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ABSTRACT Sea surface temperature (SST) is a key factor for both climate and weather. Most studies
focus on evaluation of satellite SSTs in different oceanic regions, but the performance of ERAS reanalysis
SST datasets (ERAS SSTs) has not been systematically evaluated. In this article, buoy measurements from
46 National Data Buoy Center (NDBC) sites around the Pacific and the Atlantic are used to make an analysis
of the deviations of the ERAS SSTs on an hourly basis and its variations on a daily basis. Overall, ERAS5 SSTs
have a global coverage with a —0.04 °C bias and 4.60 °C standard deviation in the study area. It is worthwhile
to notice that ERAS SSTs exhibit significant differences in the amplitude and the phasing of their spatial
patterns. The products are found to meet the accuracy criterion, except in near coastal areas, which may
result from the near-coastal mixture effect and the warm SST. The results reveal that ERAS SSTs completely
capture the diurnal variability of SST under all wind speed conditions, especially in the situation when
wind speed is above 6 m/s. There is a slight cold bias when wind speed is below 6m/s, indicating that
ERAS SSTs are not affected by solar radiation heating. These findings contribute to the sensible use of
ERAS5 SSTs around the Pacific and the Atlantic.

INDEX TERMS Accuracy evaluation, buoy measurements, ERAS, reanalysis product, sea surface

temperature.

I. INTRODUCTION

Sea surface temperature (SST) is a key climate and weather
factor which is important for the exchange of energy, momen-
tum and moisture between the ocean and the atmosphere [1].
It has been proved that SST variations influence species in
the marine environment and climate components. For exam-
ple, the ENSO cycle has a profound effect on global-scale
weather and primary productivity [2], [3]. SST also affects the
development and evolution of tropical storms and hurricanes
and is correlated with nutrient concentration [4], [5].
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Previous studies have demonstrated that SST has increased
at global scale during recent decades [6], [7], while regional
studies show that SST exhibits substantial spatiotemporal
variations [8]-[11]. For example, increasing SST may dis-
play larger variations in shallow waters such as gulfs than
in deep water areas [12]. Since SST is one of the critical
determinants of air-sea interactions and climate variability,
long-term monitoring of SST is necessary for understanding
both the causes and results of climate change, as well as
providing an important SST-dependent feedback mechanism
via evaporation [13]. Currently, three kinds of SSTs (in situ
observations, satellite, and reanalysis) are mainly used in
practice. However, different SSTs perform fairly uniformly
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globally or in basin-wide regions [14]. For example, mean
SST differences in excess of 2 °C are consistently observed
in the Arctic Ocean [15].

The buoy measurement and satellite-based SSTs suffer
from several limitations. Buoy measurements lack the global
coverage which can be compensated by satellite monitor-
ing. The infrared remotely sensed SSTs have both spatial
and temporal biases, affected by atmospheric aerosols, and
incomplete removal of cloud contamination [16]. Microwave
remotely sensed SSTs can overcome these drawbacks, but is
limited by decreased sensitivity at high wind speeds and a
relatively poor spatial resolution of 50 kilometers. Reanal-
ysis data provides a long time series of SST by combining
historical records with geophysical fluid-dynamical models
based on data assimilation techniques [17]. Reanalysis SST
data is widely applied for both climate change research and
operational forecasting [3], [ 18]. However, most studies focus
on evaluation of satellite-based SST products in different
regions [19]-[21], while paying little attention to reanalysis
data of SST.

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) recently has released the fifth-generation
reanalysis data product- European Centre for Medium Range
Weather Forecasts Reanalysis 5 (ERAS5), including SST.
A recent study has analyzed the performance of solar radia-
tions of the ERAS reanalysis dataset [22]. The ERAS reanal-
ysis SST datasets (ERAS5 SSTs) are mostly identical with
external analysis data that are independent of the ERAS data
assimilation system, such as HadISST and OSTIA [23]. How-
ever, most existing studies on these datasets [23], [24] lack
the evaluation of the SST data, and a quantitative evalua-
tion of the ERAS SSTs at site scale has not been carried
out yet. In this study, the spatiotemporal uncertainties in
hourly ERAS SSTs around the Pacific and the Arctic are
evaluated based on buoy retrievals from the National Data
Buoy Center (NDBC). The deviations at different time scales
and locations are quantitatively displayed. Such analyses and
comparisons are relevant for understanding the causes of the
errors, rational applications of the reanalysis products, and
potential improvements of next-generation products.

Il. DATA AND METHODS

A. DATA SOURCES AND PREPARATION

The ECMWEF provides a global numerical description of
the recent climate by combining models with observations.
ERAS is the latest reanalysis dataset at ECMWE, including
SST. ERAS has higher spatial resolution (30 km) than its
predecessor ERA-Interim (79 km) [25] and has a revised
data assimilation system and improved model physics [18].
ERAS reanalysis SST data is an interpolated, gridded SST
product, assimilating with a four-dimensional variational sys-
tem [26]. ERAS5 SSTs during the whole year of 2018 (from
01/01/2018 to 31/12/2018) as used in this study are avail-
able in NetCDF format, and can be downloaded from the
ECMWEFE. The datasets are created with a valid time in the
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month, between 00 and 23 UTC. In this paper, in order to
analyze the diurnal variations, UTC time is converted to the
local time.

SSTs retrieved by NDBC buoys are used to evaluate
the ERAS SSTs. These data are collected and released
by NOAA/NDBC (https://www.ndbc.noaa.gov/). The NDBC
buoy measurements are collected hourly, using paired elec-
tronic thermistors, starting around 1975, showing time in
UTC [27]. The precision of SST measurements made on
NDBC buoys using electronic thermistors is £0.08 °C for
an individual hourly measurement, based on duplicate sen-
sor comparisons [27], and the standard error for a monthly
average is quite small [6]. Since the depth of the sensor varies
with the buoy, the temperatures measured by buoy hulls gauge
the average temperature of the water around the hull [27].
There are 46 buoy sites providing effective observations in
2018, and hourly observations for the whole year of 2018 are
employed in this research. In Figure 1, the positions of NDBC
buoy sites with effective observations in 2018 are displayed.
The annual mean SST range is from approximately —1.79 °C
to 24.6 °C. UTC time is also converted to the local time.

o 1250 250 5000 -
— — -

FIGURE 1. Continuous spatial distribution of the yearly SST and positions
of the available buoy sites from ERA5 around the Pacific and the Atlantic
in 2018.

Since NDBC buoys make point measurements throughout
the day whereas the ERAS5 SSTs are grid-averaged values,
a matched set of the ERAS5 SSTs and corresponding buoy
measurements is constructed in this study. Collocation of the
buoy measurements with the gridded ERAS SSTs is straight-
forward. Buoy measurements are simply compared with the
ERAS5 SSTs at the grid cells containing the buoy position at
that moment. In total, 313,266 pairs of collocated ERAS5-buoy
SSTs are obtained.

B. EVALUATION METRICS

In order to evaluate the ERAS5 SSTs, several metrics are
introduced to reveal whether the ERAS SSTs overestimate
or underestimate the real value, including the mean absolute

error (MAE), mean bias error (MBE), root mean squared
error (RMSE), standard deviation (STD) and coefficient of
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determination (R?). These statistic metrics are calculated by
the following equations:

MAE = % > |SSTi - ssT, )
MBE = % ZLO SST; — SST; )
RMSE = \/ % Z:‘l:o (SST; — SST;)* 3)
STD = \/ % Z:':O (SST; — u)’ (4)
w= Y ST, )

R =1-)"" (SST; - sSST.)’ é(ssn — SST)’

- ©)

where n is the total number of SST samples indexed by i, SST
represents the observed value with the mean value SS7', and

SST is the predicted value from the ERAS SST.

C. TAYLOR DIAGRAMS

Taylor diagram can provide a graphically means of sum-
marizing the relative accuracies of several competing prod-
ucts [28], which is more succinct and clearer than analogous
tabular presentation for conveying information [21]. In this
study, Taylor diagrams are introduced to reflect the evaluation
results in different aspects. In its basic form, a Taylor diagram
is a two-dimensional scatter plot in which discrete points give
an indication of how closely various ERAS SSTs resemble the
NDBC observations in terms of RMSE, STD and R? all at
once. In addition, using color scheme can introduce a fourth
dimension into the figure, with different color representing
different value range of MAE.

The Taylor diagram is built by plotting a triangle in a rect-
angular coordinate system with one vertex at the origin, and
the other two vertices representing the buoy measurements,
and the corresponding ERAS SST matchups, respectively.
It is worthwhile mentioning that the Taylor diagram just
provides information about the centered errors, instead of the
overall bias [28].

Ill. RESULTS AND DISCUSSION

As ERAS is the new generation product of ERA-interim,
the accuracies of ERA-interim and ERAS are evaluated and
compared at first. Since ERA-interim does not provide hourly
SST, the evaluation is performed on a daily scale, using daily
NDBC buoy measurements as ground truth data. As shown
in Figure 2, the green line represents ERA-interim SST,
the red line represents ERA5 SST, the blue line represents
NDBC buoy SST, and the accuracy is labeled in the upper left
corner. Overall, the ERAS SSTs correlated with ground truth
data better than ERA-interim, with smaller MAE (0.44 versus
1.34), smaller RMSE (0.66 versus 1.90) and higher correla-
tion (0.86 versus 0.80). Especially, ERA-interim SSTs exhibit
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2 Station: ADKA2 - 9461380 - Adak Island, AK (51.861N, 176.637W)
ERA-interim: MAE(1.34), RMSE(1.90), R(0.80)
ERAS: MAE(0.44), RMSE(0.66), R(0.86)
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FIGURE 2. The daily SSTs of ERA-interim, ERA5 versus NDBC observations
of ADKA2 station in 2018.

a significant overestimation from August to December. This
is because that ERAS reanalysis data uses a more recent
model and data assimilation system, which can obtain more
accurate STTs [29].

Figure 3a shows the density plot of the hourly coincident
NDBC buoy and ERAS SSTs. Overall, ERA5 hourly SSTs
is well correlated to the NDBC buoy measurements with R?
of 0.80. ERAS SSTs appear to have a cold bias relative to the
buoy, with a mean bias of —0.04 °C. This deviation might cor-
respond to different regimes, such as coastal water, northerly
waters, and extreme weather [21]. Martin et al. [30] have
shown that differences among satellite-based SST products
tended to be accentuated near coastal and strong gradient
regions, and the uncertainties on coastal buoys exceed the
global scale by about 0.3 K. In this case, the accuracies at
each buoy are calculated in this study, as shown in Figure 4,
where obvious geographical differences are observed. The
ERAS5 SSTs correlate fairly poorly with buoy measurements
at near-costal buoys. However, the matchups in the region
shown in Figure 1 with a blue dotted box, which is also
near costal, demonstrate low MAEs and RMSEs. Therefore,
in order to analyze whether the performance of ERAS SSTs
has longitudinal or latitudinal zonality, the matchups are
grouped by the latitude and longitude of buoy, respectively.
The results (Figure 5a and 5b) demonstrate that the corre-
lation (R?) between ERA5 and buoy SSTs exhibits no sig-
nificant trend while the MAEs and RMSEs show an obvious
increase between 25°N and 40°N, as well as between 60°W
and 120°W, containing matchups shown in Figure 1 with a
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FIGURE 3. Density plot of the hourly ERA5 SSTs versus NDBC
observations in 2018. Black solid line is the 1:1 line. Red solid line is the
fitted regression line, and the expression is labeled in the upper left
corner. (a) the accuracy including all matchups. (b) the accuracy excluding
measurements displayed with a red box in Figure 1.
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FIGURE 4. Spatial variation of the accuracy of the hourly ERA5 SSTs
relative to NDBC buoy SSTs. (a) MAE. (b) MBE (showing whether MAE is
positive or negative). (c) RMSE. (d) R2.

ERROR

= | I I
15 20 25 30 35 40 45 50 55
Latitude(°N)

9 T T T T T

ERROR

0 .
180 160 140 120 100 80 60

Longitude(°W)

FIGURE 5. The accuracies of ERA5 SST change with latitude and
longitude. The intersection area with large error contains
buoys shown in Figure 1 with a red box.

red solid box. This indicates that the bad performance of
ERAS SSTs in the region shown in Figure 1 with a red box
is not only due to the near-coastal mixture effect, but also is
potentially related to warm SST, as a high-latitude negative
bias has also been found in previous studies [21], [31]. If these
match-up observations (those in the red box of Figure 1) are
excluded from the study, the performance of ERAS5 SSTs
would be obviously improved (Figure 3b).

Daily variations of SST compared with ERAS SSTs are
calculated under two situations: (1) daily SSTs averaged over
all the 46 buoys (Figure 6a), (2) daily SSTs averaged without
16 buoys located in the region shown in Figure 1 with a red
box (Figure 6b). Figure 6a shows that ERAS product under-
estimates daily SST in cold season and overestimates SST
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FIGURE 6. Time-series variations of ERA5 and NDBC buoy SSTs in 2018.
Error bar show standard deviation for each daily mean SST. (a) Daily
variation averaged over all the 46 buoys. (b) Daily variation averaged
without 16 buoys.

in warm season. In contrast, this warm/cold bias disappears
in Figure 6b. This implies that considering buoys in the red
box of Figure 1 may lead to a total misunderstanding of the
overall quality of the ERAS5 SST product. In order to make
more objective evaluation of ERAS5 SSTs in other regions,
the matchup data pairs mentioned above are excluded in the
following analysis.

To evaluate the temporal variation more clearly, the accura-
cies of monthly and seasonal ERAS SSTs are displayed with
a Taylor diagram (Figure 7). The merits of different months
or seasons can be inferred visually just by inspecting their
position in the Taylor diagram. The closer the label represent-
ing the month/season is to the x-axis and y-axis, the better
the agreement between the two datasets (ERAS SSTs lying
near the x-axis and y-axis have relatively high correlation and
low STD). The closer the label to the center of the green line
circle, the lower the RMSE value is. MAE is also displayed
with the color of the label (from deep blue to bright yellow).
The brighter the color is, the worse the performance is. As can
be seen in Figure 7, ERA5 SSTs correlate very well with
buoy measurements on both monthly and yearly scale. On the
monthly scale, R? values are larger than 0.9 over the whole
12 months. The ERAS SSTs in October has the smallest
MAE and RMSE, while January suffers the largest MAE and
RMSE, and December has the smallest standard deviation.
On the yearly scale, all R? values are above 0.95, ERAS5 SSTs
perform best in autumn while worst in spring, and the SST has
the smallest dispersion in winter.

Estimation of diurnal change in SST is of great impor-
tance for climate and air-sea interaction studies because it
affects the air-sea heat fluxes directly [20]. Clayson and
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FIGURE 7. Taylor diagrams showing differences between grouped SST
considering matchups of different months (a) and seasons (b) in 2018.

Bogdanoff [32] find that the effect of diurnal change in
SST on global climatological heat fluxes is 4.45 W/M? on
average. So, the capability of capturing diurnal change of
ERAS SSTs is analyzed in this study. Additionally, several
studies have suggested that the diurnal effect can be mini-
mized by excluding daytime SSTs at wind speeds which is
less than 6 m/s [13], [33]. We examine the diurnal variability
of ERAS and the buoy SSTs to directly verify this suggestion.

Figures 8a-8c show the results for three cases: (1) only
matchup data with wind speeds below 3 m/s, when thermal
stratification in the upper ocean layers will complicate the
skin-bulk difference, (2) only matchup data with wind speeds
between 6 and 10 m/s, when enhanced vertical mixing in the
upper ocean due to wind-introduced mixing should stabilize
the skin to sub-skin relationship, and (3) only matchup data
with wind speeds above 10 m/s, when sub-skin tempera-
ture will decrease due to high wind-introduced upwelling
and skin SST mixes with sub-skin SST thoroughly. Overall,
ERAS SSTs can capture the diurnal variation very well under
different wind speed conditions, with biases ranging from
—0.14 °C (at wind speeds below 3 m/s) to 0.34 °C (at wind
speeds between 3 m/s and 6 m/s), although the standard
deviation is slightly larger than buoy measurements (ranging
from —1.16 °C to —0.64 °C). ERAS5 SSTs coincide best with
buoys in the case when wind speed exceeds 6 m/s. A negative
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FIGURE 8. The ERA5 and NDBC buoy diurnal cycles: mean difference and
standard deviation. (a) wind speed below 3m/s. (b) wind speed between
3m/s and 6m/s. (c) wind speed above 6m/s.
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speed conditions.
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ERAS hourly SSTs overall correlate with the NDBC buoy observations, having a global
coverage with a -0.04 °C bias and 4.60 °C standard deviation in the study area.
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FIGURE 9. Summary of main findings.

bias occurs in daytime observations (between 6 A.M. and
1 PM.) and is related to low wind speeds (below 3 m/s),
and the same situation happens between 1 PM. and 5 A.M.
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at moderate wind speeds. This indicates that ERA5 SSTs
are not affected by diurnal warming due to incident solar
radiation, and may be related to the fact that the depth rep-
resentations of ERAS and buoy SSTs are different.

IV. CONCLUSION

In this study, the ERAS5 SST product, newly released by
ECMWE, is evaluated from different aspects, including tem-
poral, spatial and potential causes. The NDBC buoys provide
a unique, and valuable, verification dataset, giving great con-
fidence in the results. Overall, ERAS5 SSTs are of compa-
rable accuracy, with a —0.04 °C bias and 4.60 °C standard
deviation around the Pacific and the Arctic, when compared
to NDBC buoys. It is worthwhile to notice that ERAS SSTs
exhibit significant differences in the amplitude and the phas-
ing of their spatial patterns. Products are found to meet the
accuracy criterion except in near coastal regions. Especially
in the region marked in Figure 1 with a red box, ERA5 SSTs
exhibit rather poor performance. The same situation occurs in
daily SST variation, considering buoys mentioned above may
lead to serious misunderstandings about the overall accuracy
of ERAS5 SST product.

One single statistical metric cannot fully reflect the perfor-
mance of ERAS SSTs in all respects, thus a variety of metrics
are chosen to make the evaluation and different diagrams
are employed to explicitly represent the evaluation results.
Taylor diagrams can provide an intuitively graphical sum-
mary of four different statistics (MAE, RMSE, STD and Rz)
which demonstrates different strengths and weaknesses in the
ERAS5 SSTs. The results have suggested that ERAS SSTs are
in agreement with buoy measurements both on monthly or
seasonal scale around the Pacific and the Atlantic. The main
findings of this study are shown in Figure 9.

It has been reported that satellite-based SST data is sig-
nificantly affected by the wind speed. However, the results
demonstrate that ERAS SSTs can capture the diurnal vari-
ability of SST very well under all wind speed conditions,
no exception in the situation when wind speed is above 6 m/s.
Actually, there is a slight cold bias while wind speed is below
6m/s, indicating that ERA5 SSTs are not affected by diurnal
warming due to incident solar radiation.

The ERAS SSTs achieve an overall agreement with the
NDBC buoy measurements, while its accuracy varies under
different temporal, spatial and meteorological conditions.
The main findings of this article provide a foundation for
researches based on ERAS SSTs around the Pacific and the
Atlantic.

REFERENCES

[1] F. J. Wentz, C. Gentemann, D. Smith, and D. Chelton, “Satellite mea-
surements of sea surface temperature through clouds,” Science, vol. 288,
no. 5467, pp. 847-850, 2000.

[2] Brander, K, “Global fish production and climate change,” Proc. Nat. Acad.
Sci. USA, 2007, vol. 104, no. 50, pp. 19709-19714.

[3] R. Noori, F. Tian, R. Berndtsson, M. R. Abbasi, M. V. Naseh,
A. Modabberi, A. Soltani, and B. Klgve, ‘“‘Recent and future trends in sea
surface temperature across the persian gulf and gulf of oman,” PLoS ONE,
vol. 14, no. 2, Feb. 2019, Art. no. e0212790.

12072

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

M. A. Cane, A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov,
R. Seager, S. E. Zebiak, and R. Murtugudde, ‘““Twentieth-century sea
surface temperature trends,” Science, vol. 275, no. 5302, pp. 957-960,
Feb. 1997.

K. A. Emanuel, “Thermodynamic control of hurricane intensity,” Nature,
vol. 401, no. 6754, pp. 665-669, Oct. 1999.

R. K. Shearman and S. J. Lentz, “Long-term sea surface temperature
variability along the U.S. east coast,” J. Phys. Oceanogr., vol. 40, no. 5,
pp. 1004-1017, May 2010.

C. Sheppard, M. Al-Husiani, F. Al-Jamali, F. Al-Yamani, R. Baldwin,
J. Bishop F. Benzoni, E. Dutrieux, N. K. Dulvy, S. R. V. Durvasula, and
D. A. Jones, “The gulf: A young sea in decline,” Mar. Pollut. Bull., vol. 60,
no. 1, pp. 13-38, 2010.

B. Riegl, “Effects of the 1996 and 1998 positive sea-surface temperature
anomalies on corals, coral diseases and fish in the arabian gulf (Dubai,
UAE),” Mar. Biol., vol. 140, no. 1, pp. 29-40, Jan. 2002.

M. Falvey and R. D. Garreaud, “Regional cooling in a warming world:
Recent temperature trends in the southeast pacific and along the west coast
of subtropical South America (1979-2006),” J. Geophys. Res., vol. 114,
no. D4, pp. 217-221, 2009.

S. E. Lluch-Cota, M. Tripp-Valdez, D. B. Lluch-Cota, J. J. Bautista-
Romero, D. Lluch-Belda, J. Verbesselt, and H. Herrera-Cervantes, ‘‘Recent
trends in sea surface temperature off mexico,” Atmdsfera, vol. 26, no. 4,
pp. 537-546, Oct. 2013.

A. Shirvani, “Change point detection of the persian gulf sea surface
temperature,” Theor. Appl. Climatol., 2015, vol. 202, no. 2, pp. 1-5, 2015.
I. M. Belkin, “Rapid warming of large marine ecosystems,” Prog.
Oceanogr., vol. 81, nos. 1-4, pp. 207-213, Apr. 2009.

C.L.FE J. G. Wentz, C. A. Mears, and D. K. Smith, “In situ validation of
tropical rainfall measuring mission microwave sea surface temperatures,”
J. Geophys. Res., vol. 109, no. C4, 2004, Art. no. C04021.

S. L. Castro, G. A. Wick, and W. J. Emery, “Evaluation of the rel-
ative performance of sea surface temperature measurements from dif-
ferent types of drifting and moored buoys using satellite-derived refer-
ence products,” J. Geophys. Res., Oceans, vol. 117, no. C2, Feb. 2012,
Art. no. C02029.

P. Dash, A. Ignatov, M. Martin, C. Donlon, B. Brasnett, R. W.
Reynolds, V. Banzon, H. Beggs, J. F. Cayula, Y. Chao, and R.
Grumbine, “Group for high resolution sea surface temperature
(GHRSST) analysis fields inter-comparisons—Part 2: Near real
time Web-based level 4 SST quality monitor (L4-SQUAM),”
Deep Sea Res. II, Topical Stud. Oceanogr., vols. 77-80, pp.31-43,
Nov. 2012.

W. J. Emery, Y. Yu, G. A. Wick, P. Schluessel, and R. W. Reynolds,
“Correcting infrared satellite estimates of sea surface temperature for
atmospheric water vapor attenuation,” J. Geophys. Res., vol. 99, no. C3,
p. 5219, 1994.

J. W. Hurrell and K. E. Trenberth, “Global sea surface temperature
analyses: Multiple problemsand their implications for climate analysis,
modeling, and reanalysis,” Bull. Amer. Meteorolog. Soc., vol. 80, no. 12,
pp. 2661-2678, Dec. 1999.

S. A. Josey, M. F. Jong, M. Oltmanns, G. K. Moore, and R. A. Weller,
“Extreme variability in irminger sea winter heat loss revealed by ocean
observatories initiative mooring and the ERAS reanalysis,” Geophys. Res.
Lett., vol. 46, no. 1, pp. 293-302, Jan. 2019.

T. Hihara, M. Kubota, and A. Okuro, “Evaluation of sea surface tem-
perature and wind speed observed by GCOM-W1/AMSR?2 using in situ
data and global products,” Remote Sens. Environ., vol. 164, pp. 170-178,
Jul. 2015.

H. Tomita, Y. Kawai, M. F. Cronin, T. Hihara, and M. Kubota, ““Validation
of AMSR?2 sea surface wind and temperature over the kuroshio extension
region,” Sola, vol. 11, pp. 43-47, Apr. 2015.

S. L. Castro, G. A. Wick, and M. Steele, ‘“Validation of satellite sea surface
temperature analyses in the beaufort sea using UpTempO buoys,” Remote
Sens. Environ., vol. 187, pp. 458-475, Dec. 2016.

H. Jiang, Y. Yang, Y. Bai, and H. Wang, “Evaluation of the total,
direct, and diffuse solar radiations from the ERAS5 reanalysis data in
China,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 1, pp.47-51,
Jan. 2020.

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Hordnyi,
J. Muiioz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, and
A. Simmons, “The ERAS global reanalysis,” Quart. J. Royal Meteorolog.
Soc., vol. 146, no. 730, pp. 1999-2049, 2020.

VOLUME 9, 2021



L. Yao et al.: Evaluation of the ERA5 Sea Surface Temperature Around the Pacific and the Atlantic IEEEACC@SS

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Hirahara, M. A. Balmaseda, E. D. Boisseson, and H. Hersbach, “26
sea surface temperature and sea ice concentration for ERAS,” Eur. Centre
Medium Range Weather Forecasts, Berkshire, U.K., ERA Rep. Ser. 26,
2016.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli,
S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, D. P. Bauer,
and P. Bechtold, “The ERA?Interim reanalysis: Configuration and perfor-
mance of the data assimilation system,” Quart. J. Roy. Meteorolog. Soc.,
vol. 2011, vol. 137, no. 656, pp. 553-597.

F. Rabier, J.-N. Thépaut, and P. Courtier, “Extended assimilation and
forecast experiments with a four-dimensional variational assimilation sys-
tem,” Quart. J. Roy. Meteorolog. Soc., vol. 124, no. 550, pp. 1861-1887,
Jul. 1998.

Handbook of Automated Data Quality Control Checks and Procedures of
the National Data Buoy Center, NDBC Tech, Shanghai, China, 2003.

K. E. Taylor, “Summarizing multiple aspects of model performance
in a single diagram,” J. Geophys. Res., Atmos., vol. 106, no. D7,
pp. 7183-7192, Apr. 2001.

C. Albergel, E. Dutra, S. Munier, J.-C. Calvet, J. Munoz-Sabater,
P. de Rosnay, and G. Balsamo, “ERA-5 and ERA-interim driven ISBA
land surface model simulations: Which one performs better?”” Hydrol.
Earth Syst. Sci., vol. 22, no. 6, pp. 3515-3532, Jun. 2018.

M. Martin, P. Dash, A. Ignatov, V. Banzon, H. Beggs, B. Brasnett,
J. F. Cayula, J. Cummings, C. Donlon, C. Gentemann, and R. Grumbine,
“Group for high resolution sea surface temperature (GHRSST) analy-
sis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble
(GMPE),” Deep-Sea Res., II, Topical Stud. Oceanogr., vol. 77, pp. 21-30,
Nov. 2012.

S. Dong, S. T. Gille, J. Sprintall, and C. Gentemann, ‘“Validation of the
advanced microwave scanning radiometer for the Earth observing system
(AMSR-E) sea surface temperature in the southern ocean,” J. Geophys.
Res., vol. 111, no. C4, pp. 1-16, 2006.

C. A. Clayson and A. S. Bogdanoff, “The effect of diurnal sea surface
temperature warming on climatological air-sea fluxes,” J. Climate, vol. 26,
no. 8, pp. 2546-2556, Apr. 2013.

C. J. Donlon, P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton,
B. Ward, and M. J. Murray, ‘“Toward improved validation of satellite sea
surface skin temperature measurements for climate research,” J. Climate,
vol. 15, no. 4, pp. 353-369, Feb. 2002.

LING YAO received the Ph.D. degree from the
State Key Laboratory of Resources and Envi-
ronmental Information System, Institute of Geo-
graphic Sciences and Natural Resources Research
(IGSNRR), Chinese Academy of Sciences (CAS),
Beijing, China, in 2012. From September 2012 to
December 2014, he was a Postdoctoral Fellow
with CAS. He is currently an Associate Professor
with IGSNRR, CAS. His research interests include
remote sensing and spatio-temporal data mining.

JIAYING LU received the B.S. degree in geo-
graphic information systems from the Honors Col-
lege, Nanjing Normal University, Nanjing, China,
in 2019. She is currently pursuing the master’s
degree with the State Key Laboratory of Resources
and Environmental Information System, Institute
of Geographic Sciences and Natural Resources
Research (IGSNRR), Chinese Academy of Sci-
ences (CAS), Beijing, China. Her research inter-
ests include remote sensing and spatio-temporal
data mining.

VOLUME 9, 2021

XIAOLIN XIA received the B.S. and M.S. degrees
in geomatics from the University of Givle,
Sweden, in 2011 and 2013, respectively, and the
Ph.D. degree in cartography and geographic infor-
mation engineering from the Shandong Univer-
sity of Science and Technology, Qingdao, China,
in 2017. From March 2014 to June 2017, she
was a Visiting Doctoral Student with the State
Key Laboratory of Resources and Environmental
Information System, Institute of Geographic Sci-
ences and Natural Resources Research (IGSNRR), Chinese Academy of
Sciences (CAS), Beijing, China. She currently holds a postdoctoral posi-
tion with the Guangzhou Institute of Geography, Guangzhou, China. Her
research interests include environmental health, hydrologic remote sensing,
and spatio-temporal data mining.

WENLONG JING received the Ph.D. degree from
the State Key Laboratory of Resources and Envi-
ronmental Information System, Institute of Geo-
graphic Sciences and Natural Resources Research
(IGSNRR), Chinese Academy of Sciences (CAS),
Beijing, China, in 2017. He is currently an Assis-
tant Professor with the Guangzhou Institute of
Geography. His research interests include hydrol-
ogy remote sensing and machine learning tech-
niques.

YANGXIAOYUE LIU received the B.S. degree in
geography science from Shandong Normal Uni-
versity, Jinan, China, in 2013, the M.S. degree
in cartography and geographical information sys-
tem from the Shandong University of Science
and Technology, Qingdao, China, in 2016, and
the Ph.D. degree in cartography and geographical
information system from the State Key Laboratory
of Resources and Environmental Information Sys-
tem, Institute of Geographic Sciences and Natural
Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Bei-
jing, China, in 2019. She currently holds a postdoctoral position with the
Guangzhou Institute of Geography, Guangzhou, China. Her research inter-
ests include satellite-based environment remote sensing and spatio-temporal
data mining.

12073



