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ABSTRACT Vehicle detection and classification plays an important role in intelligent transportation system.
Compared with traditional detectors, the detection and classification based on traffic surveillance video
shows a huge advantage in its flexibility and continuity. However, to get wide applicability and strong
robustness, most current methods focus on improving the accuracy of detectors by adjusting network
parameters constantly, or increasing the size of training sets, which challenges the collection and labeling
of data, the performance of computers, the scope of application and so on. Moreover, the unique continuity
characteristic of the video, which can be used to describe themotion features of vehicle, is often ignored. Take
these facts into account, this paper proposed a video-based vehicle detection and classificationmethod, which
is based on static appearance features and motion features both. Four detectors of different performance were
trained with small training sets, and the designed algorithms for the remove, selection and reorganization of
detected objects contribute to obtaining the optimal results of detection and classification. The experiment
results show that the proposed method is able to detect and classify vehicles with more than 0.95 accuracy
dealing with different road environments.

INDEX TERMS Video-based, vehicle detection, vehicle classification, static appearance features, motion
features, deep learning, intelligent transportation system.

I. INTRODUCTION
With the increase of traffic pressure in recent years, intel-
ligent transportation system (ITS) becomes more and more
important in real-time traffic monitoring, solving traffic con-
gestion problems and improving traffic safety. One of the
most important parts in building a strong and reliable ITS is
to collect large-scale traffic information data efficiently and
accurately [1], especially for traffic volume, traffic density
and traffic speed, which are used to describe and reflect the
nature of traffic flow, whereas the detection and classification
of vehicles is one of the most basic tasks to obtain traffic data.
Therefore, how to detect and classify vehicles efficiently and
accurately is getting more and more attention.

In the past, vehicles were detected mainly based on dedi-
cated hardware [2]. The traditional detectors can be roughly
divided into two categories according to different principles:
based on wave frequency and based on magnetic frequency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

Wave-frequency-based detectors detect the frequency change
of reflected wave when the vehicle passes by to perceive the
vehicle, whereas the available wave types include ultrasonic
wave, sound wave, infrared wave and microwave, etc. The
latter is to sense the change of coil inductance through the
induction probe, such as induction coil detector, magnetic
detector and so on.

However, traditional detectors are often inconvenient for
installation and maintenance [3] and cost a lot, and they
are also sensitive to ambient temperature, or airflow change.
Except for these, one of the most important disadvantages
is its low update rate of traffic information. In comparison,
video-based method for vehicle detection and classification
shows great advantages. Traffic surveillance video consists
of a series of static traffic images in the form of contin-
uous frames, changing by more than 24 frames per sec-
ond. By analyzing and processing the continuous traffic
images, the detection and classification of moving vehicles
can be realized efficiently. Moreover, with the advantages
of easy installation and maintenance, low cost, and
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FIGURE 1. The summary of methods for vehicle detection and
classification.

visualization, vehicle detection and classification based on
video has attracted a lot of attentions in traffic information
collection and becomes more and more important in the field
of intelligent transportation.

In this paper, a vehicle detection and classification frame-
work based on traffic video with wide applicability and
strong robustness was proposed, and the static appearance
features and motion features of vehicle were both applied in
our system. To be specific, different detectors were trained
on deep learning network with small training sets, which
were based on the static appearance features and motion
features respectively; at the same time, the algorithms for
the remove, selection and reorganization of detected objects
were designed to obtain the optimal results of detection and
classification.

The rest of the paper is structured as follows: Section II
introduces the related work of vehicle detection and classi-
fication. In Section III, we introduced a method for vehicle
detection and classification. The training of different detec-
tors was introduced in Section III-A, the remove of appar-
ently false detection was in Section III-B, and the selection
and reorganization of detected objects was in Section III-C.
The experimental datasets and results were presented in
Section IV. The discussion and conclusion were in Section V
and Section VI.

II. RELATED WORK
At present, vehicle detection and classification technologies
based on video can be generally divided into two categories:
based on the inherent appearance features of static vehicles
and based on motion features of moving vehicles. Many
scholars have studied these two methods, and both methods
have their own advantages and disadvantages. The summary
of methods for vehicle detection and classification is shown
in Fig. 1.

A. BASED ON MOTION FEATURES
Video is essentially a series of static and continuous images
that change at a rate of more than 24 frames per second.

Therefore, video has the advantage that a single static image
does not, that is, continuous images are interrelated. In other
words, a video contains the motion features of vehicle. There-
fore, the principle of method based onmotion feature is to use
the correlation between images to segment the moving vehi-
cle from the background in the form of binary image. In this
case, the video meets the requirements of this method per-
fectly for its high image refresh rate. Moreover, the motion-
based method does not require any prior knowledge but
based on a set of images to identify the vehicle with a
fast-running speed, which greatly improve its applicability
and flexibility.

By introducing the effects of ego and relative motion [4],
moving vehicles on the road can be extracted in the form of
binary images with a segment of foreground and background.
Optical flowmethod [5] has been used in vehicle detection for
a long time, which is based on optical flow [6] calculations,
and spatial features are utilized in this method. The optical
flow algorithm is suitable for multi-target motion analysis,
and the phenomenon of image block and overlap can be
avoided [7], but its stability is poor, so it is not suitable for
complex traffic environment. Therefore, some methods of
image difference were proposed. Interframe differencing [8]
is based on the difference of two or more successive image
frames, whereas background subtraction is based on the dif-
ference of moving vehicles and stationary background [2].
As for the classification, it could be realize by giving the geo-
metric features or binary features to different classifiers, such
as support vector machine (SVM), artificial neural network
(ANN), and AdaBoost [9].

Although the motion-based method is fast, it is seriously
affected by constant changes in background, environment,
video noise or other factors, the phenomenon of vehicle hole
and unnecessary noise are serious. At the same time, its
ability to classify vehicles is limited, for it is mostly based
on the area of the segmented foreground.

B. BASED ON APPEARANCE FEATURES
Appearance-based methods are more intuitive and accurate,
but require a lot of prior knowledge.

1) SIMPLE FEATURE DESCRIPTOR
In earlier methods, vehicle feature extraction is usually based
on one or several features of vehicle, such as contour [10],
texture [11], edge [12], color [13], or some parts of vehicle,
such as windshield [14], lights [15], license plates [16] and
so on. This method is very simple but not effective, because
good feature extraction is often difficult to be obtained based
on the simple description.

2) LOCAL FEATURE DESCRIPTOR
With the deepening of study, some methods based on local
features [3] were proposed. This kind of method is to extract
the vehicle by constructing some local feature descriptors [3].
For example, Histograms of Oriented Gradient (HOG) [17] is
based on the evaluation of highly normalized local histogram
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of image gradient direction in a dense grid, whereas Harr-like
feature descriptor is based on Haar basis functions [18] and
was proposed by Viola and Jones [19] first. Compared with
the previous simple feature descriptor, the robustness of this
method was significantly improved.

3) DEEP LEARNING METHOD
In recent years, the method of deep learning (DL) has devel-
oped rapidly in the aspect of target detection, which shows
a strong feature extraction ability and greatly improves the
detection. Convolutional Neural Network (CNN) is one of
the most successful applications and the AlexNet proposed
by Krizhevsky et al. [20] had shown superior performance
compared to previous approaches.

On this basis, some two-step detection methods were
put forward step by step to improve the speed or accu-
racy, such as Spatial Pyramid Pooling Network (SPPNet),
Region-based Convolutional Neural Network (R-CNN), Fast
Region-based Convolutional Neural Network (Fast R-CNN),
Faster Region-based Convolutional Neural Network (Faster
R-CNN), Mask Region-based Convolutional Neural Net-
work (Mask R-CNN) and so on. By introducing a SPP
layer [21], SPPNet allows CNN model to generate a fixed
length sequence to realize the calculation of feature map for
the entire image only once, which speeds up the process
greatly. Similarly, R-CNN [22] transforms the target region
into a fixed image size and uses a selective search method.
Whereas Fast R-CNN [23] allows us to train both the detector
and the boundary box regression, which is an improvement
of SPPNet and R-CNN. By introducing a network called
Region Proposal Network (RPN), Faster R-CNN [24] could
realize the simultaneous implementation of regional proposal
generation and detection tasks.WhereasMask R-CNN [25] is
an extension of Faster R-CNN to solve the instance segmen-
tation problem, but it also adds some computational overhead
to the network.

To further speed up the algorithm, one-step detection
method was proposed, such as You Only Look Once
(YOLO) [26], Single Shot Multi-Box Detector (SSD) [27],
Retina-Net [28], SqueezeDet [29], CornerNet [30], etc.
Instead of using regions to locate targets in two-step methods,
the one-step applies the entire image to a CNN. This method
divides the whole image into regions and predicts the bound-
ary box and probability of each region. However, we have
to admit that the increase of speed comes at the expense of
the decrease of accuracy to some extent. Accuracy and speed
often cannot be both, just as the accuracy of a simple feature
descriptor is far lower than a DL method.

C. SHORTCOMINGS OF PREVIOUS METHODS
1) BASED ON MOTION FEATURES
As mentioned in Section II-A, motion-based method makes
good use of the motion features of vehicles and has a
fast-computing speed, but the results are of lower accuracy.
Moreover, the ability to classify vehicles is often limited.

2) BASED ON APPEARANCE FEATURES
• High Requirements for Prior Knowledge and Computer
Performance

For the appearance-based method, it is more intuitive, but
a lot of prior knowledge and repeated training are needed to
obtain a high-precision detector. As is known to all, the high
performance of feature detector is often achieved through
a large amount of prior knowledge and complex training
models, which brings certain challenges to the size of training
set, the high performance of computer and the training time.
For example, in [31], 6,467 images were selected for Faster
R-CNN training on a computer workstation with Intel(R) i7-
8700 @3.20 GHz CPU, 16 GB of RAM and a GTX 1060Ti
GPU); in [32], over 10,000 vehicle imageswere put intoMask
R-CNN to train the feature detector on a desktop computer
with Intel i9-7980XE (18 cores and 36 threads) @ 4.2Hz,
64 GB DDr4 (3200MHz) memory and two Nvidia 2080ti
GPUs; whereas in [33], 83,791 images were used for training
Yolo-v3 model on four NVIDIA GeForce GTX TITAN XP
GPU with 12GB memory. Moreover, labeling a large number
of images is also a bulky work.
• Difficult Selections of Appropriate Training Set, Train-
ing Network and Parameters

For different road environments, the selection of training
set, training network and parameters should be adjusted sep-
arately according to different road environments.

For the training set, however, the more training images are
not necessarily the better, because too many training images
are prone to over-fitting, whichwill directly lead to the greatly
reduced application scope of the detector. The size of training
set should be adjusted according to the network hierarchy
we built. Take the network depth and number of parameters
as examples to illustrate. As shown in Table 1, the depth
and number of parameters in different networks vary greatly,
so the sizes of training set training with different networks
are naturally different. At the same time, the quality of image
used for training is very important, which will also affect the
reliability of a detector.

TABLE 1. The depth and number of parameters in different networks.

Likewise, the network selection and parameter adjustment
for training are also very important. The inputs [34] that
need to be adjusted may include the initial learning rate,
the way for updating the learning rate, the contribution of
previous step, the gradient threshold, etc. For the adjust-
ment of parameters, for example, the choose of gradient
descent optimization algorithm [35] could be the stochastic
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FIGURE 2. Block diagram of the proposed framework.

gradient descent with momentum (SGDM), or the root mean
square prop (RMSprop), whereas the corresponding param-
eters may include batch size, momentum, weight decay,
and so on.

Unfortunately, however, there is no standard to measure
how well a network is set up, which further increases the
difficulty of detector training. Therefore, in order to improve
the reliability of detectors, what we could do may be keeping
trying and researching to get better rather than the best results.
Moreover, the detection is only based on static images, which
is a waste from a video perspective.

Based on the shortcomings introduced above, a vehicle
detection and classification method that requires less prior
knowledge for deep learning was proposed. At the same time,
different from previous studies, we did not focus on the train-
ing of high-precision detectors. Instead, we combined the
detected results of different detectors trained with appearance
and motion features respectively, and designed algorithms for
the remove, selection and reorganization of detected objects
to realize high robustness and a wide range of applications for
vehicle detection and classification.

III. METHODOLOGY
The proposed method is based on traffic surveillance video,
and the block diagram of proposed framework is shown
in Fig. 2.

A. DETECTORS TRAINING BASED ON STATIC
APPEARANCE FEATURES AND MOTION FEATURES
1) SELECTION OF TRAINING NETWORK
Among the three appearance-based methods mentioned in
Section II-B, DL method is the one with the highest accuracy
and the best detection effect, therefore, it was chosen to
obtain the feature detectors in this paper. Compared with
the lower accuracy of one-step method, a two-stage detector
may be a better choice. Whereas as shown in Fig. 1, Mask
R-CNN may be a more advanced two-stage method, but
it also adds some computational overhead to the network.

Therefore, considering the detection accuracy and training
speed comprehensively, we chose Faster R-CNN to train the
feature detectors.

As for the selection of backbone for training Faster
R-CNN, many mature pre-trained CNN network could be
chosen from, such as AlexNet, VGG, GoogLeNet, ResNet
and so on. The first to catch our attention was AlexNet
designed by Krizhevsky et al. [20], which won the first
prize due to its excellent performance in ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2012 [39].
Compared with other up-and-comers, AlexNet has a lower
accuracy, but its speed is relatively faster. To compare the
performance of different networks in terms of accuracy and
running time, we carried out the experiments of training
detector with different backbones. Based on the proposed
method introduced in the next sections, the accuracy and
running time of different backbones were calculated respec-
tively. Using the AlexNet as a benchmark, we measured the
improvement in accuracy and the increase in running time.
As shown in Table 2, compared to AlexNet, the improved
accuracy of other backbones is limited, but the time consump-
tion has increased significantly. Therefore, considering the
two factors of accuracy and running time comprehensively,
AlexNet was selected as the backbone for training Faster
R-CNN in this study.

TABLE 2. The performance of different networks.

2) SELECTION OF TRAINING SET WITH SMALL SIZE
Different from previous studies, we no longer focus on how
to improve the reliability of one detector continuously, but
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train different detectors based on different small training sets,
and realize high-precision vehicle detection by utilizing the
complementarity of performance of different detectors.

For the selection of training set, compared with highway,
the environment of urban road is more complicated, and the
difficulty of detection and classification is also increased.
Therefore, a city traffic surveillance video was chosen as the
source of our training set. The selected video, named Video I,
was recorded by ourselves in Nanjing, Jiangsu, China, and
can be obtained from [40]. It is a five-minute video with a
frame rate of 30 fps, so this video contains 9,000 frames.
In this five-minute video, there are 90 vehicles (1,080 v/h)
and 16 are large, accounting for 17.78%.

Two static detectors will be trained based on static appear-
ance features with RGB image, and twomotion detectors will
be trained based on motion features with binary image in this
paper. The training sets of the static detectors and the motion
detectors are the same, except that the former ones are in
RGB, and the latter ones are in binary.

Two small training sets were constructed for training,
which contained only 100 and 200 images respectively,
named Training-100 and Training-200. In order to make the
image contain more features, a selection rule was designed.
The 9,000 frames were divided into 100 groups averagely
in chronological order first, so that each group contains
90 images. The second step is for image selection. To illus-
trate the selection better, take the selection of Training-200 as
an example. Two images will be selected randomly from
each of these 100 groups. In each selected frame, at least
one vehicle should be contained. If not, a new image will be
randomly selected from the same group until the new selected
frame contains at least one vehicle. Finally, the 200 selected
frames will be randomly scrambled to form Training-200.
Training-100 was selected using the same rule, except that
in second step, only one image will be selected from each
group.

Therefore, based on Training-100 in RGB and Training-
200 in RGB, two static detectors could be trained, and
we named them as Static-100 and Static-200. Likewise,
the two motion detectors could be named asMotion-100 and
Motion-200.

3) CLASSIFICATION OF VEHICLE
In the previous research on vehicle classification, the focus
was on how to divide vehicles into as many classes as pos-
sible in order to obtain more detailed results. For example,
Sun and Ritchie [41] divided vehicles into seven different
types. Although under this kind of classification, the results
were detailed. However, with the development of automobile
industry, there are more and more vehicle styles and shapes,
and sometimes it is difficult to distinguish different the class
of a vehicle accurately and meticulously by our human, not
to mention machine learning. Moreover, to collect so many
types of vehicles in actual traffic environments is not an
easy task, and higher requirements will also be put forward
for the size of training set. At the same time, according

to [42], considering that different types of vehicles have
different effects on traffic, vehicles are categorized into two
types (passenger car and heavy vehicle) to analyze the traffic.
Therefore, taking the above factors into consideration, we no
longer classified vehicles in detail, but divided them into two
big categories: small vehicles and large vehicles in this study.

However, the classification did not stop there. Due to the
continuity of image sequence, for the vehicle detection and
classification, there is a big difference between a video and a
single and isolated image, that is, there are many incomplete
vehicles in a video. Just like Fig. 3 shown, each vehicle in the
video will go through a process from complete (Fig. 3a,c) to
incomplete (Fig. 3b,d) before disappearing from the image,
and the features of complete and incomplete vehicles are
very different. Therefore, complete vehicles and incomplete
vehicles should be regarded as different classes. In this case,
vehicles were divided into four classes, namely complete
small vehicle (CS), incomplete small vehicle (IS), complete
large vehicle (CL) and incomplete large vehicle (IL), shown
in Fig. 3.

FIGURE 3. Interpretation of vehicle classification. (a) Complete small
vehicle (CS). (b) Incomplete small vehicle (IS). (c) Complete large vehicle
(CL). (d) Incomplete large vehicle (IL).

4) TRAINING SET LABELING AND GROUND TRUTH DATA
To train a detector, images labeled with ground truth label
data are necessary. The Image Labeler app—a MATLAB
application, which provides an easy way to manually mark
rectangle bounding box—was chosen to obtain the ground
truth label data of training sets, whereas the obtained data
generally contains information of data source, label defini-
tions, and ground truth data according to the labeling. The
output of labeled ground truth data in each Frame k includes
the descriptions of the position, size, and category of each
bounding box for each object, which could be expressed as:

Bboxk
=
[
Xupper-left Y upper-left Width Height Class

]

=


xupper-left1 yupper-left1 width1 height1 class1
xupper-left2 yupper-left2 width2 height2 class2

...
...

...
...

...

xupper-leftM yupper-leftM widthM heightM classM


(1)

where Xupper-left and Y upper-left represent the horizontal and
vertical coordinates of the upper left corner,Width andHeight
represent the width and height of the bounding box, and M
represents the number of objects in Frame k .
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It is worth noting that, the vehicles far away (upper part of
the image) are too small, so it is not conducive to marking,
training and subsequent identification. Therefore, vehicles
that were too small in the distance were not marked in this
study. Take the images in Fig. 3 as examples for the illus-
tration of labeling vehicles with Image Labeler, the labeling
results are shown in Fig. 4.

FIGURE 4. Labeling results of the images shown in Fig. 3.

5) DETECTED DATA OF TEST SET
When detecting an image with trained detector, not only
the position (Xupper-left ,Y upper-left ), size (Width and Height),
category (Class) of each bounding box could be obtained, but
also the confidence level (Score). Similarly, the four outputs
could be unified into a matrix. In order to distinguish it from
the Bbox in training set, we named the matrix box, which
could be expressed as:

boxdetectork

=
[
Xupper-left Y upper-left Width Height Class Score

]

=


xupper-left1 yupper-left1 width1 height1 class1 score1
xupper-left2 yupper-left2 width2 height2 class2 score2

...
...

...
...

...
...

xupper-leftN yupper-leftN widthN heightN classN scoreN


(2)

where boxdetectork means the detected result of Frame k using
Detector detector ; whereas N is the total number of detected
objects.

6) DETECTORS TRAINING BASED ON STATIC APPEARANCE
FEATURES
The training of the two static appearance feature detectors
(Static-100 and Static-200) were operated on Training-100 in
RGB and Training-200 in RGB respectively. The SGDM
algorithm [43] was utilized to update the weights with param-
eters of 0.9 momentum. The global training process was
conducted for an epoch batch size of 20, and a maximum
of 100 of iterations, whereas the initial learning rate was set
to 10−4.

To better illustrate our method, we selected a frame
(k = 979) to show the results of each process in the form
of an image, here we called its RGB form as IRGBk . In the
selected frame, there are two complete small vehicles (CS),
one incomplete small vehicle (IS), one complete large vehicle
(CL) and one incomplete large vehicle (IL). Static-100 and
Static-200 were used for vehicle detection and classification.
Using the expression form of (2), we express the two initial

results as box-1Static-100k and box-1Static-200k . The serial num-
ber i, Class and Score of each detected bounding box were
marked in IRGBk for easy observation, shown in Fig. 5a,b.
For box-1Static-100k , seven objects were detected, whereas

two of them were a pair of detection on a same complete
large bus (box-1Static-100k 2 and box-1Static-100k 6), and one was
noise (box-1Static-100k 7). For box-1

Static-200
k , eight objects were

detected, and there were three detection pairs on the same
vehicle. More details are shown in Table 3. According to
the analysis, it could be found that the detection results of
Static-100 and Static-200 were different, which illustrated
that different detectors have different recognition perfor-
mances for a same image.

7) DETECTORS TRAINING BASED ON MOTION FEATURES
Different from the static appearance features reflected in
RGB images intuitively, motion features cannot be directly
obtained. Therefore, the training of motion feature detector
is relatively complex, because the motion features should be
extracted first.

Different from RGB images, a pixel of a binary image has
only two values, namely 1 (white) and 0 (black). However,
with these two values, a binary image could describe the posi-
tion and shape of the vehicle, because it is the segmentation
of the vehicle and the background. In this case, such binary
segmentation image is a tool to extract the motion features.

The method based on the difference between stationary
background andmoving vehicle was used to obtain the binary
images, and the background model was established with the
statistical median method [44]. Since a binary image has only
two values, compared with a RGB image, it is more intuitive
to reflect the shape and position information of the vehicle.

The training of motion feature detectors was conducted
on binary images. The selection and parameter setting of
the training network are consistent with the training of static
appearance feature detectors, whereas the classification of
vehicle (CS, IS, CL and IL) and the two training sets are also
the same. The difference is that the training sets need to be
converted to binary images first.

Let us make a comprehensive analysis of the performance
of the four detectors. As shown in Table 3, the detection
results of each detector were different, which illustrated that
different detectors have different recognition performance
for a same image. At the same time, the error of missing
detection seems more common for the motion detectors,
whereas the errors of repeated detection on a same vehicle
and noise seems more common for the static detectors, which
further explained the different performance of detectors and

TABLE 3. Analysis of the performance of four detectors.
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their good complementarity. In the latter sections, how to
utilize the complementarity of different detectors to improve
the robustness and generalization ability of vehicle detection
algorithm will be introduced.

B. REMOVE OF APPARENTLY FALSE DETECTION
As shown in Fig. 5, some detected objects were apparently
false, such as objects beyond the driveways, objects whose
bounding box size does not match the vehicle size, objects
with low confidence, and so on. In this case, these kinds of
object could be removed based on some rules.

FIGURE 5. Initial detection of the selected frame based on the four
detectors. (a) box-1Static-100

k . (b) box-1Static-200
k . (c) box-1Motion-100

k .
(d) box-1Motion-200

k .

1) REMOVE BASED ON DETECTION AREA
The detection area should be defined first. Based on the com-
mon sense that vehicles only driving on the road, the delin-
eation of detection area was set roughly the same as the
driveway. Moreover, as mentioned in Section III-A, vehicles
in the distance are too small for marking and identification,
so the detection area is reduced a little relative to the driveway.
The detection area is shown in Fig. 6a. At the same time, it is
important to note that, the origin of coordinates was set in the
upper left corner in this study.

A rule for determining whether a vehicle is within the
detection area was set, that is, as long as a part of the vehicle
enters the detection area, the vehicle is considered to be
within the detection area, not requiring all parts. As shown
in (2), the position of Object i is described by the upper
left corner (xupper-lefti , yupper-lefti ). However, as stated in the
rule above, the upper left corner of a bounding box is not
applicable to describing the position of a box. Based on this,
the midpoint of the lower boundary (x lower-midi , ylower-midi )
was used to describe the position for determining whether a

FIGURE 6. The interpretations of detection area and midpoint, and a
remove example. (a) The detection area. (b) The midpoints of
box-1Static-200

k . (c) The remove of Object 6.

vehicle is in the detection area, which could be expressed as:

x lower-midi = xupper-lefti +
1
2
× widthi

ylower-midi = yupper-lefti + heighti (3)

Take the initial detection of box-1Static-200k as an example. The
midpoints of each objects are marked in Fig. 6b.

As shown in Fig. 6a, the horizontal Boundary AB could
be used as the upper boundary. Moreover, just like the
box-1Motion-100k 1 shown in Fig. 5c, the bounding box could
not completely cover the detected object in some cases, so it
is necessary to give a certain floating interval when setting
the upper boundary. In this case, whether boxdetectork i should
be removed under the constraint of upper boundary, the fol-
lowing condition should be met:

removeupperi =

{
1, if ylower-midi ≤ bAB + T upper

0, otherwise
(4)

where bAB is the intercept of Boundary AB, whereas T upper

is the floating interval for upper boundary. As for the lower
boundary, there is not much significance in setting, because
Boundary CD is almost attached to the lower boundary of the
image, that is, the disappearance of a bounding box in the
image represents the departure of the vehicle.

Similarly, for the left and right boundary, Boundary AD
and Boundary BC were taken as the boundaries, and the
remove conditions based on left and right boundary could be
expressed as:

removelefti

=

{
1, if ylower-midi ≤ (kAD × x lower-midi + bAD)+ T left

0, otherwise

(5)

removerighti

=

{
1, if ylower-midi ≤ (kBC × x lower-midi + bBC )+ T right

0, otherwise

(6)

where kAD and kBC are the slopes of Boundary AD and
Boundary BC, whereas bAD and bBC are the intercepts. T left

and T right are the floating intervals for left and right boundary
respectively. As shown in Fig. 6b, box-1Static-200k 6 met the
remove condition of left boundary, so it should be removed.
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2) REMOVE BASED ON SIZE OF BOUNDING BOX
Generally speaking, the size of a vehicle is limited within a
certain range. Therefore, the size of its bounding box is also
limited in both width and height, which can be used as a prior
knowledge to remove false detected objects.

Before introducing the limit range of bounding box size,
a method to determine which lane a vehicle belongs to should
be given. As shown in Fig. 7a, a four-lane road is divided by
five lane lines, that is L1, L2, L3, L4 and L5. In this case, it is
only necessary to know the slope and intercept of each lane
line to determine which lane the vehicle belongs to. Similarly,
the midpoint of the lower boundary of a box was used to
determine the position of a detected object. Therefore, for
Object i, the lane number (lane) which it belongs to could
be expressed as:

lane

=



1, if
ylower-midi −bL1

kL1
≤x lower-midi <

ylower-midi −bL2
kL2

2, if
ylower-midi −bL2

kL2
≤x lower-midi <

ylower-midi −bL3
kL3

3, if
ylower-midi −bL3

kL3
≤x lower-midi <

ylower-midi −bL4
kL4

4, if
ylower-midi −bL4

kL4
≤x lower-midi <

ylower-midi −bL5
kL5

(7)

where kL1 , kL2 , kL3 , kL4 , kL5 and bL1 , bL2 , bL3 , bL4 , bL5
represent the slope and intercept of each lane line.

Since the video is not shot vertically towards the road,
the level of distortion varies for each position in the video.
However, for the sake of research, in the horizontal direction,
we only divide the difference into four segments based on
these four lanes. As for the vertical direction, it is a little more
complicated. According to the principle of linear propagation
of light, in order to obtain the magnitude of a bounding
box at any position of the lane, we only need to know its
width and height at any two points. In this case, the slope
and intercept could be calculated first before determining the
standard height and width of a bounding box on the lane.

As mentioned before, vehicles were divided into four
classes, that is complete small vehicle (CS), incomplete small
vehicle (IS), complete large vehicle (CL) and incomplete
large vehicle (IL). Therefore, different restrictions should be
given to these four classes. For the complete vehicles (CS and
CL), it could be expressed in (8), as shown at the bottom of
the next page, where size = width, height; class = CS,CL;
lane = 1, 2, 3, 4. ksize,class,lane and bsize,class,lane represent
the slope and intercept of width or height for class on lane
respectively. sizeclass,lane and ylower-midclass,lane should be determined
respectively according to different class and lane. As for the
incomplete vehicles (IS and IL), only the width should be
restricted, because the height of the incomplete is indepen-
dent of the height of the vehicle itself. In this case, kwidth,IS
and bwidth,IS equal to kwidth,CS and bwidth,CS for small vehicle,
whereas kwidth,IL and bwidth,IL equal to kwidth,CL and bwidth,CL

FIGURE 7. Interpretations of the lane, the illustration of calculating
process of k and b, and an example. (a) The four lanes. (b) The vehicles in
the distance. (c) The vehicles in the near. (d) The example.

for large. As for kheight,IS , bheight,IS , kheight,IL and bheight,IL ,
there is no need to calculate as explained above. In this
case, the slope and intercept of incomplete vehicles could be
expressed as:

kwidth,IS = kwidth,CS , bwidth,IS = bwidth,CS
kwidth,IL = kwidth,CL , bwidth,IL = bwidth,CL
kheight,IS = 0, bheight,IS = 0

kheight,IL = 0, bheight,IL = 0 (9)

Here we use the example of calculating ksize,CS,2, bsize,CS,2,
ksize,IS,2 and bsize,IS,2 to illustrate the calculation process.
A complete small vehicle driving on Lane 2 in the distance
(Fig. 7b) and in the near (Fig. 7c) was chosen randomly.What
we need to obtain is widthnearCS,2, height

near
CS,2, y

lower-mid
CS,2

near

(from Fig. 7b), and widthfarCS,2, height
far
CS,2, y

lower-mid
CS,2

far
(from

Fig. 7c). In this case, kwidth,CS,2, bwidth,CS,2, kheight,CS,2 and
bheight,CS,2 could be calculated following (8). As for IS,
according to (9), kwidth,IS,2 = kwidth,CS,2, bwidth,IS,2 =

bwidth,CS,2, kheight,IS,2 = 0, bheight,IS,2 = 0.
Therefore, for Object i, the standard height and width of

its bounding box could be determined with ksize,class,lane and
bsize,class,lane, which could be expressed as:

sizestdi = ksize,class,lane × ylower-midi + bsize,class,lane (10)

where size = width, height; class = CS, IS,CL, IL; lane =
1, 2, 3, 4, whereas lane is determined by (7). In this case,
the size of bounding box i could be restricted by widthstdi and
heightstdi . At the same time, a certain amount of adjustment
space should be given within the standard scope. Therefore,
whether Object i should be removed, the following conditions
should be met:

removesizei =


1, if {sizei ≤ sizestdi × T

size
low }

∨{sizei ≥ sizestdi × T
size
high }

0, otherwise

(11)

where size = width, height; 0 ≤ T size
low ≤ 1 ≤ T size

high . T
size
low

and T size
high represents the minification and magnification of

widthstd and heightstd respectively.
A complete small vehicle (CS) driving on Lane 2 was

selected randomly as an example for illustration. The detected
results were marked in yellow, whereas the widthstdi and
heightstdi were marked in green. As shown in Fig. 7d, its
widthi and heighti did not meet the remove conditions of size,
so it should not be removed.
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3) REMOVE BASED ON MOTION FEATURES
As we mentioned in Section III-A, the pixel value of 1 or 0 in
a binary image can be used to judge the state of a point, static
or moving. Therefore, the correctness of a detected object can
be distinguished based on the pixel values of binary image.
In this case, for Object i, the ratio of pixel = 1 in its bounding
box shouldmeet certain conditions, which could be expressed
as:

motioni =

∑
pixel(x, y)

widthi × heighti
(12)

where

x ∈ [xupper-lefti , xupper-lefti + widthi]

y ∈ [yupper-lefti , yupper-lefti + heighti] (13)

where pixel(x, y) represents the pixel value at position (x, y)
within its bounding box, whereas motioni represents the ratio
of pixel = 1. Therefore, under the constraint of motion
features, whether Object i should be removed, the following
condition should be met:

removemotioni =

{
1, if motioni ≤ Tmotion

0, otherwise
(14)

where Tmotion is the threshold for the ratio of pixel = 1. Take
the initial detection of box-1Static-100k as an example. As shown
in Fig. 5, it is obvious that removemotion7 equals to 1. In this
case, box-1Static-100k 7 was noise and should be removed.

4) REMOVE BASED ON DETECTED CONFIDENCE
A detected object with a low confidence level should be
rejected. Therefore, under the constraint of detected confi-
dence, whether Object i should be removed, the following
condition should be met:

removescorei =

{
1, if scorei ≤ T score

0, otherwise
(15)

where T score is the threshold for the detected confidence.
Take the initial detection (Fig. 5) of the selected test frame
as examples. The detected confidences of the initial detec-
tion are listed in Table 4. With T score = 0.8 as threshold,
the objects shown in bold should be removed.
Through the four kinds of constraints above, whether

Object i should be removed preliminarily, the following con-
ditions should be met:

removei =

{
1, if

∑
remove basisi ≥ 1

0, otherwise
(16)

TABLE 4. Detected confidences of the initial detection.

where basis = upper , left , right , width, height , motion,
score. The remove results (box-2detectork ) of the selected test
frame are shown in Fig. 8.

FIGURE 8. Remove results of the selected frame. (a) box-2Static-100
k .

(b) box-2Static-200
k . (c) box-2Motion-100

k . (d) box-2Motion-200
k .

C. FINAL SELECTION
1) INCORPORATION OF ALTERNATIVE OBJECTS
So far, four modified results (box-2detectork ) of the selected
test image have been obtained. Shown in Fig. 8, there were
a total of 16 alternative objects in these four remove results,
whereas there were only five correct objects (two complete
small vehicles, one incomplete small vehicle, one complete
large vehicle and one incomplete large vehicle) that really
need to be detected. In this section, we will explain how to
select the optimal results from these 16 alternative objects.

In order to better analyze and filter the alternative objects,
a new variable was created, which is called box-Altk .
We incorporated all of the alternative objects into this vari-
able, which could be expressed in (17), as shown at the bottom
of the next page, where n1, n2, n3, n4 represent the total num-
ber of object in box-2Static-100k , box-2Static-200k , box-2Motion-100k
and box-2Motion-200k respectively, and the box-Altk of the
selected test frame is shown in Fig. 9b.

2) INTRODUCTION OF TWO IMPORTANT DISCRIMINANT
METRICS
Before making the selection, two important metrics that
describe the relationship of objects need to be elaborated.
The first discriminant index is the description of the position
relation of the center point of bounding box. In this study, that

ksize,class,lane =
sizenearclass,lane − size

far
class,lane

ylower-midclass,lane
near
− ylower-midclass,lane

far

bsize,class,lane =
sizefarclass,lane × y

lower-mid
class,lane

near
− sizenearclass,lane × y

lower-mid
class,lane

far

ylower-midclass,lane
near
− ylower-midclass,lane

far (8)
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FIGURE 9. Alternative objects and final selection of the selected frame.
(a) IRGB

k . (b) box-Altk . (c) box-finalk . (d) box-finalk marked in different
colors.

boxi is contained by boxj was defined as:

contained i&j
i

=

{
1, if {x leftj ≤x

center
i ≤xrightj }∧{yleftj ≤y

center
i ≤yrightj }

0, otherwise
(18)

where

x leftj = xupper-leftj , yleftj = xupper-leftj

xcenteri = xupper-lefti +
1
2
× widthi,

ycenteri = yupper-lefti +
1
2
× heighti

xrightj = xupper-leftj + widthj,

yrightj = yupper-leftj + heightj (19)

The second metric is to examine the coincidence relation-
ship between the two objects, which was used to describe the
proportion of coinciding area to its own area. The proportion
of boxi to its own area could be expressed as:

coinciding i&j
i =

widthi&j × height i&j

widthi × heighti
× 100% (20)

where

widthi&j = min(xrighti , xrightj )− min(x lefti , x leftj )

height i&j = min(yrighti , yrightj )− min(ylefti , yleftj ) (21)

3) IDENTIFICATION OF DETECTION ON SAME VEHICLE
Obviously, if two objects are the detected results of a same
vehicle, they must overlap to some extent. When boxi and
boxj meet one of the following conditions, we consider boxi
and boxj overlap:

a. boxi is contained by boxj, or boxj is contained by boxi;
b. The proportion of boxi or boxj is over a certain thresh-

old.

Here we use pair i&j to represent the class combination of
boxi and boxj, which could be expressed as:

pair i&j =



1, if classi = classj
2, if (classi = CS, classj = IS) or

(classi = IS, classj = CS)
3, if (classi = CL, classj = IL) or

(classi = IL, classj = CL)
4, otherwise

(22)

In this case, whether boxi and boxj overlap could be expressed
as:

overlapi&j=


1, if (contained i&j

i +contained
i&j
j ≥ 1)

∨ (coinciding i&j
i ≥Tpair i&j )

∨ (coinciding i&j
j ≥Tpair i&j )

0, otherwise
(23)

where Tpair i&j is the threshold of contained i&j.
Therefore, if boxi and boxj are the detection on a same

vehicle, they must satisfy overlapi&j = 1. It is worth noting
that if boxj and boxl overlap, boxi and boxl should also
overlap, which could be expressed as:

overlapi&l =

{
1, if (overlapi&j = 1) ∧ (overlapj&l = 1)
0, otherwise

(24)

box-Altk
=
[
box-2Static-100k box-2Static-200k box-2Motion-100k box-2Motion-200k

]T

=



box-Altk 1
...

box-Altk n1
...

box-Altk n1+n2
...

box-Altk n1+n2+n3
...

box-Altk n1+n2+n3+n4



(17)
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For an image of Frame k , the overlapi&j of each boxi and
boxj could be integrated as a matrix Overlapk :

Overlapk (i, j) = overlapi&j (25)

where i, j = 1, 2, . . . , n1 + n2 + n3 + n4. In the mean-
while, the square matrix could be reduced to a simpler matrix
according to (24). The algorithm for simplifying Overlapk
was displayed in Table 5.

TABLE 5. The algorithm for simplifying Overlapk.

Moreover, if a row of OverlapSimk is all zero, the row will
be deleted. In this case, OverlapSimk could be simplified to a
matrix with a dimension of:

Nfinal
× (n1 + n2 + n3 + n4) (26)

where Nfinal is the final number of object that should be
detected in Frame k . Therefore, for a row, each element with
a value of 1 constitutes an alternative set of a final selected
object.

4) FINAL SELECTION FROM ALTERNATIVE OBJECTS
As mentioned above, each alternative object obtained
after Section III-B is correct. Therefore, for each row in
OverlapSimk , the object with the highest confidence was
selected as a final selected object, which could be expressed
as:

box-finalk =
[
box1 · · · boxi · · · boxNfinal

]T
(27)

where

boxi= box-Altk maxi
,

max i ∈ {max i |scoremaxi=max[scorel],Overlap
Sim
k (i, l)=1}

i = 1, . . . ,Nfinal, l = 1, . . . , n1 + n2 + n3 + n4
(28)

Take the selected frame as an example for illustration.
The Overlapk is a square matrix with a dimension of 16
(n1 + n2 + n3 + n4 = 16), and it could be simplified to
a 16 × 5 matrix using the algorithm introduced in Table 5,
which means that the final number of detected objects in the
selected frame is five (Nfinal

= 5). To better illustrate the
problem, we annotated i, classi and scorei of each alternative

object if OverlapSimk (i, j) = 1, and displayed its tabular form
in Table 6.
The object with the highest confidence box-Altk maxi

was
marked in bold in each column. In this case, the final selec-
tion from the 16 alternative objects in (27), as shown at the
bottom of the next page, shown in Fig. 9c. Moreover, to show
the results more clearly, different classes were displayed in
different colors, shown in Fig. 9d.

IV. EXPERIMENTAL RESULTS
A. EVALUATION INDEX
In this paper, five standardized evaluation indexes were cho-
sen to evaluate the experimental results, that is, Acc, Recall,
Precision, F-measure and Kappa.

The first metric Acc [48] is the overall accuracy which is
the proportion of successfully detected and correctly classi-
fied frames in one video:

Acc =
Correctly Detected and Classified Frame No.

Testing Frame No.
(30)

Recall is the percentage of successfully detected and
correctly classified objects in all relevant objects, whereas
Precision is the percentage of successfully detected and cor-
rectly classified objects in all detected objects. F-measure
is the weighted harmonic average of Recall and Precision,
which is a comprehensive evaluation of these two metrics.
Here we make the weights equal to each other, and the three
metrics could be expressed as [45]:

Recall =
TP

TP+ FN
, Precision =

TP
TP+ FP

(31)

F-measure =
2

1
Recall +

1
Precision

(32)

where TP is the number of vehicles successfully detected and
correctly classified, FN is the number of missed vehicles,
and FP is the number of false objects detected as vehicles or
misclassified vehicles. In this case, the average performance
of four classes for Recall, Precision and F-measure in one
video could be expressed as:

mRe =

∑
Recallclass

4
(33)

mPr =

∑
Recallclass

4
(34)

mF1 =

∑
F-measureclass

4
(35)

The last metric Kappa is a measure that expresses the
agreement between two annotators. The Cohen Kappa Score
is defined as [46]:

Kappa =
Acc− Pe
1− Pe

(36)

where Acc is the accuracy (30) and Pe is the probability of
agreement. Kappa fluctuates in the [−1, 1], where Kappa =
1 means that both annotators are in complete agreement,
whereas Kappa ≤ 0 means no agreement at all.
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TABLE 6. The tabular form of OverlapSimk .

TABLE 7. The characteristics of each video.

B. EXPERIMENTAL DATASET
For vehicle detection and classification based on traffic
surveillance video, the road environments and traffic condi-
tions have a great impact on the detection results. In terms
of road types, the traffic environment of urban roads is more
complex, so in general, urban roads bringmore disadvantages
than expressways and highways. From the perspective of
weather, cloudy weather tends to bring about the impact of
sudden illumination changes in video images, whereas the
shadow of vehicles also affects the detection results under
sunny conditions. Different shooting angles could also have
a certain influence. For example, in the video taken from
the side of the vehicle, occlusion phenomenon is relatively
more common. Traffic conditions are also an important factor.
Generally speaking, the higher the traffic flow and the higher
the proportion of large vehicles, the more difficult the vehicle
detection and classification will be.

Taking the above factors into consideration, except for the
Video I which was used to train the four detectors (Static-100,
Static-200,Motion-100 andMotion-200), sixmore real traffic
videos were selected for experiments. Video II and Video I
were recorded on the same road (Urban I), but Video II
was shot after Urban I was rebuilt (Re-Urban I), whereas
Video III was recorded on another urban road (Urban II)
with a higher traffic volume. Video IV and Video V were
recorded on two expressways in different weather conditions
(Express I and Express II) and the vehicles were shot from
the side. Video I, Video II, Video III, Video IV and Video V

were all five-minute videos with 9,000 frames, and were
recorded by ourselves in Nanjing, Jiangsu, China, which
could be obtained from [40]. To further verify the robustness
of proposedmethod, two videos taken from the rear of vehicle
on a highway (High I) in different weather conditions were
selected for experiment. They are two benchmark datasets
called M-30-HD and M-30, which could be obtained from
Road-Traffic Monitoring dataset [47]. More details of the
characteristics of each video are shown in Table 7. At the
same time, the actual vehicle number in each video and
distribution of the fours classes were also listed in Table 8.
It should be noted that the 300 frames in the training

sets (Training-100 and Training-200) were all selected from
Video I. In order to make the experimental results more
objective, these 300 frames were removed from the test set of
Video I, and the size of its test set was reduced to 8,700. More
details about the training set and test set are shown in Table 7.

C. EXPERIMENTAL RESULTS AND ANALYSIS
Four detectors (Static-100, Static-200, Motion-100 and
Motion-200) obtained by training with Video I were used
to conduct experiments on the seven videos. We selected
one frame from each of the seven videos as examples.
As shown in Fig. 10, the vehicles within the detection area
were detected and classified successfully. The robustness of
proposed method could be verified by applying it to different
videos.

box-finalk =
[
box1 box2 box3 box4 box5

]T
=
[
box-Altk 8 box-Altk 9 box-Altk 10 box-Altk 13 box-Altk 16

]T
, (29)
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TABLE 8. The class distribution in each video.

FIGURE 10. Examples of experimental results in each video.

TABLE 9. The experimental results of video I.

TABLE 10. The experimental results of video II.

TABLE 11. The experimental results of video III.

The experimental results in each video are shown
in Table 9–Table 16.

In terms of the overall results, Video I and Video II
achieved the highest accuracy and it is easy to explain. The
training sets of the four detectors were selected from Video I,
whereas Video I and Video II were recorded on a same urban
road, but in different time periods (Urban I and Re-Urban I).

TABLE 12. The experimental results of video IV.

TABLE 13. The experimental results of video V.

TABLE 14. The experimental results of M-HD-30.

TABLE 15. The experimental results of M-30.

TABLE 16. The metric results in each video.

However, as can be seen from Table 16, Video IV and M-30
also showed relatively good performance on some of the
evaluation metrics. It is mainly due to the lower ratio of large
vehicle, which reduces the frequency of errors such as vehicle
occlusion. This can also be seen in the results of Video III.
Although just like in Video I and Video II, they were both
shooting from the front, but the results of Video III were
relatively poorer than Video IV (from side) and M-30 (from
rear), which is also due to the higher ratio of large vehicle.

For Video IV and Video V, overall, the detection accu-
racy of these two videos ranked the third and the fourth,
higher than that of Video III taken from the front. Moreover,
Video IV and Video V were shot on a cloudy day and a sunny
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day respectively, but the accuracy of results did not differ
much. From these two points, it can be seen that the detection
results are more influenced by the proportion of large vehi-
cles, rather than the vehicle appearance and shooting angle,
which further reflects the robustness and wide application
range of the proposed method.

As for M-30-HD andM-30 shot from the rear, themRewas
relatively low. This is mainly due to the fact that the two static
detectors trained with the front of vehicle did not "recognize"
the rear very well.

Whereas for each specific class. According to
Table 9–Table 15,CL andCS have better performance than IS
and IL, which proves that the detectors have a better ability to
identify the complete vehicle. This is mainly due to the higher
percentage of complete vehicles in training sets.

In general, the average results of Acc, mRe, mPr ,
mF1 and Kappa were 0.9892, 0.9522, 0.9670, 0.9587 and
0.9707 respectively, which reached more than 0.95.

V. DISCUSSION
A. THE ADVANTAGES OF PROPOSED METHOD
1) SMALL SIZE OF TRAINING SET
The sizes of training set (Training-100 and Training-200)
used for training detectors were small, which are 100 images
and 200 images respectively. In this case, the difficulty of
a lot of manual labeling could be avoided and the training
time could be reduced greatly. Moreover, a small amount of
image learning can reduce the overfitting of detector, so that
the application range could be increased.

2) GOOD COMPLEMENTARITY OF DIFFERENT DETECTORS
BASED ON STATIC AND MOTION FEATURES
The four detectors (Static-100, Static-200, Motion-100 and
Motion-200) for experiments have different performances,
which makes the detectors complementary to each other.

Take Video I as an example. As shown in Table 17, themPr
of static detectors (Static-100 and Static-200) is significantly
lower than motion detectors (Motion-100 and Motion-200),
whereas the mRe is relatively higher. This illustrates that the
error of missing detection are more common for the motion
detectors, whereas the errors of detecting redundantly are
more common for the static detectors. From the perspective
of the number of training sets, compared with the detec-
tors trained with Training-100, the detectors trained with
Training-200 has a relatively lower probability of missing
detection, but the error frequency of detecting redundantly
also has a certain increase, no matter for static detectors or
motion detectors.

3) EFFECTIVENESS OF VEHICLE CLASSIFICATION FORMS
The vehicles were divided into four classes in this study,
namely complete small vehicle (CS), incomplete small vehi-
cle (IS), complete large vehicle (CL) and incomplete large
vehicle (IL). However, the purpose of such classification is

not to distinguish complete vehicles from incomplete vehi-
cles, but to improve the detection capability.

To better illustrate this point, we did a comparison experi-
ment. We divided the vehicles into two classes (small vehicle
and large vehicle) and trained themwith the same training set.
As shown in Table 17, no matter for the mRe, mPr or mF1,
the detection results based on four classes are significantly
improved compared with those based on two classes, which
proved the validity of this classification method.

TABLE 17. Experimental results of video I with different detectors.

4) WIDE APPLICABILITY AND ROBUSTNESS OF PROPOSED
METHOD
The four detectors used in the experiments were all trained
with Video I, which is a video of vehicle being shot from
the front on an urban road. To verify the wide applicability
of proposed method, six more traffic videos with different
characteristics were selected for experiments. For the loca-
tion, there were two more videos taken on urban road, and
two on expressway, two on highway. Considering the adverse
effects of sudden illumination changes on cloudy days and
shadows on sunny days, videos taken on cloudy and sunny
days were also studied. For the shooting angle, vehicles shot
from front, side and rear were all considered in experiments.
Whereas the traffic conditions (traffic flow and proportion of
large vehicles) are also in different levels for different videos.

The algorithms for remove, selection and reorganization of
detected objects were designed to realize the vehicle detection
with high robustness. In this framework, some obvious errors
will be removed first based on the detection area, the size of
bounding box, the motion features and the detected confi-
dence. The reorganization of alternative detection from the
four different detectors greatly reduces the probability of
missing error. As shown in Table 17, although the detec-
tion accuracy of the four detectors (Static-100, Static-200,
Motion-100 and Motion-200) is relatively low, thanks to the
different performance of detectors and the effectiveness of
remove, selection and reorganization, the accuracy of the final
detection has been greatly improved.

In general, the experiment results of Acc, mRe, mPr , mF1
and Kappa for each video all reached more than 0.92 as
shown in Table 16.

B. COMPARISON WITH RECENT STATE-OF-THE-ART
METHODS
Comparing with recent state-of-the-art methods, the results
of accuracy and speed are shown in Table 18. In gen-
eral, the construction of model and backbone, selection
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TABLE 18. Comparison of experimental results with recent
state-of-the-art methods.

and size of training set, setting of parameter or other
aspects could have different effects on the accuracy and
time consuming of the results. At the same time, preci-
sion and speed are often difficult to reconcile. For exam-
ple, the YOLOv2+DarkNet19 built by Sang et al. [51]
was more accurate than the others, but the speed is signifi-
cantly lower than the SSD+VGG16 built by Dai et al. [50].
Moreover, the accuracy of the results may not necessar-
ily improve with the increasing of training sets, and suit-
ability may be more important, such as SSD+ResNet [49]
and SSD+VGG16 [50], YOLOv2+DarkNet19 [51] and
YOLOv3+DarkNet53 [52].

The network used in the proposed method is Faster-
RCNN+AlexNet. Although the training sets of detectors used
in the experiments were small, benefited from the differ-
ent performance of different detectors and the effectiveness
of remove, selection and reorganization, the accuracy of
proposed method is at a relatively high level. Moreover,
compared with Faster-RCNN+VGG16 [50], the selection of
AlexNet may also contribute to the improvement of detection
speed. In general, the method presented in this paper achieves
a relative balance between accuracy and speed.

C. ANALYSIS FOR THE IMPROVEMENT OF PROPOSED
METHOD
According to the analysis in Section IV-C, errors usually
occur in two ways. The first is due to the complex traffic
environment, that is, the large vehicle block the small one,
resulting in the small one cannot appear in the image, which
is also a defect for the detection with a single frame image.
This kind of error is most often seen on complex urban roads
with a high proportion of large vehicles, such as Video I
and Video III. To think about that, the vehicle relationship
between frames could be considered to reduce missing errors.

The second one is due to the detector failure of ‘‘rec-
ognizing’’ vehicle, which occurred most in M-30-HD and
M-30. For one thing, it is because the too small vehicles at a
distance in training set were not marked, resulting the failure
of identifying the too small size of vehicles. For another thing,
it is due to the failure of "recognizing" the rear of vehicle.
Therefore, an appropriate amount of vehicles with smaller
sizes and vehicles shot from the rear could be added to the
training set to improve the detector capability.

VI. CONCLUSION
In this paper, we proposed a vehicle detection and classi-
fication method which can adapted to different roads and

environments well. Two small training sets were used to train
the four different detectors, which reduced the workload of
data collection and manual annotation. In addition, training
time could also be greatly reduced. Although the training
process is relatively less complex, benefited from the dif-
ferent performance and good complementarity of the four
detectors, as well as the algorithms for remove, selection and
reorganization of detected objects, the application scope of
this method could be expanded.

Experimental results showed that the proposed system
performs well in different traffic videos with different charac-
teristics, such as different shooting locations, weather condi-
tions, shooting angles and traffic environments. The proposed
method successfully detected and classified the vehicles with
a high performance, and the overall result reached more
than 0.95.

In future works, we intend to optimize the detection and
classification algorithms by combining the vehicle relation-
ship between frames to reduce missing errors. Also, an appro-
priate amount of vehicles with smaller sizes and vehicles shot
from the rear could be added to the training set to improve the
detector capability.
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