ITS, DLSWCC and NuMWVC) for the set of SPI

TABLE 4. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class MPI (Type I).

n	m	Gurobi	MS-IT		DLSW	CC	NuMW		MAE-F	ITS
		-	Avg	Time	Avg	Time	Avg	Time	Avg	Time
50	50	1280.0(+)	1280.0	0.000	1280.0	0.000	1280.0	0.000	1280.0	0.000
	100	1735.3(+)	1735.3	0.000	1735.3	0.000	1735.3	0.000	1735.3	0.000
	250	2272.3(+)	2272.3	0.000	2272.3	0.000	2272.3	0.000	2272.3	0.000
	500	2661.9(+)	2661.9	0.001	2661.9	0.000	2661.9	0.000	2661.9	0.000
	750	2951.0(+)	2951.0	0.002	2951.0	0.000	2951.0	0.000	2951.0	0.000
	1000	3193.7(+)	3193.7	0.000	3193.7	0.000	3193.7	0.000	3193.7	0.000
100	100	2534.2(+)	2534.2	0.003	2534.2	0.000	2534.2	0.001	2534.2	0.000
	250	3601.6(+)	3601.6	0.009	3601.6	0.000	3601.6	0.001	3601.6	0.004
	500	4600.6(+)	4600.6	0.051	4600.6	0.000	4600.6	0.002	4600.6	0.001
	750	5045.5(+)	5045.5	0.020	5045.5	0.000	5045.5	0.000	5045.5	0.001
		5508.2(+)	5508.2	0.004	5508.2	0.000	5508.2	0.001	5508.2	0.001
		6051.9(+)	6051.9	0.002	6051.9	0.000	6051.9	0.001	6051.9	0.001
150	150	3666.9(+)	3667.0	0.022	3666.9	0.001	3666.9	0.001	3666.9	0.000
	250	4719.9(+)	4719.9	0.038	4719.9	0.001	4719.9	0.001	4719.9	0.001
	500	6165.4(+)	6165.4	0.100	6165.4	0.005	6165.4	0.002	6165.4	0.001
	750	6956.4(+)	6956.4	0.196	6956.4	0.003	6956.4	0.005	6956.4	0.001
		7359.7(+)	7359.7	0.034	7359.7	0.006	7359.7	0.003	7359.7	0.002
		8549.4(+)	8549.4	0.083	8549.4	0.010	8549.4	0.004	8549.4	0.002
		8899.8(+)	8899.8	0.080	8899.8	0.009	8899.8	0.003	8899.8	0.002
200	250	5551.6(+)	5551.6	0.071	5551.6	0.005	5551.6	0.003	5551.6	0.005
	500	7191.9(+)	7191.9	0.112	7191.9	0.010	7191.9	0.011	7191.9	0.001
	750	8269.9(+)	8269.9	0.220	8269.9	0.006	8269.9	0.004	8269.9	0.002
		9145.5(+)	9145.5	0.195	9145.5	0.012	9145.5	0.009	9145.5	0.003
		10830.0(+)			10830.0		10830.0		10830.0	
		11595.8(+)		0.046	11595.8	0.015	11595.8	0.013	11595.8	0.005
250	250	6148.7(+)	6148.7	0.031	6148.7	0.014	6148.7	0.002	6148.7	0.004
	500	8436.2(+)	8436.2	0.292	8436.2	0.016	8436.2	0.009	8436.2	0.002
	750	9745.6(+)	9747.8	0.203	9745.6	0.241	9745.6	0.013	9745.6	0.004
		10751.7(+)			10751.7		10751.7		10751.7	
		12751.5(+)			12751.5		12751.5		12751.5	
		13723.3(+)			13723.3		13723.3		13723.3	
	5000	14669.7(+)	14669.7	0.222	14669.7	0.043	14669.7	0.012	14669.7	0.007
300	300	7295.8(+)	7299.4	0.123	7295.8	0.021	7295.8	0.004	7295.8	0.002
	500	9403.1(+)	9404.8	0.321	9403.1	0.024	9403.1	0.013	9403.1	0.002
	750	11029.3(+)			11029.3		11029.3		11029.3	
		12098.5(+)			12098.5		12098.5		12098.5	
		14732.2(+)			14732.2		14732.2		14732.2	
		15843.2	15840.8		15840.8		15840.8		15840.8	
		17354.4	17342.9		17342.9		17342.9		17342.9	0.069
AVO		7848.5	7803.3	0.196	7802.8	0.028	7802.8	0.009	7802.8	0.006
BES	т	37	31		39		39		39	

instances. Columns *Avg* and *Time* show the average objective values and the average computing time in seconds by the reference algorithms MS-ITS, DLSWCC, NuMWVC and our MAE-HTS, respectively. Since optimal solutions of these instances are known, column OPT in both tables lists the optimal solution values for each instance. Row AVG presents the value averaged over one set of instances, while row BEST denotes the number of objective values obtained by the algorithm which are the best among all the algorithms. In addition, the objective value which matches the best-known results is indicated in bold.

From Tables 2 and 3, we observe that MS-ITS, DLSWCC, NuMWVC and MAE-HTS obtain the same results in terms of both *Avg* and *Time* while all these four algorithms could yield best solutions on all the instances. Small instances have no challenge for these algorithms.

D. EXPERIMENTAL RESULTS ON MPI TYPE INSTANCES

In order to further evaluate the performance of MAE-HTS, it is tested on the second set of benchmark instances (MPI type). We report the results of MAE-HTS in comparisons with other reference algorithms in tackling this set of relatively difficult instances in Tables 4 and 5. For these instances,

TABLE 5. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class MPI (Type II).

n	m	Gurobi	MS-IT		DLSW		NuMW		MAE-H	
			Avg	Time	Avg	Time	Avg	Time	Avg	Time
50	50	83.7(+)	83.7	0.000	83.7	0.000	83.7	0.000	83.7	0.00
	100	271.2(+)	271.2	0.001	271.2	0.000	271.2	0.000	271.2	0.000
	250	1853.4(+)	1853.4	0.001	1853.4	0.000	1853.4	0.000	1853.4	0.000
	500	7825.1(+)	7825.1	0.002	7825.1	0.000	7825.1	0.000	7825.1	0.000
	750	20079.0(+)	20079.0	0.000	20079.0	0.000	20079.0	0.000	20079.0	0.000
100	50	67.2(+)	67.2	0.003	67.2	0.000	67.2	0.000	67.2	0.00
	100	166.6(+)	166.6	0.001	166.6	0.000	166.6	0.001	166.6	0.00
	250	886.5(+)	886.5	0.003	886.5	0.002	886.5	0.001	886.5	0.00
	500	3693.6(+)	3693.6	0.007	3693.6	0.001	3693.6	0.001	3693.6	0.00
	750	8680.2(+)	8680.2	0.031	8680.2	0.002	8680.2	0.001	8680.2	0.00
150	50	65.8(+)	65.8	0.002	65.8	0.000	65.8	0.000	65.8	0.00
	100	144.0(+)	144.0	0.008	144.0	0.002	144.0	0.001	144.0	0.00
	250	615.8(+)	616.3	0.021	615.8	0.002	615.8	0.046	615.8	0.00
	500	2331.5(+)	2331.5	0.049	2331.5	0.002	2331.5	0.002	2331.5	0.00
	750	5698.5(+)	5700.2	0.055	5698.5	0.004	5698.5	0.005	5698.5	0.00
200	50	59.6 (+)	59.6	0.005	59.6	0.000	59.6	0.000	59.6	0.00
	100	134.5(+)	134.5	0.010	134.5	0.000	134.5	0.000	134.5	0.00
	250	483.1(+)	483.1	0.065	483.1	0.002	483.3	0.011	483.1	0.00
	500	1803.9(+)	1804	0.059	1803.9	0.002	1804.4	0.089	1803.9	0.00
	750	4043.5(+)	4043.5	0.178	4043.5	0.004	4043.5	0.074	4043.5	0.00
250	250	419.0(+)	419.0	0.047	419.0	0.012	419.0	0.006	419.0	0.00
	500	1434.2(+)	1434.3	0.052	1434.2	0.201	1435.2	0.378	1434.2	0.00
	750	3256.1(+)	3256.1	0.140	3256.1	0.115	3256.1	0.024	3256.1	0.00
	1000	5986.1 (+)	5986.5	0.347	5986.4	0.120	5986.4	0.035	5986.1	0.04
	2000	25636.5(+)	25636.5	0.471	25636.5	0.066	25636.5	0.042	25636.5	0.02
	5000	170269.1(+) 170269.]	0.450	170269.1	10.006	170269.	0.014	170269.1	10.03
300	250	399.4(+)	399.4	0.079	399.4	0.016	399.4	0.009	399.4	0.00
	500	1216.4(+)	1216.4	0.339	1216.4	0.074	1217.4	0.066	1216.4	0.00
	750	2639.3(+)	2639.3	0.368	2639.3	0.259	2639.3	0.197	2639.3	0.00
	1000	4795.0(+)	4795.0	0.275	4795.0	0.203	4795.5	0.156	4795.0	0.01
	2000	20881.3(+)	20885.5	0.647	20881.3	0.056	20881.3	0.037	20881.3	0.00
	3000	141220.4(+)141223.2	20.792	141220.4	0.084	141220.4	1 0.132	141220.4	1 0.04
AVG	j.	13660.6(+)	13660.9	0.141	13660.6	0.452	13660.7	0.041	13660.6	0.00
BES	Т	32	24		31		26		32	

it is hard to obtain all the optimal solutions in short time. Thus, we apply the ILP solver Gurobi to find a best solution with a reasonable time limit (10800 seconds for each instance), which are reported in column Gurobi. The optimal solution values found by Gurobi in the time limit are indicated with flag "+", and the best objective values among all the algorithms are indicated in bold.

From Tables 4 and 5, we observe that MAE-HTS outperforms other algorithms by obtaining the best results on all the instances. Indeed, MAE-HTS improves the previous best known results for one instance (with n = 250 and m = 1000on class MPI Type II) and matches the best known solutions for the remaining 70 instances. More importantly, MAE-HTS finds the best solutions in less computational time with an average computational time of 0.006s for Type I and Type II. Compared with the ILP solver Gurobi, MAE-HTS was able to obtain all the optimal solutions and give better solutions on two MPI instances that were not solved by Gurobi to optimality.

E. EXPERIMENTAL RESULTS ON LPI TYPE INSTANCES

The third set of experiments is conducted using the LPI of instances, which are considered as the most challenging MWVCP standard instances. For this set of benchmark instances, each independent combination of n and m consists of one instance which is different from the classes SPI and MPI. Therefore, in this experiment, the proposed MAE-HTS is conducted on each instance for 10 independent runs, while the ILP solver Gurobi is still applied in the experiment with time limit 10800 seconds for each instance. The optimal objective values obtained by Gurobi are indicated with flag "+", and the best solution values among all the algorithms are indicated in bold.

Computational results of our MAE-HTS algorithm and other reference algorithms are reported in Table 6 where we report the best objective values Best and the average objective values Avg obtained over 10 independent runs for each instance. The best values of Best and Avg are indicated in bold. Table 6 discloses the superior performance of our algorithm over the reference algorithms. Indeed, MAE-HTS obtains the best results in terms of both Best and Avg for all the 15 LPI instances, which outperforms other reference algorithms. Compared with other reference algorithms, MAE-HTS is much more stable with the same values on the best and average values. MAE-HTS is significantly faster with average computational time 0.714s while MS-ITS, DLSWCC and NuMWVC have the average computational time 19.356s, 2.618 and 2.116s, respectively. In particular, our MAE-HTS could improve the best known result for one instance with n = 800 and m = 2000. Therefore, this experiment discloses the highly competitive and

TABLE 6. Comparison between MAE-HTS and other state-of-the-art algorithms on instances of class LPI.

n	m	Gurobi		MS-ITS			DLSWCC	1		NuMWVC	2		MAE-HTS	5
		Val	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
500	500	12616(+)	12621	12634.5	1.904	12616	12616.0	3.304	12616	12616.0	0.200	12616	12616.0	0.004
	1000	12465(+)	16480	16482.6	1.408	16465	16465.0	0.142	16465	16465.0	0.554	16465	16465.0	0.026
	2000	20863(+)	20863	20863.6	3.972	20863	20863.6	6.739	20863	20863.0	0.978	20863	20863.0	0.031
	5000	27241	27241	27241.0	2.990	27241	27241.0	2.331	27241	27241.0	0.812	27241	27241.0	0.054
	10000	29848	29573	29573.0	8.747	29573	29573.0	2.614	29573	29573.0	0.304	29573	29573.0	0.034
800	500	15025(+)	15046	15046.0	2.807	15025	15025.0	0.199	15025	15025.0	0.184	15025	15025.0	0.077
	1000	22747(+)	22760	22760.0	3.405	22747	22747.0	1.738	22747	22747.0	0.320	22747	22747.0	0.008
	2000	31283(+)	31310	31342.2	15.919	31285	31302.0	2.482	31285	31297.5	3.431	31283	31283.0	2.184
	5000	38698	38553	38562.7	13.914	38553	38563.9	1.857	38553	38557.1	2.483	38553	38553.0	0.259
	10000	44473	44351	44363.1	31.339	44351	44354.0	1.523	44351	44355.0	2.495	44351	44351.0	1.407
1000	1000	24723(+)	24735	24751.5	4.321	24723	24723.0	0.551	24723	24723.0	0.401	24723	24723.0	0.003
	5000	45260	45230	45258.9	31.283	45203	45231.3	4.986	45215	45237.4	6.114	45203	45203.0	1.067
	10000	51690	51378	51454.5	50.418	51378	51398.8	4.958	51378	51389.3	3.729	51378	51378.0	0.898
	15000	58647	58014	58072.2	61.503	57994	57995.0	2.583	57994	57994.0	4.050	57994	57994.0	0.616
	20000	60574	59675	59735.6	56.415	59651	59656.4	3.262	59651	59655.3	5.689	59651	59651.0	4.033
AVG		33076.9	33188.7	33209.4	19.356	33177.7	33183.7	2.618	33178.7	33182.6	2.116	33177.7	33177.7	0.714
BEST		8	6	2		14	7		13	9		15	15	

TABLE 7. Comparison between MAE and other state-of-the-art algorithms on instances of ALPI.

Graph	n	m		DLSWCC	T	D	NuMWVC	T		MAE-HTS	T
22000 5	2000	000000	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
C2000.5	2000	999836	136452	136644.3	1010.002	136452	136461.5	47.277	136452	136452.0	46.498
C2000.9	2000	1799532	139595	139625.5	3465.349	139464	139464.0	0.552	139464	139464.0	0.667
MANN-a45	1035	533115	71923	71923.0	117.112	71923	71923.0	0.214	71923	71923.0	0.000
MANN-a81	3321	5506380	234304	234304.0	776.9	234192	234192.0	0.275	234192	234192.0	0.310
keller6	3361	4619898	230608	230608.0 96959.0	734.1	231054	231054.0	0.205	230574	230601.2 96959.0	80.840
p-hat1500-1	1500	284923	96959 100664	96959.0 100664.0	28.060	96959 100664	96959.0	0.968	96959 100664		0.097
p-hat1500-2	1500	568960	100664		155.075	100664	100664.0	12.415	100664	100664.0	0.288
p-hat1500-3	1500	847244	103593	103593.0	753.134	103593	103593.0	1.333	103593	103593.0	0.331
frb56-25-1	1400	13422	96573	96573.0 97136.0	383.261	96602	96602.0	0.152	96479 97126	96479.0 07126.0	9.227
frb56-25-2	1400	117619	97136 04660		308.293	97650	97705.2	0.154	97136	97136.0	0.032
frb56-25-3	1400	820644	94660	94660.0	318.132	95178	95178.0	0.154	94638	94638.0	106.24
frb56-25-4	1400	54397	95757	95757.0 98031.1	316.254	95840	95840.0	0.156	95476	95476.0	1.088
frb56-25-5	1400	54397	98029		338.183	98172	98172.0	0.152	97978 107857	97978.0	4.836
frb59-26-1	1534	1049256	108121 106447	108121.0	504.196	108122	108122.0	0.151	107857	107857.0	306.84
frb59-26-2 frb59-26-3	1534 1534	1049648 1049729	106447 102452	106447.0 102579.8	540.756 517.542	106390 102897	106390.0 102897.0	0.153	100154	106154.0 102452.0	30.083 1.176
frb59-26-5	1534	1049729	102452	102379.8		102897	102897.0	0.150	102452	102452.0	7.239
frb59-26-6	1534	1048800	104373	104039.0	514.362 510.527	104378	104018.0	0.145 0.149	104445	104445.0	97.605
11039-20-0	1334	1049829	103723	105725.0	510.527	105585	105725.5	0.149	105555	105555.0	97.005
bio-dmela	7393	25569	168720	168747.0	64.550	168703	168705.6	29.286	168697	168704.7	470.92
bio-yeast	1458	1948	29557	29557.0	0.827	29557	29557.0	0.191	29557	29557.0	0.001
ca-AstroPh	17903	196972	760431	760798.8	216.919	758512	758588.6	276.425	759176	759272.0	403.65
ca-citeseer	227320	814134	8198352	8198575.7	567.714	8181199	8182268.9	119.648	8192170	8192470.4	742.24
ca-CondMat	21363	91286	806738	807326.8	255.180	804022	804138.8	377.597	804848	805055.3	334.74
ca-CSphd	1882	1740	33272	33272.0	1.748	33272	33272.0	0.189	33272	33272.0	0.000
ca-dblp-2010	226413	716460	7735228	7735499.9	355.806		7716127.0	101.238	7728136	7728255.9	516.00
ca-dblp-2012	317080	1049866		10464798.3			10442716.5			10454171.3	
ca-Erdos992	6100	7515	32550	32550.0	0.141	32550	32550.0	0.152	32550	32550.0	0.001
ca-GrQc	4158	13422	139716	139748.9	39.388	139694	139695.7	45.142	139693	139694.6	168.31
ca-HepPh	11204	117619	432360	432550.9	136.579	430594	430615.8	184.248	430518	430899.3	382.43
ca-MathSciNet	332689	820644	8944557	8944859.5	651.722	8913041	8913490.4	136.543	8912824	8912960.7	847.96
ia-email-EU	32430	54397	57326	57326.0	2.860	57326	57326.0	0.280	57326	57326.0	0.000
ia-email-univ	1133	5451	38443	38443.0	0.851	38443	38443.0	0.822	38443	38443.0	0.028
ia-enron-large	33696	180811	813177	813480.2	373.036	809005	809115.1	500.093	809620	809822.7	681.04
ia-fb-messages	1266	6451	37016	37016.0	0.632	37016	37016.0	0.436	37016	37016.0	0.024
ia-reality	6809	7680	5880	5880.0	0.032	5880	5880.0	0.430	5880	5880.0	0.024
ia-wiki-Talk	92117	360767	1118854	1119095.7	423.125	3880 1108740	1108790.5	868.007	1108764	1108773.1	569.74
rec-amazon	91813	125704	3050870	3051545.8	1334.450	3033106	3034416.1	997.478	2995015	2995183.3	525.40
sc-nasasrb	54870	1311227	3523027	3524019.3	1266.714	3520549	3521430.4	400.714	3504644	3504777	479.54
sc-shipsec1	140385	1707759	7987397	7988452.1	1674.865	7969093	7971518.3	467.152	7875579	7876523.5	888.29
soc-brightkite	56739	212945	1384903	1385510.5	614.468	1369082	1369431.4	684.541	1368691	1368702.7	478.99
soc-delicious	536108	1365961	5797888	5800068.8	5628.291	5750871	5759221.9	838.759	5711358	5711713.5	247.45
soc-douban	154908	327162	608827	608859.6	518.752	608796	608796.0	10.740	608796	608796.0	0.003
soc-epinions	26588	100120	631556	631934.8	272.571	626101	626128.6	324.005	626066	626075.7	710.53
soc-gowalla	196591	950327	5523350		2526.080	5503745	5505979.3	101.642	5449285	5454981.6	556.54
soc-slashdot	70068	358647	1449480	1449723.2	718.976	1433264	1433727.5	587.851	1433158	1433201.6	386.19
soc-twitter-follows	404719	713319	161186	161186.0	247.003	161186	161186.0	0.178	161186	161186.0	0.002
socfb-Berkeley13	22900	852419	1176301	1176862.4	530.388	1175604	1176900.9	216.025	1173277	1173342.5	255.88
socfb-CMU	6621	249959	340361	340437.2	68.700	340348	340423.7	42.409	340209	340213.4	463.65
socfb-Duke14	9885	506437	525565	525688.1	189.879	525533	525768.9	69.673	525152	525169.7	317.13
socfb-Indiana	29732	1305757	1604493	1605228.4	1119.006	1603310	1605360.3	273.519	1599150	1599232.6	572.27
socfb-MIT	6402	251230	318517	318594.0	73.355	318495	318582.2	47.264	318385	318389.4	458.66
socfb-OR	63392	816886	2461916	2463781.4	1094.764	2448921	2450014.3	786.518	2439133	2439303.4	415.60
socfb-Penn94	41536	1362220	2141044	2141785.4	1341.867	2138559	2139372.7	386.119	2129692	2129770.7	490.64
socfb-Stanford3	11586	568309	587331	587460.0	242.657	587172	587506.3	97.030	586742	586757.6	347.59
socfb-UCLA	20453	747604	1037334	1037767.7	444.288	1036682	1037344.7	187.955	1034894	1034924.5	522.52
socfb-UConn	17206	604867	905791	906142.1	302.252	906372	906646.7	140.204	904002	904073.1	413.70
socfb-UCSB37	14917	482215	767461	767990.0	226.634	767543	767986.7	120.634	766323	766391.8	843.65
socfb-UIllinois	30795	1264421	1645857	1646541.0	1079.695	1645037	1646354.0	270.752	1639934	1640015.4	569.30
socfb-Wisconsin87	23831	835946	1261878	1262382.0	518.802	1261014	1261970.3	240.069	1257975	1258031.3	474.02
tech-internet-as	40164	85123	362224	362330.1	242.812	360081	360085.6	227.229	360076	360076.0	101.42
tech-p2p-gnutella	62561	147878	1087625	1087882.7	567.099	1085103	1085105.4	681.142	1085103	1085103.0	136.01
tech-RL-caida	190914	607610	4926187	4926618.8	2785.616	4896788	4904101.0	989.890	4860898	4861210.6	180.82
tech-routers-rf	2113	6632	52114	52116.2	7.826	52115	52115.9	4.273	4800898 52114	4301210.0 52114.0	13.758
tech-WHOIS		56943	52114 147568	52116.2 147591.3		147563		4.273 24.174	52114 147559	52114.0 147559.3	
	7476				62.579 1764 834		147566.3			14/559.5	411.47
web-arabic-2005	163598	1747269	7701067	7701573.7	1764.834	7682204	7683226.2	319.448	7678576		839.65
web-BerkStan	12305	19500	334037	334405.3	135.070	332835	332840.8	136.255	332827	332840.0	511.64
web-edu	3031	6474	90152	90181.9	16.695	90124	90133.4	5.866	90108	90114.0	390.40
web-google	1299	2773	31942	31942.0	2.264	31942	31942.0	0.516	31942	31942.0	0.012
web-indochina-2004	11358	47606	471007	471288.4	102.091	469636	469776.4	147.799	469872	469963.0	361.52
web-sk-2005	121422	334419	3665046	3665222.8	78.833	3666386	3666719.8	982.408	3654734	3655057.7	336.66
web-spam	4767	37375	150351	150363.1	40.879	150342	150354.1	38.178	150341	150342.6	435.52
web-webbase-2001	16062	25593	165983	166088.0	88.659	165701	165707.9	58.021	165701	165704.4	251.06
			1450665	1450007.0	502 542	1110188	14405151	100 110	1 4 4 4 1 0 6	1 1 4 4 4 9 5 5 0	205 10
AVG			1452665.2	2 1452927.8	592.542	1448157.1	1448717.1	189.113	1444106.4	1444257.8	285.16

TABLE 8. Comparison between MAE-HTS with different strategies.

Graph		NuMWVC			HTS			MAE			MAE-HTS	
	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time	Best	Avg	Time
frb56-25-1	96602	96602.0	0.152	96479	96479.0	6.731	96573	96575.9	2.152	96479	96479.0	9.227
frb56-25-2	97650	97705.2	0.154	97136	97136.0	0.040	97136	97136.0	0.033	97136	97136.0	0.032
frb56-25-3	95178	95178.0	0.154	94638	94644.6	10.073	94660	94660.0	2.159	94638	94638.0	106.242
frb56-25-4	95840	95840.0	0.156	95476	95476.0	5.299	95476	95669.3	110.723	95476	95476.0	1.088
frb56-25-5	98172	98172.0	0.152	97978	97982.8	10.74	98029	98033.2	25.362	97978	97978.0	4.836
frb59-26-1	108122	108122.0	0.151	107857	107917.2	8.701	108121	108121.0	0.036	107857	107857.0	306.848
frb59-26-2	106390	106390.0	0.153	106154	106154.0	5.404	106265	106288.4	148.931	106154	106154.0	30.083
frb59-26-3	102897	102897.0	0.150	102452	102452.0	1.213	102452	102494.6	106.481	102452	102452.0	1.176
frb59-26-4	104576	104618.6	0.145	104445	104445.0	2.130	104576	104623.5	36.953	104445	104445.0	7.239
frb59-26-5	105583	105723.5	0.149	105533	105625.6	3.977	105725	105725.0	7.540	105533	105533.0	97.605
socfb-Berkeley13	1175604	1176900.9	216.025	1173323	1173465.9	15.982	1173269	1173329.2	529.194	1173277	1173342.5	255.889
socfb-CMU	340348	340423.7	42.409	340230	340258.8	2.945	340211	340224.1	555.719	340209	340213.4	463.651
socfb-Duke14	525533	525768.9	69.673	525195	525238.6	7.807	525160	525203.7	465.840	525152	525169.7	317.137
socfb-Indiana	1603310	1605360.3	273.519	1599408	1599575.9	25.746	1599187	1599269.8	580.571	1599150	1599232.6	572.276
socfb-MIT	318495	318582.2	47.264	318401	318424.6	3.179	318387	318394.6	484.797	318385	318389.4	458.666
socfb-OR	2448921	2450014.3	786.518	2439214	2439458.3	45.719	2439248	2439376.3	208.364	2439133	2439303.4	415.601
socfb-Penn94	2138559	2139372.7	386.119	2129897	2130057.5	32.965	2129724	2129811.4	454.033	2129692	2129770.7	490.641
socfb-Stanford3	587172	587506.3	97.030	586778	586821.8	7.755	586744	586762.0	439.417	586742	586757.6	347.590
socfb-UCLA	1036682	1037344.7	187.955	1034916	1035031.9	11.718	1034906	1034940.0	474.586	1034894	1034924.5	522.520
socfb-UConn	906372	906646.7	140.204	904141	904245.6	8.499	904005	904072.2	650.338	904002	904073.1	413.709
socfb-UCSB37	767543	767986.7	120.634	766490	766584.2	11.299	766325	766414.6	531.335	766323	766391.8	843.657
socfb-UIllinois	1645037	1646354.0	270.752	1640115	1640287.4	25.097	1639943	1640071.3	683.668	1639934	1640015.4	569.303
socfb-Wisconsin87	1261014	1261970.3	240.069	1258250	1258277.0	16.860	1258050	1258092.4	658.095	1257975	1258031.3	474.024
BEST	0	0		10	6		4	2		22	22	

TABLE 9. Experiments for parameter settings.

Graph	$\alpha = 1$	$1, \beta = 1$	$\alpha = 1$	$\beta = 0.6$	$\alpha = 1$	$1,\beta = 2$	$\alpha = 0$	$.6, \beta = 1$	$\alpha = 1$	$2,\beta = 1$
	Best	Avg	Best	Avg	Best	Avg	Best	Avg	Best	Avg
frb59-26-1	107857	107857.0	107857	107857.0	107857	107857.0	107857	107857.0	107857	107857.0
frb59-26-2	106154	106154.0	106154	106154.0	106154	106154.0	106154	106154.0	106154	106154.0
frb59-26-3	102452	102452.0	102452	102452.0	102452	102452.0	102452	102452.0	102452	102452.0
frb59-26-4	104445	104445.0	104445	104445.0	104445	104445.0	104445	104445.0	104445	104445.0
frb59-26-5	105533	105533.0	105533	105533.0	105533	105533.0	105533	105533.0	105533	105533.0
socfb-Berkeley13	1173277	1173342.5	1173291	1173339.3	1173249	1173318.9	1173288	1173341.5	1173277	1173327.4
socfb-Indiana	1599150	1599232.6	1599217	1599299.1	1599184	1599258.3	1599186	1599262.9	1599162	1599275.9
socfb-OR	2439133	2439303.4	2439292	2439459.1	2439175	2439257.7	2439333	2439475.1	2439286	2439328.4
socfb-Penn94	2129692	2129770.7	2129633	2129844.2	2129692	2129785.9	2129722	2129849.3	2129753	2129829.4
socfb-UIllinois	1639934	1640015.4	1639937	1640063	1639942	1640067.3	1639978	1640063.4	1639980	1640043.9
BEST	8	8	6	5	6	7	5	5	5	5

superior performance of the proposed MAE-HTS algorithm in terms of both solution quality, computational efficiency, and robustness.

F. EXPERIMENTAL RESULTS ON ADDITIONAL LARGE-SCALE INSTANCES

In this experiment, we test our MAE-HTS algorithm on the instances obtained from the Network Data Repository, which are based on the real-world graphs. We compared our MAE-HTS algorithm with DLSWCC and NuMWVC which are obviously the best performing algorithms in the literature. These three algorithms were run under the same experimental conditions. Because of the large scale nature of the instances, the exact ILP solver Gurobi has difficulty in obtaining good solutions in a time limit of 10800s. For the 72 large-scale instances with different numbers of vertices and edges, all algorithms are executed for 10 times. The performance of all the three algorithms are reported in Table 7. Column Best reports the best objective values over 10 runs and columns Avg and Times show the average objective values and average computing time, respectively. The best values are indicated in bold too.

From Table 7, we can see that MAE-HTS and NuMWVC are better than DLSWCC on class ALPI. MAE-HTS obtains the best solutions on 64 instances while NuMWVC can find the best solutions on 27 instances. Moreover, MAE-HTS is more stable and robust than other reference algorithms with better average objective values, and it obtains the best average objective values on 64 instances of all 72 instances. Meanwhile, MAE-HTS achieves the best performance on class ALPI in a reasonable time (285.165s). In general, MAE-HTS demonstrates its effectiveness in solving these challenging large scale instances.

IV. ANALYSIS AND DISCUSSION

In this section, we conduct additional experiments to demonstrate the effectiveness of several important components in our MAE-HTS, including the master-apprentice evolutionary algorithm, the hybrid tabu search and the combination of the two searching strategies.

A. EFFECTIVENESS OF SEARCHING STRATEGIES IN MAE-HTS

The purpose of this experiment is to evaluate the effectiveness of the main components in MAE-HTS: the master-apprentice

evolutionary algorithm and the hybrid tabu search. Thus, we compare MAE-HTS with two variants of MAE-HTS: HTS and MAE, and the best reference algorithm NuMWVC. HTS is based on the hybrid tabu search and does not conduct the master-apprentice evolutionary procedure. MAE works without solution-based tabu search, i.e., it does not conduct the hash functions to record the visited solutions. In this experiment, the HTS and MAE are tested on 23 large scale representative instances from the class of ALPI instances over 10 runs. These instances include 10 instances from BHOSLIB and 13 instances from Facebook networks, which are difficult for the best reference algorithm NuMWVC in the literature.

As shown in Table 8, MAE-HTS outperforms the best performing algorithm NuMWVC as well as the two simplified versions of our MAE-HTS algorithm: HTS and MAE. First, HTS can obtain all the best solutions on 10 instances from BHOSLIB while MAE can only find the best solutions for 3 out of 10 instances. This disclose that the solution-based tabu search can progress a more precise search by using the memory of all the visited solutions to avoid cycling problem during the search. Second, for 13 instances from Facebook networks, compared to HTS, MAE performs better in terms of the best objective value and the average objective value over all 13 instances. Moreover, MAE is able to provide the best solutions on 1 instance. This demonstrates the importance of MAE especially for large scale instances, which increases the diversity and stability of the search process. Thus, the hybrid tabu search and the master-apprentice evolutionary algorithm are both important components in our MAE-HTS.

In fact, for most instances, HTS and MAE can also provide high quality solutions. Interested readers are referred to Table 10 in the Appendix for more details, which contains the results for HTS and MAE on all 72 instances of class ALPI.

B. PARAMETER SETTINGS

In our MAE-HTS, an important issue is to make a balance between local search and global search, i.e., how to decide the values of two important parameters *Iter_Cycle* and *Max_Iter*. In this experiment, we conduct experiments to fix the values of the two key parameters of the MAE-HTS algorithm.

- Parameter coefficient α for *Iter Cycle*
- Parameter coefficient β for *Max_Iter*

The parameter coefficient represents the ratio between the new parameter in experiments and the original parameter. For example, $\alpha = 0.6$ means that the new parameter of *Iter_Cycle* is set as $5 \times 0.6 = 3$ while $\alpha = 1$ means the new parameter remains 5. We have chosen several representative instances as the testbed. These instances include 5 largest instances from BHOSLIB and 5 largest instances from Facebook networks. For this experiment, The algorithm was run for 10 times on each problem instance and each parameter setting with 1000s as the time limit. The results are presented in Table 9.

In Table 9, we notice that the algorithms with different settings can find the best solutions on both the best

TABLE 10.	Results on	the class of	ALPI by H	TS and MAE.
-----------	------------	--------------	-----------	-------------

Graph	HTS		MAE		MAE-HTS	
	Best	Avg	Best	Avg	Best	Avg
C2000-5	136452	136455.3	136452	136454.2	136452	136452
C2000-9 MANN-a45	139464 71923	139464 71923	139464 71923	139464 71923	139464 71923	139464 71923
MANN-a81	234192	234192	234192	234192	234192	234192
keller6	230574	230598.6	230608	230631.4	230574	230601.2
p-hat1500-1	96959	96959	96959	96959	96959	96959
p-hat1500-2	100664	100664	100664	100664	100664	100664
p-hat1500-3	103593 96479	103593	103593	103593	103593 96479	103593 96479
frb56-25-1 frb56-25-2	96479 97136	96479 97136	96573 97136	96575.9 97136	96479 97136	96479 97136
frb56-25-3	94638	94644.6	94660	94660	94638	94638
frb56-25-4	95476	95476	95476	95669.3	95476	95476
frb56-25-5	97978	97982.8	98029	98033.2	97978	97978
frb59-26-1 frb59-26-2	107857	107917.2 106154	108121 106265	108121 106288.4	107857 106154	107857 106154
frb59-26-3	106154 102452	100154	100203 102452	100288.4	100154	100134
frb59-26-4	104445	104445	104576	104623.5	104445	104445
frb59-26-5	105533	105625.6	105725	105725	105533	105533
bio-dmela	168722	168730	168704	168711.2	168697	168704.7
bio-yeast	29557	29557	29557 750108	29557 759262.9	29557	29557
ca-AstroPh ca-citeseer	759257 8192407	759437.9 8192687.4	759198 8192415	7 59262.9 8192652.3	759176 8192170	759272 8192470.4
ca-CondMat	805922	806052.2	804905	805012.8	804848	805055.3
ca-CSphd	33272	33272	33272	33272	33272	33272
ca-dblp-2010	7727831	7728165.6		7727945.7		7728255.9
ca-dblp-2012 ca-Erdos992	1045386 32550	610454043.9 32550	1045387: 32550	510454117.7 32550	10454064 32550	10454171.3 32550
ca-GrQc	32350 139705	32550 139716.1	32550 139696	32550 139696	52550 139694	52550 139695.2
ca-HepPh	431155	431360.8	430525	430895.3	430518	430899.3
ca-MathSciNet	8914783	8914869.1	8912834	8912925.1	8912824	8912960.7
ia-email-EU	57326	57326	57326	57326	57326	57326
ia-email-univ ia-enron-large	38443 810460	38443 810644.5	38443 809816	38443 809929.5	38443 809620	38443 809822.7
ia-fb-messages	37016	37016	37016	37016	37016	37016
ia-reality	5880	5880	5880	5880	5880	5880
ia-wiki-Talk	1108805	1108821.5	1108780	1108790	1108764	1108773.1
rec-amazon	3037585 3504816	3038484.1 3504920.7	2995257 3504620	2995365 3504701.5	2995015 3504644	2995183.3 3504777
sc-nasasrb sc-shipsec1	7878463	7879438	7876944	7877538.9	7875579	7876523.5
soc-brightkite	1368681	1368712.7	1368704	1368716.2	1368691	1368702.7
soc-delicious	5711658	5711847.3	5712341	5712915	5711358	5711713.5
soc-douban	608796	608796	608796	608796	608796	608796
soc-epinions soc-gowalla	626096 5450207	626212.8 5500865.5	626072 5449525	626083.5 5490125.3	626066 5449285	626075.7 5454981.6
soc-slashdot	1433267	1433964.6	1433231	1433273	1433158	1433201.6
soc-twitter-follows	161186	161186	161186	161186	161186	161186
socfb-Berkeley13	1173323	1173465.9	1173269	1173329.2	1173277	1173342.5
socfb-CMU	340230	340258.8	340211	340224.1	340209	340213.4
socfb-Duke14 socfb-Indiana	525195 1599408	525238.6 1599575.9	525160 1599187	525203.7 1599269.8	525152 1599150	525169.7 1599232.6
socfb-MIT	318401	318424.6	318387	318394.6	318385	318389.4
socfb-OR	2439214	2439458.3	2439248	2439376.3	2439133	2439303.4
socfb-Penn94	2129897	2130057.5	2129724	2129811.4	2129692	2129770.7
socfb-Stanford3	586778	586821.8	586744	586762	586742	586757.6
socfb-UCLA socfb-UConn	1034916 904141	1035031.9 904245.6	1034906 904005	1034940 904072.2	1034894 904002	1034924.5 904073.1
socfb-UCSB37	766490	766584.2	766325	766414.6	766323	766391.8
socfb-UIllinois	1640115	1640287.4	1639943	1640071.3	1639934	1640015.4
socfb-Wisconsin87	1258250	1258277	1258050	1258092.4	1257975	1258031.3
tech-internet-as	360079	360080.8	360076	360076.1	360076 1085103	360076 1085103
tech-p2p-gnutella tech-RL-caida	1085111 4861135	1085119.6 4861518.7	1085103 4862181	1085103.4 4862773.2	4860898	4861210.6
tech-routers-rf	52117	52122.7	52114	52114	52114	52114
tech-WHOIS	147563	147571.8	147559	147560	147559	147559.3
web-arabic-2005	7679872	7680135.9	7678909	7679262.2	7678576	7679167.6
web-BerkStan web-edu	333010 90150	333076 90172.3	332839 90114	332866.7 90115.9	332827 90108	332841 90114
web-google	90150 31942	31942	31942	31942	90108 31942	31942
web-indochina-2004	470043	470201.1	469912	469955	469872	469963
web-sk-2005	3655175	3655344.3	3654832	3655141.9	3654734	3655057.7
web-spam	150343	150358.3	150342	150350.7	150341	150342.6
web-webbase-2001 BEST	165785 30	165825.7 24	165706 27	165709.2 27	165701 67	165704.4 61
DENI	30	24	21	<i>41</i>	U/	VI

objective value and the average objective value for BHOSLIB instances. This indicates the stability of the MAE-HTS algorithm to some extent. However, we observe that the combination ($\alpha = 1, \beta = 1$) leads to better values for the 5 largest instances from Facebook networks. Thus, the parameters of

our algorithm are set as the initial value of *Iter_Cycle* and *Max_Iter*.

V. CONCLUSION

In this paper, we presented our MAE-HTS algorithm for solving the weighted vertex cover problem. By using multiple hash functions, MAE-HTS records the previously visited solutions effectively and thereby avoid cycling with high probability and intensifies the search within the search area of interest locally. By combining with a hybrid evolutionary algorithm, the diversification capability and the robustness of the MAE-HTS algorithm is enhanced significantly. The performance of MAE-HTS is evaluated and compared with the current best performing algorithms for the MWVCP on a set of public benchmark instances as well as additional large scale instances representing real-world graphs. The experimental results demonstrate the efficacy of the proposed MWVCP in terms of both solution quality and computational efficiency. Interestingly, we demonstrated that each component of the algorithm made a notable contribution to the success of our hybrid algorithm. However, we notice that NuMWVC has also achieved better results on some instances of ALPI. The reason might be that our MAE-HTS is realized by a two individual based evolutionary algorithm, a simple crossover operator and a greedy local search procedure, which has strong capability in local search but its capability of global search can be further enhanced. Thus, we can improve our HTS procedure by introducing random strategies or combining our HTS with other intelligence algorithms, such as monarch butterfly optimization (MBO), earthworm optimization algorithm (EWA), elephant herding optimization (EHO) and moth search (MS) algorithm, to enhance the global search capability of our algorithm in the future.

APPENDIX.

Table 10 presents the comparison results between HTS, MAE and MAE-HTS on 72 ALPI instances with 10 independent runs under the time limit of 1000 seconds for each run.

REFERENCES

- T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation. Boca Raton, FL, USA: CRC Press, 1997.
- [2] S. R. Balachandar and K. Kannan, "A meta-heuristic algorithm for vertex covering problem based on gravity," *Int. J. Math. Stat. Sci.*, vol. 1, no. 3, pp. 130–136, 2009.
- [3] S. Bouamama, C. Blum, and A. Boukerram, "A population-based iterated greedy algorithm for the minimum weight vertex cover problem," *Appl. Soft Comput.*, vol. 12, no. 6, pp. 1632–1639, Jun. 2012.
- [4] J. Chen, I. A. Kanj, and G. Xia, "Improved parameterized upper bounds for vertex cover," in *Proc. Int. Conf. Math. Found. Comput. Sci.*, 2006, pp. 238–249.
- [5] J. Ding, Z. Lü, C. M. Li, L. Shen, L. Xu, and F. Glover, "A two-individual based evolutionary algorithm for the flexible job shop scheduling problem," in *Proc. AAAI Conf. Artif. Intell.*, vol. 33, 2019, pp. 2262–2271.
- [6] A. E. Eiben and J. E. Smith, *Introduction to Evolutionary Computing*. Berlin, Germany: Springer, 2003.
- [7] T. A. Feo and M. G. C. Resende, "Greedy randomized adaptive search procedures," J. Global Optim., vol. 6, no. 2, pp. 109–133, Mar. 1995.
- [8] F. Glover, "Tabu search—Part I," ORSA J. Comput., vol. 1, no. 3, pp. 190–206, 1989.

- [9] F. Glover, "Tabu search—Part II," ORSA J. Comput., vol. 2, no. 1, pp. 4–32, Feb. 1990.
- [10] F. Glover and M. Laguna, "Tabu search," in *Handbook of Combinatorial Optimization*. Boston, MA, USA: Springer, 1998, pp. 2093–2229.
- [11] G. Gong, Q. Deng, R. Chiong, X. Gong, and H. Huang, "An effective memetic algorithm for multi-objective job-shop scheduling," *Knowl.-Based Syst.*, vol. 182, Oct. 2019, Art. no. 104840.
- [12] J. K. Hao, "Memetic algorithms in discrete optimization," in *Handbook of Memetic Algorithms*. Berlin, Germany: Springer, 2012, pp. 73–94.
- [13] J. H. Holland, "Adaptation in natural and artificial systems," *Quart. Rev. Biol.*, vol. 6, no. 2, pp. 126–137, 1975.
- [14] R. Jovanovic and M. Tuba, "An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem," *Appl. Soft Comput.*, vol. 11, no. 8, pp. 5360–5366, Dec. 2011.
- [15] R. M. Karp, "Reducibility among combinatorial problems," in *Complexity of Computer Computations*. Boston, MA, USA: Springer, 1972, pp. 85–103.
- [16] N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: Model, taxonomy, and design issues," *IEEE Trans. Evol. Comput.*, vol. 9, no. 5, pp. 474–488, Oct. 2005.
- [17] C. M. Li, H. Jiang, and R. C. Xu, "Incremental MaxSAT reasoning to reduce branches in a branch-and-bound algorithm for MaxClique," in *Proc. Int. Conf. Learn. Intell. Optim.* Cham, Switzerland: Springer, 2015, pp. 268–274.
- [18] R. Li, S. Hu, S. Cai, J. Gao, and M. Yin, "NuMWVC: A novel local search for minimum weighted vertex cover problem," *J. Oper. Res. Soc.*, vol. 71, pp. 1498–1509, Sep. 2020.
- [19] R. Li, S. Hu, H. Zhang, and M. Yin, "An efficient local search framework for the minimum weighted vertex cover problem," *Inf. Sci.*, vol. 372, pp. 428–445, Dec. 2016.
- [20] Z. Lü, F. Glover, and J.-K. Hao, "A hybrid Metaheuristic approach to solving the UBQP problem," *Eur. J. Oper. Res.*, vol. 207, no. 3, pp. 1254–1262, Dec. 2010.
- [21] Z. Lü and J.-K. Hao, "A memetic algorithm for graph coloring," *Eur. J. Oper. Res.*, vol. 203, no. 1, pp. 241–250, May 2010.
- [22] L. Moalic and A. Gondran, "Variations on memetic algorithms for graph coloring problems," *J. Heuristics*, vol. 24, no. 1, pp. 1–24, Feb. 2018.
- [23] P. Moscato and C. Cotta, "A gentle introduction to memetic algorithms," in *Handbook of Metaheuristics*. Boston, MA, USA: Springer, 2003, pp. 105–144.
- [24] G. L. Nemhauser and L. E. Trotter, "Vertex packings: Structural properties and algorithms," *Math. Program.*, vol. 8, no. 1, pp. 232–248, Dec. 1975.
- [25] R. Niedermeier and P. Rossmanith, "On efficient fixed-parameter algorithms for weighted vertex cover," *J. Algorithms*, vol. 47, no. 2, pp. 63–77, Jul. 2003.
- [26] P. Pandey and A. P. Punnen, "The generalized vertex cover problem and some variations," *Discrete Optim.*, vol. 30, pp. 121–143, Nov. 2018.
- [27] M. G. Resende and C. C. Ribeiro, "Greedy randomized adaptive search procedures: Advances, hybridizations, and applications," in *Handbook of Metaheuristics*. Boston, MA, USA: Springer, 2010, pp. 283–319.
- [28] R. Rossi and N. Ahmed, "The network data repository with interactive graph analytics and visualization," in *Proc. 29th AAAI Conf. Artif. Intell.*, 2015, pp. 31–49.
- [29] W.-T. Shiue, "Novel state minimization and state assignment in finite state machine design for low-power portable devices," *Integr. VLSI J.*, vol. 38, no. 4, pp. 549–570, Apr. 2005.
- [30] S. J. Shyu, P.-Y. Yin, and B. M. T. Lin, "An ant colony optimization algorithm for the minimum weight vertex cover problem," *Ann. Oper. Res.*, vol. 131, nos. 1–4, pp. 283–304, Oct. 2004.
- [31] A. Singh and A. K. Gupta, "A hybrid heuristic for the minimum weight vertex cover problem," *Asia–Pacific J. Oper. Res.*, vol. 23, no. 2, pp. 273–285, Jun. 2006.
- [32] W. Sun, J.-K. Hao, W. Wang, and Q. Wu, "Memetic search for the equitable coloring problem," *Knowl.-Based Syst.*, vol. 188, Jan. 2020, Art. no. 105000.
- [33] C. Tang, A. Li, and X. Li, "Asymmetric game: A silver bullet to weighted vertex cover of networks," *IEEE Trans. Cybern.*, vol. 48, no. 10, pp. 2994–3005, Oct. 2018.
- [34] L. Wang, W. Du, Z. Zhang, and X. Zhang, "A ptas for minimum weighted connected vertex cover P₃ problem in 3-dimensional wireless sensor networks," *J. Combinat. Optim.*, vol. 33, no. 1, pp. 106–122. 2017.

IEEEAccess

- [35] L. Wang, C.-M. Li, J. Zhou, B. Jin, and M. Yin, "An exact algorithm for minimum weight vertex cover problem in large graphs," 2019, arXiv:1903.05948. [Online]. Available: http://arxiv.org/abs/1903.05948
- [36] H. Xu, T. S. Kumar, and S. Koenig, "A new solver for the minimum weighted vertex cover problem," in *Proc. Int. Conf. AI OR Techn. Constraint Program. Combinat. Optim. Problem.* Cham, Switzerland: Springer, 2016, pp. 392–405.
- [37] X. Xu and J. Ma, "An efficient simulated annealing algorithm for the minimum vertex cover problem," *Neurocomputing*, vol. 69, nos. 7–9, pp. 913–916, Mar. 2006.
- [38] T. Zhou, Z. Lü, Y. Wang, J. Ding, and B. Peng, "Multi-start iterated tabu search for the minimum weight vertex cover problem," *J. Combinat. Optim.*, vol. 32, no. 2, pp. 368–384, Aug. 2016.

ZHIPENG LÜ received the B.S. degree in applied mathematics from Jilin University, China, in 2001, and the Ph.D. degree in computer software and theory from the Huazhong University of Science and Technology, China, in 2007. From 2007 to 2011, he was a Postdoctoral Research Fellow with LERIA, Department of Computer Science, University of Angers, France. He is currently a Professor with the School of Computer Science and Technology, Huazhong University of Science

and Technology, and the Director of the Institute of Artificial Intelligence and Optimization. His research interests include artificial intelligence, computational intelligence, operations research, and adaptive metaheuristics for solving large scale real-world and theoretical combinatorial optimization and constrained satisfaction problems.

ABRAHAM P. PUNNEN received the Ph.D. degree in operations research from IIT Kanpur, in 1990. Prior to joining SFU, he was a Professor with the University of New Brunswick, Saint John, Canada. He held visiting appointments at University Colorado, Denver, USA, University of Kentucky, Lexington, USA, and Universite Catholique de Louvain, Belgium, under the prestigious CORE Fellowship. He is currently a Professor with the Department of Mathematics, Simon

Fraser University, Surrey, BC, Canada, and the Founding Director of the Center for Operations Research and Decision Sciences, SFU. He published over 100 articles in major research journals and books, and is well known for the book he edited jointly with G. Gutin on the traveling salesman problem. He holds various research grants from industry and government. He has supervised many graduate students and postdoctoral fellows. He is also a member of the NSERC Grant Evaluation Group in Civil, Environmental, and Industrial Engineering.

YANG WANG was born in Hubei, China, in 1994. He received the B.S. degree in computer science from the Huazhong University of Science and Technology, Wuhan, China, in 2015, where he is currently pursuing the Ph.D. degree in computer software and theory. His research interests include combinatorial optimization, global optimization, and heuristic search algorithms.

. . .