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ABSTRACT Task deployment has become a research hotspot for load balancing in joint ‘‘cloud-edge’’
datacenter. In view of the problem that most of the hosts are overloaded in the current joint ‘‘cloud-edge’’
datacenter, which may cause unbalanced load in the center, existing research mainly pay attention to the
problem of unilateral load balancing of cloud computing center or edge computing center. In order to realize
efficient deployment of ‘‘cloud-edge’’ tasks and overall load balancing, on the basis of the deployment mode
of joint ‘‘cloud-edge’’, this paper proposes a resource management and task deployment strategy JCETD
(Joint Cloud-Edge TaskDeployment) based on pruning algorithm and deep reinforcement learning. Themain
idea consists of two parts: firstly, the set of ‘‘cloud-edge’’ hosts is pruned according to the attribute value of
the physical host. Then, there will be a non-dominated set of joint hosts which reduces the computational
complexity of the whole algorithm and improve the computational efficiency of the system. Secondly,
the problem of task deployment is simulated as a deep reinforcement learning process under the ‘‘cloud-
edge’’ model. Through the continuous exploration and utilization of the system environment, the tasks
are reasonably and efficiently deployed in the cloud computing center and edge computing center. Finally,
the ‘‘cloud-edge’’ system can achieve an efficient computing performance and overall load balancing. The
experimental results show that the proposed algorithm significantly reduces the total completion time and
average response time compared with the existing research, which effectively optimizes the service ability
and realizes the load balancing of the joint ‘‘cloud-edge’’ system.

INDEX TERMS Task deployment, joint ‘‘cloud-edge’’, pruning, deep reinforcement learning, load balanc-
ing.

I. INTRODUCTION
Joint ‘‘cloud-edge’’ computing is a research direction with
particular prospects after distributed computing, cloud com-
puting and edge computing [1], It is a hot topic in current
research. Joint ‘‘cloud-edge’’ computing is a new architecture
model which is able to supplement the computing, storage
and other resources of the cloud computing center in real
time when the computing, storage, and bandwidth resources
of the edge computing center are insufficient, and to meet the
resource requirements of edge applications. A large number
of physical hosts are deployed in the resource pool of the
joint ‘‘cloud-edge’’ datacenter, and the remaining resource of
physical hosts varies from time to time. When the amount of
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task request resources submitted by users is greater than the
remaining resources of the current physical host or the current
physical host resources are occupied and not completely
released, the task deployment efficiency will be reduced and
the deployment will fail. When the amounts of task request
resources approach the remaining resource of the currently
deployed host, the current task will be processed slowly.
At the same time, it will also make subsequent tasks unable
to be deployed effectively, and make the load of the ‘‘cloud-
edge’’ datacenter unbalanced. Therefore, it fails to provide
users with real-time calculation results and fails to show the
advantages of joint ‘‘cloud-edge’’ computing.

At present, the task deployment problem of load bal-
ancing for the joint ‘‘cloud-edge’’ datacenter has become
a hot research and famous topic. In the environment of
joint ‘‘cloud-edge’’ mode, it is necessary to design a task
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deployment model with the efficient computing ability and
load balancing efficiency. The key to achieve the above
goals is to place the requested task on a reasonable resource.
By placing the requested task on the optimal resource at the
user level, the average response time of the task could be
reduced, and the calculated results could be returned to users
in a short time, which improves the service quality to users.
At the system level, it not only increases the throughput of the
joint ‘‘cloud-edge’’ system, but also realizes the long-term
load balancing of the joint cloud-edge system. However,
the current research on the task deployment strategy of the
joint cloud-edge system is not very complete, and there is no
guarantee that the task will be placed on the optimal resource
all the time.

In order to achieve efficient computing ability and load
balancing in the joint ‘‘cloud-edge’’ system environment, this
paper proposes a resource management and task deployment
strategy based on pruning algorithm [2] and deep reinforce-
ment learning. First of all, the physical host set of the current
cloud computing center and the edge computing center are
combined to form a joint host set. The unpromising physical
hosts are pruned through the idea of pruning algorithm to
obtain a non-dominated host set, which is taken as the initial
state of the deep reinforcement learning algorithm. Then,
the task deployment process is simulated as a process of the
deep reinforcement learning algorithm. Through continuous
exploration of the environment, the efficient deployment of
tasks and load balancing of joint ‘‘cloud-edge’’ are finally
realized.

This paper aims to achieve efficient computing perfor-
mance and load balancing of joint ‘‘cloud-edge’’ computing,
and provide users with a better service ability. The crux
of the matter to achieve the above goals is to efficiently
allocate the requested tasks to the physical hosts of the
‘‘cloud-edge’’ computing for calculations, so that the joint
‘‘cloud-edge’’ datacenter can have a stronger computing abil-
ity. Thus, the best quality system service performance can
be provided to users, and the load balancing of joint ‘‘cloud-
edge’’ system is realized.

The main contributions of this paper are as follows:

• On the basis of the joint ‘‘cloud-edge’’ architecture,
the deep reinforcement learning algorithm is used to
realize the task efficient deployment and long-term load
balancing of the ‘‘cloud-edge’’ system.

• The idea of pruning algorithm is seamlessly connected
to the process of the deep reinforcement learning, which
not only prunes the unreasonable physical host, but also
reduces the state space of deep reinforcement learning
algorithm.

• Through the DDPG algorithm of deep reinforcement
learning, tasks can be continuously and efficiently
deployed in the continuous action space.

The rest of this paper is organized as follows. In Section II,
the paper briefly introduces the related work of task deploy-
ment methods in the current edge computing and cloud

computing environments. In Section III, the premise of the
problem is briefly described, and then the question is formal-
ized. In Section IV, the system architecture of task deploy-
ment in the joint ‘‘cloud-edge’’ computing environment is
designed. Then, we introduce the design and implementation
process of the algorithm in detail. In Section V, the experi-
ment results are introduced in detail, which proves that the
proposed algorithm is efficient. We conclude the paper in
Section VI.

II. RELATED WORKS
Task deployment has become a hot topic in the research
of current popular computing paradigms. Through effective
management of current resources and reasonable deployment
of computational tasks, efficient computing performance and
load balancing of the system are achieved. In current research,
popular task deployment problems can be roughly divided
into three categories according to different implementation
methods: collaborative computing, algorithms based on rein-
forcement learning, and algorithms based on load balancing.

Collaborative computing [3]–[5] is mainly to solve the
current computing system when the computing ability and
scale cannot meet the current needs, and it needs to be jointly
completed by other partners. Literature [6] Sahni Y et al.
proposed a task allocation model based on data-aware to
jointly schedule tasks and network flows in collaborative edge
computing. By mathematically modeling of joint problems,
the total completion time of the application is minimized.
Literature [7] Schafer D et al. put forward a method of edge
and cloud collaborative hybrid scheduling, the correspond-
ing perceptual scheduler will extract the characteristics of
the task, and then decide whether the task is executed in
the cloud or at the edge. Literature [8] Li et al. proposed
a two-level scheduling optimization scheme in the ‘‘edge-
cloud’’ environment, the first level scheduling deploys most
of the tasks in the edge computing center, the second level
scheduling is deployed in the cloud and edge according to
a certain strategy under the condition of insufficient edge
center computing resources, this scheme has better perfor-
mance in minimizing delay and completion time, and reduc-
ing total cost. Literature [9] Xie et al. proposed a workflow
scheduling strategyDNCPSO in the cloud-edge environment,
which reduced themaximum completion time and scheduling
cost to some extent, and obtained a compromise result. The
above-mentioned studies all start from the perspective of
the task terminal or the physical host alone, which means
modeling the problem as a time delay or energy consumption
minimization problem. However, it does not consider the
impact of task scheduling on the overall load balance of the
system.

Reinforcement learning is an important branch of machine
learning, more importantly, it does not learn from the training
set with labels. In contrast, it learns from the feedback infor-
mation of the environment, which is very important for task
scheduling problems, because high-quality labeled data can-
not be generated. Literature [10] Orhean et al. used reinforce-
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ment learning to solve the problem of workflow scheduling
of heterogeneous distributed resources, reducing task execu-
tion time to a certain extent. Deep reinforcement learning is
the integration of reinforcement learning and deep learning,
which can solve more complex scientific problems. Litera-
ture [11] Wang et al. used DQN model to solve the problem
of workflow scheduling with the goal of minimizing the com-
pletion time and cost. Literature [12] Dong et al. proposed
a task scheduling algorithm based on Deep Reinforcement
Learning Architecture (RLTS), which dynamically scheduled
taskswith priority relationship to the cloud server tominimize
the task execution time. Literature [13] Xiong et al. proposed
a resource allocation strategy for the edge computing system
of the Internet of Things, which formalized the resource
allocation problem as a Markov decision process, and used
deep reinforcement learning to solve the problem, the goal
is to minimize the long-term weighted sum of the average
task completion time and the average number of requested
resources. However, this strategy only considers the cost of
the system, and does not consider the load balancing of the
system too much. Literature [14] Cheng et al. proposed a
novel resource allocation and task scheduling system based
on deep reinforcement learning (DRL), the two-stage RP-TS
learns the ever-changing environment (user request modes
and realistic electricity prices) to automatically generate the
best long-term decisions, and minimize the energy costs of
large CSPs (Cloud Service Providers).

Load balancing is an important way to achieve efficient
task deployment. Literature [15] Tham C et al. proposed a
load balancing scheme for distributed computing at the edge
of the network, with the objective of minimizing the overall
processing time of the application while still satisfying the
wireless channel capacity and link contention constraints, and
modeling the load balancing problem between edge nodes as
an optimization problem, then the gradient descent algorithm
is used to solve the problem. Literature [16] Jyoti et al.
proposed a novel dynamic resource allocation method based
on load balancing and service broker, by predicting the exe-
cution environment of tasks, tasks are deployed to a virtual
machine according to their priority, and load balancing is per-
formed in the virtualmachine, which increases the throughput
of the system and reduces the response time of the users.
Li et al. in [17] proposed a load balancing strategy for task
allocation in edge computing based on intermediate nodes
to solve the problem of load balancing between different
edge nodes, it uses the intermediate nodes to monitor the
global information, gets the attributes of the edge nodes
in real time, and distributes the tasks to the nodes with
the minimum load according to the task allocation model.
Experiments show that this method could balance the load
between edge nodes and reduce the completion time of tasks.
Literature [18] Ghasemi et al. proposed a multi-objective vir-
tual machine replacement algorithm based on reinforcement
learning (RLVMrB) to achieve load rebalancing by obtaining
the virtual machine-to-physical host mapping matrix avail-
able in the datacenter, it succeeds to achieve load balancing

between and within physical hosts. Literature [19] Tong et al.
proposed a dynamic scheduling algorithmDQTS, which aims
to balance the load in the cloud computing environment.
Through the combination of Q learning and deep neural
network to form a deep Q learning method, it has better
scalability and can perform load balancing more effectively
than other algorithms.

On the basis of above research, this paper integrates the
joint ‘‘cloud-edge’’ model with deep reinforcement learning
effectively, explores the environment continuously under the
deep reinforcement learning model, and deploy task sets
in the cloud computing center and edge computing center
respectively, so that tasks can be processed efficiently and
the average response time is minimized. Moreover, better
computing ability and load balancing of the joint ‘‘cloud-
edge’’ datacenter can be achieved.

III. THE PROPOSED PROBLEM AND ITS FORMALIZATION
A. PROBLEM STATEMENT
In the environment of unilateral computing (cloud com-
puting or edge computing), there are a large number of
compute-intensive tasks in the system that need to be pro-
cessed. Generally, the system will randomly deploy compu-
tational tasks on the hosts in the unilateral datacenter (cloud
or edge). When the amount of resources requested by users in
the system is greater than the remaining resources of physical
host of the current unilateral datacenter, it may result in the
decline of the computing and service capacity of the datacen-
ter. Besides, it is impossible to return the calculation results to
the current user in real time, and the datacenter may be unable
to reach the state of load balancing at the current moment.
In addition, when the computing resources of the unilateral
datacenter are completely occupied and not released in a
timely manner, the task is placed in the datacenter, whichmay
lead to the loss of users’ data and fail to provide effective com-
puting services for users. Obviously, in the face of large-scale
computational tasks, different task deployment mode and
resource allocation schemes will lead to different computa-
tional efficiency and state of system load balancing. In the
case of limited computing resources in unilateral data centers,
the optimal deployment mode and strategy is undoubtedly
an important way to achieve high-quality computing service
capabilities and load balancing of the system. Therefore,
in view of the above shortcomings, the use of the joint ‘‘cloud-
edge’’ mode, the design of a high-quality task deployment
model and strategy are necessary conditions to achieve the
above goals, as shown in Figure 1.

B. FORMALIZATION OF THE PROBLEM
In the joint ‘‘cloud-edge’’ computing model, the task deploy-
ment problem can be formalized as follows: in a 1t time
period, the system collects n task requests, which are indepen-
dent of each other and have no dependencies. They need to be
deployed to a joint datacenter composed of edge computing
center and cloud computing center. There are h tasks to be
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FIGURE 1. A joint architecture for ‘‘cloud-edge’’ datacenter.

deployed in the edge center, and n-h tasks to be deployed
in the cloud computing center. Assuming that in the same
network environment, there are m available hosts in the edge
computing center and q available hosts in the cloud comput-
ing center, which are heterogeneous and dynamic, and use
the space sharing allocation strategy. The problem can be
described as follows: the edge computing center and the cloud
computing center are combined to form a joint datacenter,
and the high-quality deployment strategy enables the task
set within each 1t time to quickly complete the calcula-
tion and response. Through high-quality deployment mode
and strategy, the problem of joint ‘‘cloud-edge’’ efficient
task deployment and load balancing has been solved from a
long-term perspective.

Assume that each computational task is represented by
TKn(Bn,Dn,Tn), the deployment is completed in the joint
‘‘cloud-edge’’ datacenter according to certain strategy.Where
Bn is the size of the input data,Dn is the number of CPU cycles
required to complete the calculation task, Bn and Dn are pos-
itively correlated, Tn is the maximum tolerable delay of task
TKn which means the total time to complete the calculation
should not exceed Tn. We regard the task average response
time as an important constraint of the system optimization
problem, and it is also the key to ensuring the QoS experience
of users. The average response time is defined as follows:

ART =
1
|T |
·

∑
Pk

∑
ϕ
j
i

PTk
(
ϕ
j
i

)
(1)

where ϕji represents the current task, i represents the task
type, j represents the task arrival sequence number, and Pk
represents the k-th processing unit. PTk (ϕ

j
i ) represents the

processing time of task ϕji on Pk including the waiting and
processing time after the task itself arrives.

In order to measure the degree of the ‘‘cloud-edge’’ data-
center’s load balancing, the degree of joint load balancing is
used as a metric. Load balancing degree refers to the degree
of balancing of load distribution on each processing node
of parallel system, which is an important factor affecting
parallel efficiency.When the entire system has a large number
of tasks, the load on each node may be unbalanced, which
will reduce the utilization of the entire system. In this paper,
the variance of residual load rate of host resource is used to
represent the load balancing degree, where the residual load

rate of host i can be expressed as follows:

RLRi =
Ri
total

(2)

Ri is the remaining resources of the current physical host
i, and total is the total remaining resources of ‘‘cloud-edge’’
datacenter, where Ri and total can be expressed as follows:

Ri = αRic + βRim (3)

total =
n∑
i=1

Ri (4)

α + β = 1 (5)

Ric is the amount of remaining resources of the host CPU;
Rim is the amount of remaining resources of the host memory;
α is the weight of the CPU, and β is the weight of thememory.

The residual load rate of each node can be calculated
through formula (2)(3)(4)(5), and then the standard deviation
formula can be used to calculate the load balancing degree of
joint ‘‘cloud-edge’’ datacenter, as shown below:

LBD =

√√√√√ 1
M

M∑
i=1

(
RLRi −

1
M

M∑
i=1

RLRi

)2

(6)

From the above optimization goals, the ultimate goal of this
paper is to achieve load balancing in the joint ‘‘cloud-edge’’
datacenter based on minimizing the average response time.
This paper is a two-goal optimization problem, which is load
balancing degree and average response time, and they are all
as small as possible. When the minimum value is reached,
it is the optimal solution of this paper. Therefore, our overall
optimization goal can be expressed as follows:

V = µ · LBD(RLR)+ λ · ART (ϕ) (7)

In summary, the problem of this paper can be formalized
as follows:

min
A
µ ·

√√√√√ 1
M

M∑
i=1

(
RLRi −

1
M

M∑
i=1

RLRi

)2

+ λ ·
1
|T |
·

∑
Pk

∑
ϕ
j
i

PTk
(
ϕ
j
i

)
s.t. C1 λ+ µ = 1

C2
Dn
fn
+
Sn
v
≤ Tn

C3
I∑
i=1

(αRic + βRim) ≤ Ttotal ∀i ∈ I . (8)

In the above optimization goals, A = {e1, e2, e3, . . . ,
ci, . . . , cn} is the deployment plan within the current time
1t , e indicates that the task is deployed on the host of edge
computing center, and c indicates that the task is deployed
on the host of cloud computing center. Constraint C1 is the
sum of the weight of the task average response time and load
balancing degree to 1. Constraint C2 is that the transmission
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time and the completion time of the computing node should
not exceed the completion time set by the task. Constraint
C3 is that the remaining resources of all physical hosts should
be less than the total resources of physical host of current
cloud computing center and edge computing center. Since
the above problem is not a convex optimization problem,
but an NP-hard problem, therefore, this paper uses a deep
reinforcement learning algorithm to solve the problem.

In order to improve the deployment efficiency and reduce
the complexity of the state space, this paper uses the idea
of pruning algorithm to prune the current set of joint
‘‘cloud-edge’’ host. It mainly uses the dominance relation-
ship between physical host attributes to pruning unpromising
physical hosts, and obtain a non-dominated physical host
set. This achieves the purpose of improving the efficiency of
the deployment task of the ‘‘cloud-edge’’ datacenter, reduc-
ing the state space of the system, and thereby reducing the
complexity of the algorithm. The dominance relationship is
defined as follows:

The attribute value set of the physical host Pi can be
expressed as:

V (Pi) = (v1 (Pi) , v2 (Pi) , · · · , vr (Pi)) (9)

where v1(Pi) is the first attribute of physical host i, vr (Pi) is
the r-th attribute of physical host i. Different attributes may
have different optimization directions. To maximize the value
of the attribute, we multiply the value of attributes by −1.
In this way, our optimization goal can be expressed as:

min
Pi
(v1 (Pi) , v2 (Pi) , · · · , vr (Pi)) (10)

Suppose there are two physical hosts Pi and P′i, their
attribute values are represented by formula (9) and (11),
respectively. If formula (12) (13) can be satisfied, we think
that Pi dominates P′i.

V
(
P′i
)
=
(
v1
(
P′i
)
, v2

(
P′i
)
, · · · , vr

(
P′i
))

(11)

∀r ∈ {1, 2, · · · , r}, vr (Pi) ≤ vr
(
P′i
)

(12)

∃r ∈ {1, 2, · · · , r}, vr (Pi) < vr
(
P′i
)

(13)

For simplicity, we use Pi � P′i to represent that Pi dom-
inates P′i. Once P

′
i was dominated, we can infer that the P′i

is not the optimal solution. The dominated solution is pruned
through the pruning algorithm, and then the remaining hosts
form a set of non-dominated solution, which can effectively
improve the deployment efficiency of the joint ‘‘cloud-edge’’
datacenter and reduce the state space of the deep reinforce-
ment learning algorithm to a certain extent.

The first step of modeling the system environment using
the deep reinforcement learning algorithm is to define the
state space of the system. When the agent perceives the
environment, the system state is the state of the remaining
resources of ‘‘cloud-edge’’ physical host and the current task.
The state space is defined as:

X = {x1, x2, x3, · · · , xn} (14)

where xi is the state of task i, that is, xi is:

xi = {Bi,Di,Ti,R1c,R1m, · · · ,Rkc,Rkm} (15)

where Bi,Di,Ti are the state of task i, and Rkc,Rkm are
the resources remaining state of the CPU and memory of
host k .
This paper mainly deploys the tasks collected in1t time to

the set of joint ‘‘cloud-edge’’ host processed by the pruning
operation, so that each task can be deployed quickly. There-
fore, the system action corresponds to the edge host or cloud
host for each task. The action space is as follows:

Y =
{
yedge1 , yedge2 , · · · , ycloudk−1 , y

cloud
k

}
(16)

System reward refers to the feedback value given by the
environment after making a certain action in a certain system
state, indicating the degree of good or bad taking a certain
action in that state. In this paper, we use the degree of load
balancing of the system after each deployment action as a
reward. The smaller the load balancing degree, the more
balanced the load in the ‘‘cloud-edge’’ datacenter. A system
reward Syreward is expressed as follows:

Syreward =

{
1, if lb(xt , yt ) ≤ 0;
−1 if lb(xt , yt ) > 0.

(17)

lb (xt , yt) = LBD (xt+1 | xt , yt)− LBD (xt) (18)

where LBD is the cost function of load balancing degree, xt
is the state of the system at time t , and yt is the action of the
system.
As mentioned above, in order to achieve the above opti-

mization goals, the proposed problem is formalized as a
process of deep reinforcement learning. Through the deep
reinforcement learning algorithm, the best computing nodes
are found for the tasks in the set for processing to maximize
the joint load balancing of the edge computing center and the
cloud computing center. The detailed algorithm process will
be given below.

IV. A ‘‘CLOUD-EDGE’’ ALGORITHM FOR EFFICIENT TASK
DEPLOYMENT
A. SYSTEM ARCHITECTURE DESIGN
Figure 2 describes the system architecture in the joint ‘‘cloud-
edge’’ computing environment. It shows the interaction
between the JCETD proposed and other entities, and also
reflects the important role that the algorithm plays in the
entire architecture. First, the monitor gets information about
the task set and ‘‘cloud-edge’’ physical hosts, and combines
the physical hosts in the cloud computing center and the
edge computing center into a set, then the physical host set
is pre-processed by pruning sub-module of JCETD. After
the pre-processing is completed, the current task set and the
pre-processed host set are sent to the sub-module DDPG of
JCETD, then the deployment strategy is generated using the
algorithm in this paper. Finally, the deployment strategy is
applied to the deployment controller, and the set of tasks
received in1t time is deployed to the corresponding physical
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FIGURE 2. The view of JCETD’s architecture.

FIGURE 3. The process of JCETD task deployment.

host of ‘‘cloud-edge’’ datacenter through the deployment
strategy in this paper.

B. MAIN IDEA OF JCETD
The JCETD proposed in this paper is a task deployment
strategy for load balancing of joint ‘‘cloud-edge’’ datacenter
based on the idea of pruning algorithm and the deep reinforce-
ment learning algorithm,which is used to deploy the collected
tasks on the physical hosts of ‘‘cloud-edge’’. Firstly, the phys-
ical hosts of cloud computing center and edge computing
center are formed into a set. Several attributes of physical host
are selected, and the physical hosts in the set is compared in
pairs by using the idea of pruning algorithm, so as to obtain
a non-dominated set of physical hosts. Secondly, the set of
physical hosts obtained by the pruning operation is used as
the initial state space of the deep reinforcement learning algo-
rithm to simulate the process of deep reinforcement learning,
and the tasks collected by each timestamp are deployed on
the host in the joint ‘‘cloud-edge’’ datacenter. Details of the
implementation are given below.

C. IMPLEMENTATION OF JCETD
Step 1: Monitor the user’s task request and initialize the
parameters of the algorithm. The initial stage of the algorithm
will collect the task in 1t time and form a set, which will be

used as the object of this problem, and the core algorithm will
be executed once in each 1t time, and the task set collected
during the execution of the algorithm will be used as the next
problem to be processed. As mentioned earlier, the number of
tasks in the set, and the number of hosts in the edge computing
center and in the cloud computing center in a 1t time are
denoted as n, m, q, respectively.
Step2: Initialization of the set of physical hosts of ‘‘cloud-

edge’’ datacenter. It is known that the physical host set of
cloud computing center is PHC = {phc1, phc2, · · · , phcq},
and the physical host set of edge computing center is PHE =
{phe1, phe2, · · · , phcm}. Define an empty set TOTAL = {},
merge the set of physical hosts of the cloud computing center
and the edge computing center into a new host set and assign
it to the empty set TOTAL, that is, TOTAL = {PHC +PHE}.
The TOTAL set of hosts in the ‘‘cloud-edge’’ datacenter
serves as the initial set of the pruning algorithm.

Step 3: The calculation of attribute values of the physical
host. Take the set of TOTAL as the initial set of pruning
operations, i.e., TOTAL = {phc1, phc2, · · · , phcq, · · · , phe1,
phe2, · · · , phcm}, the size of the set is q+m. Then, we select
three attributes of the physical host as the basis of pruning
algorithm, which are the memory resources and the CPU
resources of remaining of the physical host, and the poste-
rior probability of physical host. The remaining resources of
memory and CPU are known, the posterior probability of
physical host is calculated according to Bayesian theorem.
Defines that a task to be deployed to a physical host for
processing as event A, and define event Bi as physical host
i to be selected for processing tasks. In a1t time, among the
task requests received by the system, the task with the largest
resource demand is selected, and the ratio of its resource
demand Rt to the current computing capacity Ri of the physi-
cal host is taken as the load proportion, in fact, the larger load
ratio of a physical host is, the less likely it could be selected
for processing tasks. So, the prior probability of a physical
host can be expressed as:

P (A | Bi) = 1−
Rt
Ri

(19)

And the ‘‘cloud-edge’’ datacenter has m+q physical hosts,
then

P (Bi) =
1

m+ q
(20)

Then, the posterior probability P(Bi|A) of each physical
host in ‘‘cloud-edge’’ datacenter can be obtained by bringing
formulas (19) and (20) into the Bayesian formula, as follow:

P (Bi | A) =
P (Bi)P (A | Bi)∑n′
i=1 P (Bi)P (A | Bi)

=
Ri − Rt

Ri(m+ q) ·
∑m+q

i=1

(
Ri−Rt
(m+q)Ri

) (21)

The attribute value of memory can be expressed as follows:

vm1 = α1M1 + α2M2 (22)
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where M1 represents the memory allocated to the physical
host, andM2 represents the utilization of memory, the weight
coefficients add up to 1.

α1 + α2 = 1 (23)

Similarly, the attribute value of CPU can be expressed as:

vc2 = β1C1 + β2C2 (24)

β1 + β2 = 1 (25)

The attribute value of the physical host is Vph =

(vm1 , v
c
2, v

p
3), where v

p
3 is equal to P(Bi|A).

Step4: The pruning operates of physical host set of the
‘‘cloud-edge’’ datacenter. Through the above steps, the phys-
ical host set of the ‘‘cloud-edge’’ datacenter and the attribute
values of physical host are obtained, and then the pruning
operation is performed. The set of current physical hosts and
the attribute value set of physical hosts are known. First, set
up an empty set PHopt = {}, and then we use the attribute
values of physical host to compare the physical hosts in the
candidate set in pairs, and thus, we can obtain the optimal
physical hosts and remove the dominated physical hosts.
However, the selection of the first candidate element in the
enumeration process will affect the efficiency of pruning,
so we choose an optimal candidate as the first element for
pairwise comparison. We define the grade g of the candidate
physical host as follow:

g(phi) =
l∑

r=1

dr (phi) (26)

dr is the value of r-th attribute of the physical host. It is
easy to see that the candidate with the smallest grade must
be optimal. That is, if phi∗ ∈ TOTAL, and g(phi∗) =
minphi∈TOTALg(phi). In this way, we consider phi∗ as the
optimal candidate in TOTAL. Let phi∗ be the first element
of the enumeration process, and continuously compare it with
other physical hosts in the set through formulas (12) and (13).
If phi∗ is dominated by other elements, it will be eliminated
and this comparison will terminate, and then it makes a com-
parison for the next round.When the last round of comparison
is completed, we get the final set of non-dominated physical
hosts PHopt . At this point, the pruning process ends, and
PHopt is used as the initial state space for deep reinforcement
learning.

Step5: Initialize the network parameters ω and θ of Critic
and Actor, and copy ω and θ to the corresponding Target
network parameters ω∗ and θ∗, respectively. Initialize the
experience pool R.
Step6: Perform the following iterative loop within a time

step.
(1) Initialize the Uhlenbeck-Ornstein stochastic process

(UO process for short), and the purpose is to introduce ran-
dom noise;

(2) The Actor network obtains an action at according to the
current strategy π and random UO noise. The expression of

at is as follows:

at = π (st | θ)+ Nt (27)

(3) After the agent executes the action at , the environment
returns the current system reward value rt and the state st+1
at the next moment.

(4) Store each state transition process (st , at , rt , st+1) in
the experience pool R as a data set for network train-
ing. In addition, N data of state transition process are
randomly sampled in the experience pool as a mini-batch
training set of Critic network and Actor network, the sin-
gle state transition process data can be expressed as
(st , at , rt , st+1).

(5) To calculate the gradient of critical network: using the
method similar to supervised learning, loss is defined asMSE
(mean squared error). The calculation formula of loss value
L of the critical network is as follows:

L =
1
N

∑
i

(yi − Q (si, ai | ω))2 (28)

where the yi can be regarded as a ‘‘label’’.

yi = ri + γQ′
(
si+1, π ′

(
si+1 | θ∗

)
| ω∗

)
(29)

Based on the standard Back Propagation algorithm,
the gradient ∇ωL of L relative to ω can be obtained.

(6) Update the critic network and use Adam Optimizer to
update ω;

(7) Calculate the policy gradient of the Actor network, and
use the mini-batch training set data according to the Monte
Carlo method to estimate its expected value without bias. The
expression is:

∇θJ≈
1
N

∑
i

(
∇aQ(s, a | ω)|s=si,a=π (s) · ∇θπ (s | θ )

∣∣
s=si

)
(30)

(8) Update the Actor network and use Adam Optimizer to
update θ .

(9) To update the target critical network and target actor
network, the following formula is used to update ω∗, θ∗,
where t is taken as 0.001 generally.

ω∗ = τω + (1− τ )ω∗ (31)

θ∗ = τθ + (1− τ )θ∗ (32)

Step 7: the time step ends and the iteration loop terminates.
The pseudo-code of JCETD’s algorithm is shown in

Algorithm 1.
From the perspective of the macro framework, this paper

fuses the idea of Deterministic Strategy Gradient Algo-
rithm (DDPG) of Deep Reinforcement Learning on the
basis of the ‘‘cloud-edge’’ architecture, which integrates the
‘‘cloud-edge’’ architecture and machine learning effectively.
That is, ‘‘cloud-edge’’ is regarded as a joint datacenter, and
a deterministic strategy gradient algorithm (DDPG) deploy-
ment strategy is built on this basis. Through continuous
interaction with the surrounding environment, and using the
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Algorithm 1 Algorithm JCETD
Input: The set of tasks TK , set of edge hosts PHE , set of

cloud hosts PHC , ω, θ , related parameters of algorithm
and ‘‘cloud-edge’’ physical hosts;

Output: final deployment solution vector S;
1: The set of cloud hosts and the set of edge hosts are com-

bined to form a new host set TOTAL = {PHC + PHE};
2: Initializes an empty set PHopt = {};
3: The value of posterior probability of host set is calculated

by formula (21);
4: Compute the attribute values of memory and CPU

through formulas (22) and (24);
5: Sets thememory, CPU, and posterior probabilities as a set

of attributes for the physical host, i.e., Vph = (vm1 , v
c
2, v

p
3);

6: Get the smallest grade candidate by formula (26) and
make it the first element in the set;

7: IsDominated(i)=false
8: for i = 1 to k do
9: if IsDominated(i)==true then
10: continue;
11: for j = i+ 1 to k do
12: if ci � cj then
13: IsDominated(j)=true
14: else
15: if cj � ci then
16: IsDominated(i) =True;
17: break;
18: if IsDominated(i)==false then
19: PHopt .add(ci);

20: Randomly initialize weights θ , ω, ω∗ = ω, θ∗ = θ , and
initialize replay buffer R;

21: for t = 1 to T do
22: Select action at according to the current policy and

exploration noise;
23: Execute action at and observe reward rt and observe

new state st+1;
24: Store transition (st , at , rt , st+1) in set R;
25: Sample a random minibatch of N transitions

(st , at , rt , st+1) from R
26: Update the parameters of the Critic network ω;
27: Update the actor policy using the sampled policy

gradient;
28: Update the target networks ω∗, θ∗;

generated data to modify its own behavior, after several
iterations of learning, the optimal deployment of the corre-
sponding tasks can finally be completed. Through the explo-
ration process of deep reinforcement learning, the traditional
mode of task deployment is changed, and the shortcomings
of the traditional intelligent algorithm, such as slow con-
vergence speed and high complexity, are solved effectively.
To a certain extent, high-quality QoS requirements of users
and long-term load balancing of ‘‘cloud-edge’’ datacenter are
realized.

From the micro point of view, in the initial stage of deep
reinforcement learning, this paper uses the idea of pruning
algorithm to realize the preprocessing process of the algo-
rithm. Through the attributes of the physical host, the dom-
inated physical host is pruned, and finally a non-dominated
set of physical hosts is obtained. Pruning operation pruned
the unpromising physical hosts, which not only reduces the
state space of reinforcement learning, but also reduces the
complexity of reinforcement learning, and makes the algo-
rithm more robust in the running phase. At the same time,
it is also an indirect way to achieve efficient task deployment
and load balancing of ‘‘cloud-edge’’ datacenter. It can be seen
through analyzing the proposed algorithm that the computa-
tional complexity of the algorithm is O(n2).

V. PERFORMANCE EVALUATION AND ANALYSIS
In this part, we mainly evaluate the performance of JCETD
algorithm, and verify the effectiveness of the algorithm.
First, we selected the representative deployment methods
FERPTS [20] and FIFO respectively to compare experi-
ments with the JCETD algorithm proposed in this paper.
Then, the metrics to verify the effectiveness of JCETD
algorithm are given. Finally, through the load balancing
degree, average response time, Makespan and throughput
of the ‘‘cloud-edge’’ datacenter, the JCETD algorithm and
the above deployment algorithm are simulated, and the final
simulation results are displayed in the form of chart. In this
paper, we use Python simulator on Tensorflow to implement
the comparison experiment.

The experimental results show that, compared with other
algorithms, JCETD reduces the total completion time and the
average response time of tasks, and improves the throughput
of the joint system greatly, and provides users with better
service ability. On this basis, the JCETD proposed in this
paper enables the joint ‘‘cloud-edge’’ datacenter to have a
better load balancing effect.

FERPTS: It is a modern deployment algorithm, which
realizes the perceptual decision of the current task through
the access control strategy. It allocates the corresponding
computing resources to realize the reasonable task schedul-
ing, and reduces the complexity of algorithm effectively and
minimizes the running time, and then it achieves energy
consumption reasonably.

FIFO: the first-in-first-out strategy is to assign the physical
host at the edge center closest to the user to the current tasks
until there are no available computing resources. After that,
the strategy sends all remaining tasks to the cloud computing
center.

A. EXPERIMENTAL METRICS
The experiment metrics in this paper are mainly selected from
the perspective of user experience and the performance of
the ‘‘cloud-edge’’ joint system, including the average task
response time, total completion time (Makespan), through-
put and load balancing degree. Through the dual simulation
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experiment of users and the system, the effectiveness of
JCETD algorithm proposed in this paper is finally verified.

The average response time is a performance metric from
the perspective of users, which can be calculated by for-
mula (1) to maximize users’ QoS experience by reducing the
average response time.

Total completion time (Makespan), that is, the time it takes
to process all tasks. It is shown in formula (33):

Makespan=max
{
CTij=

Dn
fn
|i=1, 2, · · · , n; j=1, 2, · · · ,m

}
(33)

where CTij is the completion time of the i-th task executed on
the j-th host, fn is the computing ability allocated to the task
by the current host node.

In this paper, the throughput of the ‘‘cloud-edge’’ system is
taken as a metric to evaluate the external service performance
of the system. By measuring the total amount of work or the
total number of tasks that the entire system can complete
in a given time, the more tasks are processed in unit time,
the better the external service performance of the system is
proved. The throughput formula is as follows:

F = VU ∗ R/T (34)

where F is throughput, VU is the number of users, R is
number of task requests submitted by users, and T is time.

Load balancing degree is an important metric to evaluate
the degree of load balancing of each node in the ‘‘cloud-
edge’’ datacenter, and it is also one of the key embodiments
of system performance. Through formula (6), we can get the
load balancing degree of ‘‘cloud-edge’’ system, and the goal
is that the smaller the value, the better.

The above four experimental metrics are used to verify the
effectiveness of the algorithm. under the premise of satisfying
the user’s QoS experience, the ‘‘cloud-edge’’ system can
show high-quality external service performance, and it will
realize the long-term load balancing of the ‘‘cloud-edge’’
datacenter.

B. COMPARISON IN MAKESPAN
In the first set of experimental scenarios, we will compare
the total completion time (Makespan), the smaller the value,
the better the performance of system. Comparing the pro-
posed JCETD algorithm in this paper with FERPTS and
FIFO, the value of Makespan can be calculated by for-
mula (33), and the changes of the Makespan of three algo-
rithms can be reflected by increasing the number of tasks.
As shown in Figure 4, the Makespan values of three algo-
rithms continue to increase with the increase of the number
of tasks. When the number of tasks is 100, the difference of
Makespan value among the three is not too large. Among
which, the FERPTS algorithm has the smallest Makespan
value, followed by FIFO, and the JCETD has the maximum
Makespan value. This situation occurs because when the
number of tasks in the initial stage is small, the FERPTS
algorithm can perceive the current task and make decisions

FIGURE 4. Comparison of FIFO, FERPTS, and JCETD on Makespan.

based on its own access control strategy, moreover, the corre-
sponding computing resources are configured to realize rea-
sonable task scheduling, so that tasks can be deployed rapidly
when there are fewer tasks. FIFO rapidly deploys tasks to
the nearest edge service node according to its own strategy,
so it can complete the task calculation rapidly. In contrast,
the proposed JCETD algorithm in this paper needs some
calculation in the initial stage, and the data in the experience
pool is too small to achieve the optimal deployment of tasks,
as a result, the Makespan value is higher than the other two
algorithms when the number of tasks is small. As the number
of tasks increases, theMakespan value of the three algorithms
continues to increase, the Makespan value of the JCETD is
always far smaller than the other two algorithms, followed
by FERPTS, and FIFO is the largest. The main reason is that,
compared with the other two algorithms, the JCETD has the
potential for long-term efficient deployment tasks. It com-
bines the advantages of ‘‘cloud-edge’’ computing and deep
reinforcement learning, and optimizes it into an intelligent
cloud-edge deployment problem. Therefore, its Makespan
value is better than the other two algorithms to a certain
extent.

C. COMPARISON IN AVERAGE RESPONSE TIME
In the second set of experimental scenarios, we will compare
the average response time of the three algorithms. The smaller
the average response time is, the better the user experience
will be. By comparing with the other two algorithms in
average response time, the proposed JCETD algorithm in
this paper has an excellent user experience. The average
response time of each algorithm can be calculated by for-
mula (1). As shown in Figure 5, as the number of tasks
increases, the average response time of the three algorithms
is increasing, and the average response time changes in a
wavelike manner, only the JCETD has small fluctuations, and
the average response time is always lower than the other two
algorithms in the whole process. This is because the proposed
JCETD algorithm in this paper simulates the process of deep
reinforcement learning in the process of computing tasks,
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FIGURE 5. Comparison of FIFO, FERPTS, and JCETD on ART.

and it uses the experience replay mechanism and determin-
istic strategy of the DDPG algorithm to improve its own
behavior continuously, and the current experience will be
directly applied to the next deployment, and the high-quality
deployment and calculation will always be maintained in the
whole process, thereby achieving the rapid deployment and
response of tasks and improving the user experience.

D. COMPARISON IN LOAD BALANCING DEGREE
In the third set of experimental scenarios, we compare the
JCETD with FIFO and FERPTS on the degree of load bal-
ancing. The real-time load balance degree of the system can
be calculated from the formula (6). The smaller the value,
the more balanced the load of the whole system. It can be
seen from the Figure 6 that FERPTS has a better degree of
load balancing at the beginning, the JCETD takes the second
place and FIFO is the worst. With the increase of time,
the load balancing degree of the three algorithms is decreas-
ing, at t=400, the JCETD and FERPTS have the same value
of load balancing degree. When t > 400, the value of load
balancing degree of JCETD is always lower than the other
two algorithms, followed by FERPTS, and FIFO is the worst.
This is because the proposed JCETD algorithm in this paper
has less previous experience data in the experience pool at the
beginning, and the correlation between the before and after
states is large relatively, which leads to the slow convergence
of the algorithm and inability to complete the deployment and
calculation of tasks with high-quality. Therefore, the effect
of load balancing is not ideal in the initial stage. With the
increase of time, compared with other algorithms, the JCETD
shows its own advantages gradually. The algorithm reduces
the state space of deep reinforcement learning to a certain
extent through pruning preprocessing in the initial stage.
In the process of the deep deterministic strategy gradient
algorithm, tasks are continuously and reasonably deployed
on the optimal physical host of the ‘‘cloud-edge’’ datacenter,
so that the joint ‘‘cloud-edge’’ datacenter has a better effect
of load balancing.

FIGURE 6. Comparison of FIFO, FERPTS, and JCETD on LBD.

FIGURE 7. Comparison of FIFO, FERPTS, and JCETD on throughput.

E. COMPARISON IN THROUGHPUT
In the fourth set of experimental scenarios, the throughput is
taken as the performance metric of the comparison experi-
ment, and the throughput of the proposed JCETD algorithm
is compared with the other two algorithms to verify the per-
formance of the algorithm on the ‘‘cloud-edge’’ system. The
throughput of the system can be calculated by formula (34).
As shown in Figure 7, the throughput of the three algorithms
shows an upward trend during the whole process. FIFO has
a worse throughput in the initial stage, as time increases,
the throughput of the system increases slowly. FERPTS is
also increasing, but the rate of growth is not much different
from FIFO. The throughput growth rate of the JCETD is
higher than that of the other two algorithms significantly, and
the real-time throughput is also the largest. This is because the
proposed JCETD algorithm in this paper performs pruning
preprocessing operations on the set of ‘‘cloud-edge’’ host
in the initial stage, which reduces the state space of DDPG
algorithm to a certain extent, and accelerates the execution
efficiency of the algorithm, and improves the throughput of
the system greatly.
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TABLE 1. Comparison of Cloud-only, Edge-only, and JCETD on throughput,
Makespan, and ART.

F. COMPARISON WITH UNILATERAL COMPUTING
In the fifth set of experimental scenarios, the joint ‘‘cloud-
edge’’ computing proposed in this paper is compared with
edge computing and cloud computing, through the com-
parison of Makespan, throughput and ART to verify the
advantages of joint ‘‘cloud-edge’’ framework from different
perspectives. As can be seen from table 1, with the increase
of the number of tasks, three performance metrics of the
joint ‘‘cloud-edge’’ system proposed in this paper are always
better than cloud computing and edge computing. This is
because the joint deployment of this paper is guided by deep
reinforcement learning, looking for the optimal physical host
for tasks constantly, whichmay be on the cloud or on the edge.
Therefore, this kind of ‘‘cloud-edge’’ joint mode of deep
reinforcement learning can not only maintain high-quality
user experience, but also realize the load balancing of joint
‘‘cloud-edge’’ system. However, in single edge computing,
the current computing resources may not be able to meet the
task requests of a large number of users, which will degrade
the quality of service and performance of the system. As for
single cloud computing, as the amount of user access and
data increase together with that the communication link to the
cloud is too long, it may cause the cloud computing center
to load unbalanced and fail to return the calculation results
timely. The experimental results show that the performance
of joint ‘‘cloud-edge’’ computing is better than that of cloud
computing and edge computing.

VI. CONCLUSION AND FUTURE WORK
Based on the joint ‘‘cloud-edge’’ computing, this paper
proposes a resource management and task deployment
strategy JCETD based on pruning algorithm and deep
reinforcement learning, and gives its main ideas, process
implementation and evaluation. First of all, the resource
management process adopts the idea of pruning algorithm,
pruning the set of ‘‘cloud-edge’’ host by using the attribute
values of physical host to get a non-dominated host set,
which has the potential to realize tasks efficient deployment
and load balancing of ‘‘cloud-edge’’ datacenter to a certain
extent. Then, the deep reinforcement learning algorithm is
integrated on the basis of the joint ‘‘cloud-edge’’ computing
mode, and the set of ‘‘cloud-edge’’ host obtained in the
resource preprocessing stage is used as the system state to

simulate the deep reinforcement learning process. Through
the continuous exploration and utilization of the environment,
the efficient computing ability and load balancing under the
‘‘cloud-edge’’ architecture are finally realized. In order to
evaluate the JCETD algorithm, a number of simulation exper-
iments of performance metrics have been carried out to verify
the efficiency of the proposed JCETD algorithm from the
perspective of users and systems. The experimental results
show that the JCETD not only enables efficient deployment
and calculation of tasks, but also makes the overall load of the
‘‘cloud-edge’’ datacenter more balanced.

In the proposed JCETD algorithm, there are some open
issues that need further study and empirical issues that need
a lot of experiments to gradually obtain a better solution.
Where the value of CPU weight and memory weight is an
empirical issue, and multiple experiments are required to
obtain the optimal value such that α + β = 1. In this paper,
all parameters are set to appropriate values.

In order to further improve the deployment performance
and load balancing of joint ‘‘cloud-edge’’ computing, we plan
to analyze and research from the perspective of ‘‘cloud-edge’’
intelligent task deployment in the next work. And on the
premise of providing high-quality services for users, tasks
can be deployed in edge computing center and cloud com-
puting center reasonably, so as to maximize the benefits of
‘‘cloud-edge’’ datacenter and users. In the future work and
experiments, the empirical and open questions raised in this
paper will be further studied.
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