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ABSTRACT JPEG compression is one of the major image compression methods and is widely used on
the Internet. In addition, identifying traces of JPEG compression and double JPEG compression (DJPEG)
is crucial in the image forensics field. Therefore, JPEG compression detection and DJPEG compression
detection are two of the popular image authentication methods. Many feature-based JPEG detection methods
have been proposed for that purpose, and there have been outstanding improvements in DJPEG detection
with the development of deep learning. A number of anti-forensics of JPEG detection that counter feature-
based detectors have been proposed but only a few techniques that counter DJPEG have been researched.
This paper explores whether JPEG reconstruction methods, including restoration and anti-forensics of JPEG
detection, can deceive JPEG and DJPEG detectors. We demonstrate that existing anti-forensics of JPEG
detection can deceive both JPEG and DJPEG detectors well but perform poorly in non-aligned cases and
degrade the image quality. We propose a convolutional neural network (CNN) based anti-forensics method
to improve the performance of anti-forensics so that they can proficiently deceive JPEG and DJPEG detectors
with higher image quality. Moreover, we explore the generalization algorithm to handle the real scenario.

INDEX TERMS Anti-forensics, CNN, DJPEG detection, image forensics, JPEG detection, JPEG

restoration.

I. INTRODUCTION

Through the development of the IT industry, computers, and
smartphones have become essential parts of our lives, and
almost all data, including images, are now stored in digital
form. People exchange images and chat online about them.
Meanwhile, many images undergo various types of image
processing, which instantiates a large difference between the
processed image and the original. Image editing tools such
as Photoshop and editing smartphone apps have made it
easier for people to manipulate images nowadays. Moreover,
deepfakes and style-transfers, which have been extensively
developed through the application of deep learning, help peo-
ple edit images more effectively. Because of the impossibility
of identifying manipulated images with our eyes, they can
easily be abused. To tackle these issues, image forensics has
been widely researched. It aims at verifying the authentic-
ity of digital images without any signatures or watermarks.
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It usually investigates footprints left by copy-moves [1], splic-
ing [2], retouching [3], deepfakes [4], etc.

On the other hand, the majority of the images on the
Internet are encoded into JPEG format because of its com-
pression effectiveness. As JPEG compression is a lossy com-
pression, it leaves strong traces that can be used in forensics.
Specifically, JPEG detection can be applied for identifying
JPEG artifacts in uncompressed or losslessly compressed
file images [5]. Additionally, a history of recompression can
signify the presence of an abnormal image because it indi-
cates that tampered images have been resaved. Therefore,
many research studies on JPEG detection and double JPEG
(DJPEG) detection have been conducted.

Attackers who do not want to be exposed to JPEG and
DJPEG detectors decompress JPEG images and manipulate
them using several algorithms, as shown in Fig. 1. In doing so,
attackers must not only ensure that an image follows a single
JPEG distribution statistically but also reconstruct images to
have an invisible damaged region.

Anti-forensics, which are designed to mislead forensic
investigators, can help researchers study the vulnerabilities
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FIGURE 1. A scenario in which attackers deceive JPEG and DJPEG
detectors. The anti-forensical operation in the JPEG image disguises the
uncompressed image and was able to deceive JPEG detectors.
Recompression of the processed images could be approximated to the
single JPEG and could deceive DJPEG detectors.

of existing forensic techniques to further develop trustwor-
thy digital forensics against attackers [6], [7]. Accordingly,
applying anti-forensics of JPEG detection, which trans-
form image statistics to mislead the detectors into classify-
ing JPEGs as uncompressed, have been proposed [8]-[10].
In contrast, although DIPEG detection methods developed
through deep learning have shown promising results, there
are no previous anti-forensics analyses that target those algo-
rithms. Therefore, researchers must investigate the weak-
nesses of existing methods and devise a more reliable DJPEG
detector.

Moreover, due to the degradation of the visual quality
caused by JPEG compression, JPEG restoration tasks have
been proposed [11]-[13], to restore JPEGs to their uncom-
pressed versions, which have higher visual quality. JPEG
restoration research studies have shown competitive results
in visual quality using deep learning, but none of them
have demonstrated that they can actually remove JPEG arti-
facts [14]. However, it is plausible that JPEG restoration
could be one of the JPEG manipulation tasks that used by
attackers to remove the artifacts.

In this paper, we conduct experiments with both anti-
forensics of JPEG detection and JPEG restoration tasks to
determine whether they erase JPEG compression traces in the
cases of the JPEG and DJPEG domains. Moreover, the pre-
vious state-of-the-art anti-forensics method [10] is based
on multi-step subgradient optimization method, which is
time consuming. Furthermore, the CNN-based anti-forensics
study using a Generative Adversarial Network (GAN) was
studied but the researchers did not analyze the detectability
to DJPEG detectors and showed less undetectability [15].
In contrast to the earlier studies, we propose a convolutional
neural network (CNN) that generates higher-quality images
fast and can competently deceive JPEG and DJPEG detectors.
We propose the use of anti-forensics loss in the anti-forensics
training for removing JPEG traces, and we adopt the EDSR
network [16], which is simple and high-performing in super-
resolution, for visual quality.

We train and evaluate the proposed method with the
BossBase 1.01 [17] and BOWS2 [18] datasets. We use the
detection accuracy rate and minimum decision error for eval-
uating the undetectability and for the visual quality metrics,
we use the peak-signal-to-noise ratio (PSNR) and structural
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similarity index measure (SSIM). The contributions of our
paper are summarized as follows.

o We analyze the effectiveness of applying JPEG restora-
tion and JPEG anti-forensics methods to CNN-based
DJPEG detectors.

o« We propose a deep learning based end-to-end anti-
forensics with anti-forensical loss functions that targets
to both JPEG and DJPEG.

o We show that our trained network provides high unde-
tectability against JPEG and DJPEG detectors and
achieves a higher visual quality than previous works.

Il. RELATED WORKS

A. JPEG DETECTION AND ANTI-FORENSICS

Many researchers have developed JPEG compression detec-
tion techniques by discovering statistical differences between
uncompressed and JPEG images. Fan et al. [5] measured a
blocking signature that compares the difference in the distri-
bution of neighboring pixels at the boundary and the center.
Besides, they proposed a maximum-likelihood estimation of
the quantization table and used it for detection by counting
the number of estimated quantization tables that are larger
than 1. Luo et al. [19] proposed an algorithm using the
difference of the AC coefficients in the range (—1, 1) and in
the sum of the (—2, —1) and (1, 2) range. In the paper of
Lai et al. [20], they extracted a calibration feature for detect-
ing JPEG compression, which is an idea originating from
the research of Fridrich et al. [21]. They computed the
variances of the high-frequency discrete cosine transform
(DCT) in both the original and calibrated images, which
was cropped by four pixels both horizontally and vertically,
and used the difference of each variance for the detection.
Valenzise et al. [22] used the difference of the maximum
total variation in two images that were recompressed with
sequential quality factors (QFs). Fan et al. [23] detected
JPEG compression by recording the difference of the gra-
dient at the boundary and the center. Inter and intra block
statistics and the subtractive pixel adjacency matrix (SPAM)
feature [24], [25] were used as a feature of support vector
machine (SVM) [22], [26].

The effectiveness of anti-forensics of JPEG detection has
been studied through the statistical modification of the image.
Based on the knowledge that the DCT distribution in the AC
component can be modeled as a Laplacian distribution [27],
Stamm et al. [8] added dithering noise to the DCT histogram
that resembled the uncompressed image’s DCT distribution.
It deceived the quantization table estimation detector, but
it degraded the visual quality of images and was detected
through block measuring [5]. In [28], Stamm e? al. applied
median filtering after the dithering noise to counter block
measuring. Valenzise et al. [9] proposed a perceptual anti-
forensic dithering operation that achieved a higher visual
quality than [8]. Fan et al. [23] proposed a constraint sub-
gradient method that minimized the total variation, aiming
to smooth and match the boundary and center distribution.
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Later, Fan et al. [10] improved the visual quality of the image
by applying a multi-step deblocking method, including TV
minimization, perceptual histogram smoothing, and decali-
bration. This approach achieved a higher undetectability in
JPEG compression detection and higher visual quality than
previous attempts. However, their technique, the multi-step
subgradient method, took an excessive amount of time to
process. Singh et al. [29] diversified some of the steps of [10]
to achieve a higher visual quality, but their method had some
limitations regarding undetectability. Many algorithms for
programming anti-forensics of JPEG detection have been
proposed, and they have achieved high undetectability, but
they all degrade visual quality much.

A CNN based anti-forensics of JPEG has been stud-
ied [15]. They used a GAN network, and the discriminator
was designed as a CNN-based JPEG detector by adding a
high pass filter in front of the network. They increased the
visual quality, but they evaluated only one JPEG detector, and
showed low undetectability even though they did not compare
with the SOTA of anti-forensics of JPEG.

B. DJPEG DETECTION AND ANTI-FORENSICS

In the image forensics field, it is well known that the DIPEG
compression leaves traces, particularly in the DCT domain.
Therefore, most of the DJPEG detection methods rely on the
statistical features of DCT coefficients. To give examples,
Li et al. [30] presented a DJPEG detector that uses the first
digits of the DCT coefficients as features. Lin et al [31]
showed a DJPEG detector that could be used to localize
forged regions in images.

With the development of deep learning, the performance of
DJPEG detectors has significantly improved. Wang et al. [32]
firstly proposed a CNN-based DJPEG detector that used a
1D histogram vector to judge the number of compressions.
Barni et al. [33] improved upon this idea greatly by using a
2D histogram as an input. Park et al. [34] investigated real-
world QFs and presented a more practical scenario where
1,120 quantization matrices existed. The authors optimized
the network architecture and concatenated the quantization
matrix into the last three fully connected layers to boost
performance. The authors in [35] first proposed an end-to-
end neural 3D CNN without having to manually generate a
histogram. It improved the previous methods’ ability to utilize
raw DCT coefficients. The CNN-based DJPEG methods are
all processed in the DCT domain, and most of them are
processed in the histogram because their footprints remain in
the DCT domain rather than the pixel domain.

In contrast to the various proposed techniques of anti-
forensics of JPEG detection, few techniques to counter
DJPEG detection have been proposed. Sutthiwan et al. [36]
used a very simple shrink and zoom method to deceive the
detector, but it displayed low undetectability. Li et al. [37]
only targeted the DJPEG with the same quantization matrix.
Lastly, Fan ef al. [10] mentioned that their proposed anti-
forensics of JPEG detection was also appropriate in the
anti-forensics of feature-based DJPEG detection. Thus, the
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anti-forensics of a CNN-based DJPEG detection technology
must be developed.

C. JPEG RESTORATION

JPEG restoration tasks focus on visual quality, especially
in the low-QF JPEGs. CNNs for JPEG restoration using a
feed-forward CNN and low-level features were proposed in
[11]-[13]. Adding the DCT domain to the CNN branch
improved the restored visual quality [14], [38].

Moreover, the frequency distributions of local patches
were estimated by means of cross-entropy learning and were
used in the encoder-decoder network for restoration [39].
In addition, GAN networks were proposed [40], and several
networks that target different JPEG QFs were combined for
generalization [41]. They usually used mean squared error
(MSE) loss for the reconstruction, which is appropriate in
improving visual quality.

Ill. PROPOSED METHOD

A. FRAMEWORK

As shown in Fig. 2, our proposed method consists of two
parts: EDSR [16] based images reconstruction, DCT con-
straints. Let’s designate I, I""“"P, and 1 as the input JPEG
image, the corresponding uncompressed image, and its recon-
structed image in the proposed method, respectively. I is
decompressed so that it is not truncated and rounded to give
the network more abundant information. We first adopt the
simplified EDSR network, represented as EDSRy,,, to recon-
struct I into 17¢¢" as follows:

17¢¢" — EDSR5(1). 1)

Next, the DCT coefficients, 1 recon are modified to constrain
the range of coefficients, and then we have final reconstructed
image I as follows:

I = IDCT(DCT const (DCT(I M), 2

where DCT and IDCT represent the DCT operation and the
inverse of the DCT operation. The structure and role of each
component is specified in Sec. II-C and III-C.

The network is trained with the loss function L;y,;. The
loss function Ly, is composed of three different functions,
and this is how we represent the three types of losses: the
reconstruction 10ss iS Lyecon, the histogram loss is Ly, and
the deblocking 10ss is Lgepik - Lrecon 1 the MSE loss function,
which minimizes the pixel difference between 1recon and
I1""“"P for visual quality. Lp;s is designed to minimize the
statistical difference between DCT(f recony and DCT(I4"<™P),
Lastly, Lgepir is devised to erase the JPEG blocking artifacts
remaining in the borders of 8 x 8 JPEG blocks. The calcula-
tion of Lp;s; and Lgepyi are specified in Sec. III-D and III-E.
The goal of the training is to minimize Ly, which is defined
on the basis of the hyper-parameters as follows:

Liotai = MreconLrecon + MhistLnist + Adebik Ldebik » (3)

where Ajecon = 1.0, Apise = 1.0, and Agepye = 0.06. Each
of the hyper-parameters are selected by several experiments
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FIGURE 2. An overview of our proposed method network and proposed loss functions. The main structure of the proposed network, which is
demarcated by its apricot color, is the EDSR network. Additionally, DCT constraints are applied after the EDSR network. The final output of the network
is /, and it is used in the calculation of the loss function. Three loss functions are used in training, namely Lrecon, Lpjst. and Lgepk- Lrecon and Lpjg,
which were calculated with its uncompressed label data; Lg.p, Was calculated by the output itself.

and chose hyper-parameters that have high undetectability
and less visual quality degradation which the detail is in the
Sec. IV-E.

B. EDSR-BASED IMAGE RECONSTRUCTION

JPEG decoders, such as those in OpenCV and PIL, decom-
press images with 8-bit precision (0-255). To accomplish
this, pixels are truncated and rounded after IDCT operation.
We would like to note that there are useful traces in removed
pixels that can be used by anti-forensics methods. So, we
decompress JPEG images with 32-bit precision and nor-
malize them by dividing them by 255. We feed these
decompressed images to provide the network with more
comprehensive information.

The main stream of the proposed network is EDSR,p,
which is inspired by the EDSR [16] for the task of producing
super-resolution images. In this paper, we choose the EDSR
network because it performs well in super-resolution though
it has a simple structure. We also focused on the proposed loss
functions’ effect on undetectability because it has not been
analyzed. To maintain the image resolution, we remove the
up-sampling layer of the EDSR. As the network is fully con-
volutional and maintains resolution throughout its entirety,
we could apply JPEG image of any resolution. In constructing
the specific structure of the network, we use a 3 x 3 kernel
size, 64 channels in all convolution layers, and eight residual
blocks. As mentioned in various papers on super resolu-
tion and JPEG artifact removal [12], [14], [16], the use of
batch normalization [42] is not apposite in addressing image
restoration problems as it can lead to lower visual quality,
so we remove batch normalization from our framework.
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Reconstruction 108S, Lyecon = MSE(? recon " puncmpy is defined
to maintain the visual quality of 7",

C. DCT CONSTRAINTS

After EDSRg,;,, we transform 7¢con into the DCT domain.
Then, we get X , the DCT coefficient of 1" econ " and clamp X
to be in the range obtained from the rounding error in which
the uncompressed DCT coefficients can exist. The rounding
error range is (—0.5, 0.5), and the uncompressed coefficients
must be within the following range:

1
lj_ _Ql/ <Xuncmp <le+§Qi,j7 4

where X; j, X;' “M and Q;; are the (i, j)th DCT subband
coefficients of the JPEG image, I, the uncompressed image,
I1""“"P and the quantization matrix of 7, respectively. We set
the range boundaries as low; ; = X;; — %Qi)j and high; ; =
Xij + %Qiﬁj. This constraint is widely used in JPEG anti-
forensics and restoration tasks for improving the performance
of visual quality [10], [14], [38]. Therefore, we include this
constraint and transform the output DCT coefficients such
that they fall into the constraint range. On the other hand,
we find that a restrictive constraint, as in the above equa-
tion, detracts from the level of undetectability, as shown in
Sec. IV-E. Therefore, we add the trainable parameter « for
soft clamping as follows:

(I — a)low; j + Olffi,j, )A(i,j < low;
xeomt = 1%, . otherwise (%)
(1 — a)high;j+aX;j, Xij > highi,
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where « is a scaling parameter that is initialized with 0.1,
as in [14]. Finally, IDCT is performed on the output of the
constraints to get the final image, /.

D. HISTOGRAM SMOOTHING
Since DJPEG detection mostly uses the DCT histogram as
a feature, we focused on the learning of the DCT histogram
distribution of uncompressed images to deceive the detectors.
In Sec. II-A, the anti-forensics of JPEG detection typically
uses dithering noise in the DCT coefficients in order to
resemble the uncompressed image of DCT distribution that
approximates the Laplacian distribution [8]. Our approach is
to try to match the DCT distribution with supervised learning.
To learn the histogram distribution, it is beneficial to cal-
culate the histograms with the differentiable layer. The DCT
histogram can be approximated by the CNN, as mentioned
in [33], [34]. Specifically, we collect the same frequency
bins of the DCT domain into the same axis, which results
in the (Nw = W /8, Ng = H /8, 64) size, and we denote the
collected c;; channel DCT bin as D.. After collecting each
frequency value, we extract the cumulative histogram bins
through the following equation:

Se,p = sigmoid(y * (Dc — b)), (6)

where c is the channel number with the range (1, 64), b is
the histogram bin values with the range (—60, 60), and y is
the parameter of the sigmoid that makes the sigmoid function
discrete, which approximates 0 (if D, — b is negative) or
1 (if D, — b is positive). In previous papers, the y value was
large enough (10°) to be discrete. However, in our approach,
we apply it to the end of the network, and this could harm
the training because of the large gradient. Therefore, we set a
slightly lower value, namely, y = 10

Next, we average the calculated sigmoid values of S, to
obtain the cumulative DCT histogram bins. Then, the differ-
ence of the sequential bins converts the cumulative bins to
ordinary ones and is normalized as exhibited below.

Nw Ny

1
Hcm - S " . , 7
c,b Nw % Ny ;FZI c,b(l 7 @)

1 .
h hep = —(Hp

where H" is the approximated cumulative DCT histogram
and H is the final approximated normalized DCT histogram
of dimension [64, 120].

We extract the DCT histogram of the network output
and the histogram of the corresponding uncompressed input
image. We do not weight a specific histogram bin; rather,
we use the L1 loss function for back-propagation in the
learning of the histogram distribution as displayed below:

Lygnn = L1(H , H'"81), )

H —H™), Ye,bY,  (8)

The histogram distribution learning with the L1 loss may
harm the image quality because there is no spatial informa-
tion. However, the constraint on the DCT coefficients limits
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the effect of the variation, and the histogram distribution
could be learned with less of a decline in visual quality.

Additionally, as mentioned in Sec. II-A, we also add the
calibration feature in histogram loss [20]. The lower right
area of the 8 x 8 blocks in the DCT bins indicates the
high frequency region, and we represent the segmented high-
frequency histograms as Hp;gp, and their size is (28, 120).
We calculate the feature using the high-frequency histograms
of the output and its calibrated version, which is cropped by
4 pixels horizontally and vertically as follows:

1 A A
Lot =35 D |var(gn) —var@ig, ). (10
kehigh

To summarize this section, the histogram loss function is
defined as below:

Lpist = SmseMsmthLsmih + McalLeal, (11)

where Agys, = 1.0 and Ay, = 0.0003. For a higher unde-
tectability in low-QF JPEGs and a higher visual quality in
high-QF JPEGs, we scale the smoothing loss functions by
MSE of the input pixel and the target, which is sy, =
MSE((, 1"*™P) x 2, 500. We do not scale the calibration loss
because comparable effect on loss was found in all QFs.

E. JPEG DEBLOCKING

We found that smoothing the DCT histogram does not suf-
ficiently deceive the DJPEG detectors especially in low-QF
JPEGs, which is demonstrated in Sec. IV-E. To achieve a
higher level of undetectability, we add a TV minimization-
based JPEG deblocking loss. TV minimization is applied for
smoothing images [43] and JPEG artifact removal [10], [44].
To reduce the amount of JPEG artifacts, we minimize the
total variation of the JPEG image particularly in the block
boundary, which, unlike uncompressed images, has a large
pixel difference. We calculate the total variation of each pixel
by the following equation:

vij = i1y + lip1j — 203))°
+ Ui jor + Lijr — 20 )% (12)

where I; ; is the (i, j)th pixel value of the image. In the cases
that escape from the image such as i = 0, we pad the image
with the sequential pixel value. We use squared rather than
absolute differences as a total variation value to weigh the
gradient in the large difference region, which is the boundary
part of the block. Moreover, we average the total variation of
images and use it as a loss of JPEG deblocking as below:

Liepik = Smse X Mean(f/i,j)- (13)

IV. EXPERIMENTS

To demonstrate the effectiveness of the proposed method,
we compare it with DDCN for the JPEG restoration task [14]
and the subgradient anti-forensics method of Fan et al. [10].
JPEG restoration generates high-quality images, but it is
rarely discussed whether it is able to remove block artifacts.
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Therefore, we evaluate their undetectability to compare it
to ours. Fan et al. [10] achieved the highest undetectability
among all previous studies of anti-forensics of JPEG detec-
tion and used for the main comparison. For clarification,
we represent them as AFy, Radcen, and AF,,, respectively.

A. SETTINGS

1) DATASETS

We use the BossBase 1.01 [17] and BOWS2 [18] datasets
for the experiments. Each dataset contains 10,000 uncom-
pressed gray scale and 512 x 512-sized images. We split the
dataset into 16,000, 1,000, and 3,000 images as the training,
validation, and test sets. In addition, we crop each of the
images into quarters, which results in four 256 x 256 images.
Therefore, the total training, validation, test dataset consists
of 64,000, 4,000, and 12,000 images. We then transform each
uncompressed image into JPEG and DJPEG format by using
the PIL library. We use {50, 60, 70, 80, 90} as the first JPEG
QF and {75, 85, 95} as the second QF to avoid the duplicated
quantization matrix, which is a completely different problem.

When recompressing JPEGs, the alignment of the com-
pressed blocks could be the same or could vary from that of
previous blocks. If the new alignment is different, the block
artifacts will still establish another alignment: they will form
a different feature with the one they align with and show a
different aspect of detection. For convenience, the aligned
DJPEG is represented as DJPEG and the non-aligned one is
represented as non-aligned DJPEG.

For the non-aligned DJPEG, we randomly select a pair of
indexes, (a, b) € {{x € Z|0 < x < 7}*> — (0, 0)}, and crop the
JPEG image from (a,b) position to (256-(8-a), 256-(8-b)) with
a 248 width and height. After cropping, we recompressed
the cropped JPEG with the quality factors, {75, 85, 95}.
To make the same resolution of JPEG and non-aligned
DJPEG in the non-aligned task, the JPEG is cropped from
positions (0,0) or (8,8) to positions (248,248) or (256,256).

2) EVALUATION METRICS

We consider two types of evaluation metrics, undetectability
in JPEG and DJPEG detectors and the visual quality of
their respective images. The output of the models is saved
as uncompressed format, a PGM file, and is tested with
the JPEG detectors. In the case of DJPEG undetectabil-
ity, the reconstructed image is recompressed with three
QF € {75, 85, 95} and tested with the DJPEG detectors. The
non-aligned version of the reconstructed image is constructed
by the same method used in creating a non-aligned DJPEG.
We calculate PSNR and SSIM for evaluating the visual qual-
ity of the reconstructed uncompressed images.

3) IMPLEMENTATION DETAILS

The proposed method is trained with a batch size 16 up to
10 epochs. It is optimized by Adam with an initial learn-
ing rate of 10~* and default hyper-parameters. The pro-
posed method has no prior knowledge of target detectors
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FIGURE 3. The ROC curves of JPEG detectors with QF 60 JPEG images and
their reconstructed images. It is drawn based on the thresholding of
feature values extracted from the uncompressed and reconstructed
images. (a) is JPEG, (b) is Rygcp [14]. (c) is AFzg, [10], and (d) is AFour. The
dotted line represents the random guess, which is the optimal result. The
JPEG and R4, can be distinguished by thresholding, but AF¢,, and
AFoyr is almost similar with random guessing.

for generalization. Therefore, the trained model is selected
for testing when validation loss of histogram and deblocking
minimized. Our proposed method is implemented on the
Pytorch framework on GTX 1080 Ti GPU.

B. ANTI-FORENSICS OF JPEG AND VISUAL QUALITY

For the evaluation of the undetectability of JPEG compres-
sion, we use the six JPEG detectors mentioned in Sec. II-A
as follows:

e Kj: Calibration feature based detector [20],
e Kp: Block artifact measure [5],
« K Ll,, K (2/: Gradient feature-based detector [23],

. K,g: Quantization matrix estimation [5],
e Ky: Total variation of recompressed image-based
detector [22].

In Table 1, we report the minimum decision error rate of
the six JPEG detectors for the JPEG images, Ryicn, AFfan,
and AF,,. The detectors classify based on the threshold-
ing of each feature value. Therefore, we compute features
of 12,000 anti-forensically processed test images and their
corresponding 12,000 uncompressed images. Then, we find
the threshold and minimum decision error by drawing ROC
curves, as shown in Fig. 3, which are graphs of the six
JPEG detectors with images of QF 60. The detectors that
approximate a minimum error rates of 0.5 have difficulties
in judging uncompressed and JPEG images. We also specify
the PSNR and SSIM for each case. Additionally, we exhibit
an example of reconstructed results and (2,2) subband DCT
histograms in Fig. 4.
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FIGURE 4. The example of QF 60 JPEG and reconstructed images with their DCT histogram of a (2,2) subband. (a) is an uncompressed image. The image
quality is high, and the DCT histogram is a continual function that resembles the laplacian distribution. (b) is the JPEG, and the DCT histogram is
discrete. (c) is reconstructed by Ry4, [14]; its visual quality has been increased, but the DCT histogram still has discrete features. (d) is reconstructed by
AFq, [10]; its visual quality is lower than the JPEG, but the DCT histogram is continual and resembles the laplacian distribution except it shows slight
difference to the uncompressed images. (e) is reconstructed by AFoyr, the image has fewer noises, and the DCT histogram is much more similar to

uncompressed images than other algorithms are.

First, we note that all the detectors easily classify JPEG
images as JPEG with a low minimum decision error and high
area under the curve (AUC) in the ROC curve. R4, restores
the damaged images successfully, as is shown by the improve-
ments in PSNR and SSIM, and the example image results
in Fig. 4. Nevertheless, it fails to deceive the JPEG detec-
tors except for K f] and Ky. Moreover, in Fig. 4, we could
find that reconstructed images using JPEG restoration still
have a discrete feature similar to JPEGs. Therefore, JPEG
restoration better resembles the uncompressed one in the
pixel domain than that of the DCT domain, especially the
case in the high QF JPEG, and the degree of variation in
the DCT histogram is less than pixel domain. As a result,
it is detected effectively by the DCT domain detectors, which
are K7 and K 19 .

By contrast, AFf,, had aspects that were similar to ran-
dom guessing and achieved similar feature values with the
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uncompressed images in all of six features [10], and the
performance AF,, followed suit. On average, AFy,, per-
formed slightly better than AF,,,. This is because AFy;,
showed a higher minimum decision error in both K;, and Kr,
as they employed prior knowledge of K;, and Kr as a feature
distribution of uncompressed image for thresholding in the
subgradient method. Furthermore, the K L2/ feature magnitude
distribution of AF,,,, was slightly lower than in uncompressed
ones. In terms of the visual quality, AFy,, degraded it more
than the JPEG images, especially in the case of high-QF
JPEGs. However, our approach allowed us to reconstruct
images with a decreased loss in visual quality, as shown
in Table 1.

On the one hand, as shown in Fig. 4, AF,,, produced
slightly blurry images in comparison to other methods.
However, images reconstructed by AFy,, have noisy sig-
nals, but AF,,, could reconstruct smooth images that obviate
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TABLE 1. The minimum decision error rate of six JPEG detectors for JPEG images, reconstructed images of Ryqc, [14], AF¢g, [10], and AFour, respectively.

Values closer to 0.5 are better for anti-forensics methods.

JPEG detector Visual Quality
QF Method o)
K200 | Kp(5l | K523 [ KZ21231 | KZI051 [ Kv[22] | Mean PSNR | SSIM
JPEG 0.0002 0.0034 0.0202 0.1589 0.0584 0.1062 0.0579 36.53 0.9378
0 Raden 0.1316 0.2352 0.2400 0.3676 0.1598 0.3816 0.2526 38.28 0.9527
AFtan 0.4552 0.4802 0.4461 0.4871 0.4156 0.3950 0.4465 35.79 0.9256
AFour 0.4012 0.3909 0.4238 0.3300 0.4263 0.4573 0.4049 36.52 0.9366
JPEG 0.0008 0.0038 0.0230 0.1735 0.0542 0.0880 0.0572 37.30 0.9466
60 Raden 0.0084 0.1220 02152 0.3595 0.1563 0.3430 0.2157 39.05 0.9594
AFfan 0.4537 0.4609 0.4344 0.4841 0.4157 0.3930 0.4403 36.45 0.9339
AFour 0.3974 0.4393 0.4358 0.3369 0.4271 0.4605 0.4162 37.02 0.9437
JPEG 0.0032 0.0045 0.0344 0.1963 0.0486 0.1060 0.0655 3837 0.9564
2 Raden 0.1233 0.1631 0.2310 0.3769 0.1434 0.3020 0.2233 40.11 0.9673
AFfan 0.4540 0.4651 0.4296 0.4848 0.4176 0.3750 0.4377 3732 0.9438
AFour 0.4182 0.4312 0.4382 0.3611 0.4447 0.4732 0.4278 38.00 0.9552
JPEG 0.0151 0.0114 0.0480 0.2377 0.0409 0.0700 0.0705 39.95 0.9677
%0 Raden 0.1599 0.1789 0.2650 0.4108 0.1068 0.3385 0.2433 41.66 0.9758
AFan 0.4557 0.4737 0.4347 0.4865 0.4201 0.3580 0.4381 38.50 0.9548
AFour 0.3979 0.3935 0.4618 0.3930 0.4220 0.3990 0.4112 39.35 0.9651
JPEG 0.0937 0.0494 0.1124 0.3517 0.0315 0.0660 0.1175 43.03 0.9821
90 Raden 0.2137 0.1448 0.2760 04521 0.0605 0.2250 0.2287 4452 0.9864
AFtan 0.4104 0.4600 0.4090 0.4754 0.4169 0.3580 0.4216 40.58 0.9694
AF,ur 0.4268 0.4221 0.4501 0.4375 0.4513 0.4205 0.4347 4227 0.9813

noisy signals. Additionally, in the example results shown
in Fig. 4, the AFy,, could make DCT histogram similar to
an anonymously uncompressed distribution but has distance
with DCT histogram of its uncompressed version. In contrast
to the AFyu,, AF oy could reconstruct a more similar DCT his-
togram of its uncompressed one and improve visual quality.

C. ANTI-FORENSICS OF DJPEG

We consider a DJPEG detector and a steganalysis detector to
evaluate undetectability in both the DCT and pixel domains
as follows:

o Kp: DJPEG detector with DCT histogram [34],

o Kjg: Steganalysis with pixel domain images [45].

DJPEG detection in the pixel domain is more difficult
than it is in the DCT domain because the former has
fewer features [33]. Therefore, we employed SRNet [45],
which is the state-of-the-art network of steganalysis, as it
is highly effective at capturing residual noise and is suit-
able for DJPEG detection. According to [34], a mixed QF
JPEG dataset is possible for training. Therefore, we mixed all
of the QF JPEG {50, 60, 70, 80, 90, 75, 85, 95} and DJPEG
{50, 60, 70, 80, 90} recompressed with {75, 85, 95} as men-
tioned in Sec. IV-A1 for training both networks. The networks
were trained with binary cross-entropy loss, and the outputs
with the Softmax represent the probabilities of JPEG and
DIJPEG.

In Tables 2 and 3, we report the accuracy rates and mini-
mum decision error rate of two detectors and for the AF,,;,
Rdcn, and AFy,, methods; the accuracy rate denotes the rate
at which the detectors classify the manipulated images as
DJPEG and the minimum decision error rate is calculated
similarly as in the previous section using the probability
values of JPEG and the other methods. Although Kp exhibited
a better performance than Kg in the case of low-QF
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JPEGs, both models successfully found the trace of DJPEG
compression.

Rggcn could not deceive the detectors in the low
{75, 85} second QF DJPEG images in either detector as is
indicated by the fact that the example result in Fig. 4 still
resembles JPEG DCT histogram. However, for the high sec-
ond QF 95, they were able to deceive detectors to some extent.
As JPEG restoration had less variation in the DCT domain,
they could deceive Kg better than Kp when recompressed
with high QF.

The anti-forensics of JPEG detection exhibited better unde-
tectability than the JPEG restoration task in almost all cases.
Furthermore, it was highly effective at deceiving the Kp.
On the other hand, for Kg, they showed reasonable results but
had a higher detection rate than Kp, as dithering noise in the
DCT histogram resembles the natural DCT histogram; how-
ever, it seemed to harm the pixel domain. Also, they showed
less undetectability in both domains when compressed with
low-QF.

In the proposed method, the undetectability in the Kp
proved to be similar with that of AFy, except for the QF2
95 minimum decision error rate, as they both effectively
deceived the detectors. In contrast, for Kg, our method has
shown far higher undetectability in almost all QF cases. AFy,,
displayed poor undetectability in Kg in the low-QF JPEG, but
our method solved the problem with higher visual quality.
When reconstructed images were recompressed with the high
QF (95), most of the images were classified as JPEG but
showed a low minimum decision error rate that has a little
distance with the ground truth JPEG distribution.

D. ANTI-FORENSICS OF NON-ALGINED DJPEG
We consider the same detectors as the those listed in the previ-
ous section, namely, Kp and K. However, in this section, they

13397



IEEE Access

D. Kim et al.: End-to-End Anti-Forensics Network of Single and Double JPEG Detection

TABLE 2. The detection accuracy rate and the minimum decison error rate of DJPEG detectors for DJPEG images and reconstructed images of Ryqc, [14],
AFqg,, [10], and AFoyr, respectively. The left value is the accuracy rate and the right is the minimum decision error rate. The reconstructed and normal JPEG
images with QF1 are recompressed by QF2. Smaller values for accuracy rate and close to 0.5 for minimum decision error rate have higher undetectability

to the detectors.

JPEG quality Double JPEG detector
Kp [34] K [45]
QF2 | QFl I —BpEG T Ruuen AFfan AFyur DIPEG [ Raden AFyan Alour
50 0.999/0.003 | 0.983/0.015 0.359/0.194 0.073/0.349 || 0.992/0.026 | 0.970/0.034 0.768/0.132 0.157/0.409
60 0.999/0.002 | 0.975/0.019 0.061/0.354  0.080/0.381 || 0.999/0.010 | 0.950/0.045 0.548/0.228  0.032/0.457
75 70 0.994/0.009 | 0.588/0.119 0.011/0.463 0.021/0.471 || 0.992/0.017 | 0.712/0.141 0.354/0.331 0.059/0.444
80 0.995/0.008 | 0.760/0.071 0.016/0.456 0.027/0.439 || 0.993/0.017 | 0.700/0.160 0.243/0.392  0.204/0.379
90 0.987/0.013 | 0.962/0.024  0.022/0.441 0.041/0.426 || 0.973/0.034 | 0.850/0.090 0.224/0.360 0.038/0.494
50 1.00/0.00 | 0.536/0.045  0.00/0.491  0.001/0.492 || 0.998/0.008 | 0.688/0.138 0.334/0.275 0.140/0.353
60 1.00/0.00 | 0.632/0.049  0.00/0.490  0.001/0.399 || 0.999/0.007 | 0.686/0.130 0.271/0.317 0.062/0.433
85 70 1.00/0.00 | 0.929/0.015  0.00/0.492  0.00/0.454 || 0.987/0.013 | 0.800/0.079 0.237/0.365 0.012/0.418
80 0.999/0.001 | 0.584/0.046  0.00/0.488  0.001/0.492 || 0.997/0.008 | 0.582/0.158 0.122/0.434  0.024/0.460
90 0.997/0.001 | 0.854/0.028  0.00/0.489  0.001/0.491 || 0.997/0.006 | 0.665/0.137 0.031/0.490 0.150/0.314
50 1.00/0.00 | 0.094/0.051  0.00/0.282  0.001/0.279 || 0.977/0.001 | 0.310/0.186 0.179/0.250  0.093/0.262
60 1.00/0.00 | 0.095/0.040  0.00/0.317 0.001/0.136 || 0.976/0.002 | 0.238/0.171 0.194/0.267  0.088/0.225
95 70 1.00/0.00 | 0.190/0.028  0.00/0.337 0.001/0.136 || 0.959/0.003 | 0.095/0.175 0.186/0.285 0.035/0.305
80 1.00/0.00 | 0.328/0.019  0.00/0.335 0.001/0.115 || 0.926/0.005 | 0.022/0.201  0.048/0.350  0.009/0.331
90 1.00/0.00 | 0.829/0.002  0.00/0.427 0.001/0.201 || 0.982/0.003 | 0.046/0.286 0.006/0.420 0.002/0.400

TABLE 3. The detection accuracy rate of two detectors for JPEG.

Detector
IPEGQF 321 T K149
30 1 0.8820
%0 T 09172
70 T 0.0577
%0 09997 | 0.9927
90 09996 | 0.9841
75 00863 | 09551
%5 0.0992 | 0.9851
95 09995 | 09995

were trained with a mixed QF non-aligned DJPEG dataset and
mixed QF cropped JPEG dataset, similar to those observed in
aligned DJPEG. In addition, the networks were trained with
binary cross-entropy loss in the same way as the aligned ones,
and the evaluation metrics and processes are also the same.
We represent the non-aligned DJPEG detectors as follows:

o Kp?: non-aligned DIJPEG detector with DCT
histogram [34],
o Kg?:non-aligned DJPEG with pixel domain images [45].

In Table 4 and 5, we report the accuracy rates and the
minimum decision error rate of two detectors and for the
AFour, Raden, and AFy,, methods. As mentioned in the pre-
vious section, DJPEG detection in the pixel domain is more
difficult than the DCT domain, but in the non-aligned cases,
the pixel domain is much easier [33] because of the multiple
block artifacts. As a result, the K¢ could classify more
effectively than the Kp¢, and K¢ could classify in almost
all cases. Moreover, the Kp could not identify JPEG and
non-aligned DJPEG images in the low second QF {75, 85} as
the detection accuracy rate and the minimum decision error
rate of DJPEG is high and the cases are not amenable to
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determining undetectability. Therefore, for K¢, we mainly
focused on the second QF 95 cases.

In contrast to DJPEG detectors, Rg4., Was able to deceive
non-aligned DJPEG detectors. The Rj;., showed a reason-
able level of undetectability in K¢ for all of the QF cases but
showed less undetectability in the Kp® method, as they pos-
sesses less variation in terms of the DCT domain. However,
AFyg, performed more poorly than Ry, in the Kg¢ but
similarly in the K. It displayed high detectability, especially
in the low second QF {75, 85}, and is not appropriate for non-
aligned DJPEG anti-forensics.

The proposed method showed the highest level of unde-
tectability in both detectors. To be specific, it showed less
detection accuracy and high minimum decision error than the
Rggen in almost all cases except low second QF {75, 85} in
Kp“, but they are not suitable for measuring undetectability
as mentioned. Besides, it showed higher undetectability than
the AF,;, in all of the QF cases. To summarize this section,
we demonstrated that the loss functions for visual quality,
which is MSE, is suitable for deceiving non-aligned DJPEG
detectors, and the AFy,, algorithm is not appropriate.

E. ABLATION STUDY
We explored several loss functions for designing the training
methodology for our task of finding the optimal undetectabil-
ity in JPEG and DJPEG detectors. For non-aligned DJPEG,
the visual quality loss function was adequate for deceiving
detectors, and we skipped this exploration. In each trial,
we used images with JPEG QF 60 for reconstruction and
recompressed with QF2 75, which resulted in a low accuracy
rate in the evaluated methods.

The results of the effect of each loss functions is shown
in Table 6, where Lyecon, Lrecon Y Lnist, and Lyecon U Liist
indicate the use of only the noted loss functions with same
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TABLE 4. The detection accuracy rate and the minimum decision error rate of non-aligned DJPEG detectors for DJPEG images and reconstructed images of
Rddcn 181, AF¢g, [10], and AFour, respectively. The left value is the accuracy rate and the right is the minimum decision error rate. The reconstructed and
normal JPEG images with QF1 are recompressed by QF2. Smaller values for accuracy rate and close to 0.5 for minimum decision error rate have higher

undetectability to the detectors.

JPEG quality Double JPEG detector
K3 [34] Kg® [45]
QF2 | QFl I —51pEG T Ruuen AT fan AT, DIPEG | Rusn AT7on ATy,
50 0.993/0.076 | 0.665/0.376 0.940/0.205 0.720/0.376 || 0.998/0.010 | 0.199/0.422 0.828/0.117 0.123/0.469
60 0.981/0.124 | 0.627/0.415 0.903/0.243 0.751/0.358 || 0.998/0.010 | 0.143/0.453 0.758/0.143 0.144/0.427
75 70 0.931/0.221 | 0.583/0.444 0.829/0.309 0.717/0.379 0.996/0.017 | 0.155/0.447 0.604/0.201 0.104/0.462
80 0.857/0.292 | 0.533/0.474 0.709/0.384 0.697/0.393 || 0.985/0.031 | 0.125/0.463 0.400/0.289 0.129/0.436
90 0.653/0.417 | 0.498/0.494 0.626/0.427 0.554/0.465 || 0.805/0.126 | 0.127/0.460 0.210/0.399 0.080/0.491
50 0.999/0.017 | 0.624/0.298 0.889/0.158 0.517/0.342 1.00/0.002 0.079/0.422 0.537/0.113  0.046/0.473
60 0.998/0.022 | 0.623/0.299 0.847/0.184 0.510/0.344 1.00/0.002 0.063/0.441 0.472/0.133  0.032/0.462
85 70 0.991/0.051 | 0.585/0.320 0.736/0.243  0.454/0.366 || 0.999/0.003 | 0.073/0.427 0.333/0.193 0.034/0.473
80 0.890/0.158 | 0.373/0.417 0.569/0.321 0.454/0.368 || 0.997/0.005 | 0.056/0.444 0.172/0.282 0.025/0.461
90 0.652/0.283 | 0.300/0.460 0.425/0.390 0.328/0.430 || 0.929/0.028 | 0.053/0.441 0.058/0.384 0.014/0.475
50 1.00/0.002 0.422/0.134  0.392/0.160 0.208/0.279 1.00/0.001 0.036/0.336  0.280/0.067  0.003/0.429
60 1.00/0.002 0.456/0.126  0.365/0.167 0.172/0.282 1.00/0.001 0.033/0.356 0.261/0.076  0.002/0.466
95 70 0.998/0.004 | 0.513/0.118 0.299/0.188  0.176/0.264 1.00/0.001 0.050/0.340 0.221/0.108 0.001/0.455
80 0.996/0.006 | 0.477/0.122 0.190/0.237 0.097/0.314 1.00/0.001 0.042/0.387 0.151/0.180  0.00/0.489
90 0.925/0.025 | 0.328/0.187 0.115/0.319 0.056/0.353 || 0.980/0.004 | 0.058/0.350 0.081/0.257 0.002/0.473

TABLE 5. The detection accuracy rate of two non-aligned detectors
for JPEG.

Detector
IPEG QF | a1 T K 15]
50 1 0.9992
60 1 0.9992
70 1 0.9937
80 1 0.9927
90 0.9997 0.9987
75 0.5226 0.9269
85 0.7884 0.9917
95 0.9936 0.9985

hyper-parameter as the proposed method, and AFSIic!
indicates the proposed method with strict constraints,
as explained below paragraph. As L;.co, €xhibited a poor level
of undetectability, we propose two loss functions, histogram,
and deblocking loss, to improve anti-forensics performance.
Both functions, histogram and deblocking loss, increased the
undetectability but degraded the visual quality. In the case
of the JPEG detectors, histogram loss significantly improved
undetectability except for Kr but deblocking loss compen-
sated for the low undetectability performance in Kr. For
the DJPEG detectors, histogram loss helped to deceive both
detectors and seemed to improve better in the pixel domain.
However, it decreased the undetectability in the pixel domain
when it got too small because it increased the difference
of DCT bins between the neighbor blocks, which created
other block artifacts in the pixel domain. Deblocking loss
also improved undetectability in both the DCT domain and
pixel domain because of the reason mentioned in Sec. III-E
and the fact cited in [10] (i.e., the minimization of the total
variation have the effect of smoothing the DCT histogram
effect). However, over smoothing degrades the visual quality;
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the undetectability of the DCT histogram domain, especially
in high-QF JPEGs; and the undetectability level in the pixel
domain. Therefore, we controlled the rate of each loss to
prevent deviation from the optimal convergence point, and
the balancing out of all losses led to the best performance.

The strict constraint of the DCT domain, in which the alpha
was 0 in Eq.(5) helped to increase visual quality, as mentioned
in Sec. III-C, but it could not deceive JPEG detectors, Kr, K FQ R
and Ky, and showed less undetectability in the pixel domain
for DJPEG detectors. With the strict constraint, the DC
component distribution, which is the highest frequency bin
of DCT, was still discrete after training, which made Kf;)
detectable. Moreover, dithering DCT coefficients in the strict
range could be detected by Ky, as recompressing with the
same QF cancels the effect of tampering [22]. Therefore,
we applied the soft constraint rather than the strict one, and
this improved undetectability.

F. GENERALIZATION

JPEGs in the real world are compressed with diverse QFs.
Each JPEG compressed with different QFs has different block
artifacts and could produce different results than what we
expect. Additionally, the resolution of the JPEGs in the real
world is also diverse rather than not fixed to 256 x 256. This
section will explore the robustness and generalizability of
our model through considering the out-of-distribution hyper-
parameters of the dataset.

At first, we studied the robustness of our proposed method
in relation to diverse QFs. To achieve optimal visual quality
and undetectability in our method, each QF has to be trained
with different hyper-parameters and datasets. Therefore, our
proposed method was trained with the fixed QFs separately
and with the fixed QF in a set {50, 60, 70, 80, 90}. For test-
ing the robustness of our model, we tested reconstruction
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TABLE 6. The minimum decision error of JPEG detectors, the detection accuracy rate and minimum decision error rate of DIPEG detectors, and the visual
quality according to loss combinations with QF 60 JPEGs and recompressed with QF2 75 for DJPEG detectors.

Method JPEG detector DJPEG detector Visual Quality
Kr[200 [ Krp(51 | KL[231 [ K2 1231 [ K205 | Kv 22 Kp[34l | Ksl[45] PSNR | SSIM

Lrecon 0.1205 0.0302 0.1822 0.3633 0.1461 0.3458 0.964/0.024 | 0.999/0.006 || 39.07 | 0.9594
Lyecon U Lpist 0.4349 0.2885 0.4058 0.4659 0.4075 0.4815 0.709/0.081 | 0.289/0.365 || 38.47 | 0.9529
LircconULgepik 0.2435 0.4201 0.3755 0.4365 0.1633 0.2439 0.122/0.370 | 0.594/0.187 || 37.29 | 0.9477
AFstrict 0.3226 0.1791 0.4508 0.4964 0.1848 0.1665 0.080/0.377 | 0.456/0.257 || 37.5 | 0.9495
AF yur 0.3974 0.4393 0.4358 0.3369 0.4271 0.4605 0.080/0.381 | 0.032/0.457 || 37.02 | 0.9437

TABLE 7. The minimum decision error in JPEG detectors, and the visual quality of the generalized input cases, mixed QF, and large resolution. The mixed
QF is a set of QFs close to 60, which ranges from 56-64 to test the robustness of the model in diverse QF. The large resolution is 512 x 512, and it is

selected for testing the robustness of the resolution.

Dataset JPEG detector Visual Quality

resolution| QF [ Method || K. [20] | Kr[5] | Kj (231 | K3 (231 | K2 (5] [ Kv[22] PSNR [ SSIM
60 JPEG 0.0008 0.0038 0.0230 0.1735 0.0542 0.0880 37.30 0.9466
256256 AF 0 0.3974 0.4393 0.4358 0.3369 0.4271 0.4605 37.02 0.9437
QF0 JPEG 0.0008 0.0038 0.0230 0.1729 0.0543 0.1163 37.26 0.9461
mized [ AFT - 0.3976 0.4385 0.4355 0.3378 0.4290 0.4600 37.00 0.9434
S12%512 60 JPEG 0.00 0.0003 0.0018 0.0870 0.0250 0.0498 36.71 0.9464
AF 0 0.3907 0.4555 0.4610 0.3237 0.4308 0.4393 36.35 36.71

TABLE 8. The detection accuracy rate and the minimum decision error
rate in DJPEG detectors of the generalized input cases, mixed QF, and
large resolution. The mixed QF is a set of QFs close to 60, which ranges
56-64 to test the robustness of the model in diverse QF. The large
resolution is 512 x 512 and is for testing the robustness of the resolution.

Dataset DIJPEG detector

resolution] QF2] QF [ Method Kp[34] | Ks[45]
60 DIPEG 0.999/0.002 | 0.999/0.010
75 AFour 0.080/0.381 | 0.032/0.457
QFGO DIPEG 0.992/0.007 | 0.985/0.023
mized [ AFg,r 0.102/0.352 | 0.045/0.471

60 DJPEG 1.00/0.00 1.00/0.007
256%256 | 85 AFour 0.001/0.399 | 0.062/0.433
QFS0. DIPEG 1.00/0.00 0.964/0.025
mized [ AF,ur 0.001/0.406 | 0.066/0.423
60 DIJPEG 1.00/0.00 0.976/0.002
95 AFoyr 0.001/0.136 | 0.088/0.225
QFGO DIJPEG 1.00/0.00 0.865/0.017
mized [ AF,ur 0.001/0.147 | 0.093/0.226

75 60 DIPEG 1.00/0.00 1.00/0.001
AFour 0.013/0.400 | 0.006/0.451

DIJPEG 1.00/0.00 1.00/0.00
S12x5121 85 60 AF,., || 0.0000.447 | 0.033/0.374

95 60 DIPEG 1.00/0.00 1.00/0.00
AFour 0.00/0.145 | 0.046/0.122

with diverse QFs, but in a fashion similar to training QF.
We defined the QFs that were similar as QF,,. ., which
ranges from the [t — 4, ¢ + 4] integer and the t € {50, 60,
70, 80, 90}. The rounding of the QFﬁm.xed converges to t and
could achieve any QF by ensemble. For example, for the QF
60 model, the QF,?gxe 4 JPEGs, which QF ranges 56-64 were
employed in our testing.

Although each QF JPEGs contains different artifacts,
as shown in Table. 7 and 8, the QF,,;,.; JPEGs could achieve
similar visual quality and undetectability results through
training QF. Therefore, the model features a degree of robust-
ness of the similar to that of QF JPEGs, and combinations
of each model could achieve a good performance in any

QF JPEGs. In the scenario in which the QF of a JPEG is
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unknown, we could add the QF predictor model in front of the
reconstruction model and pass over to the similar QF model,
as is comparable to what is done in [41].

For analysing the resolution robustness, we examined
the larger, 512 x 512 JPEGs, which are the original
BossBase 1.01 [17] and BOWS?2 [18] datasets. The main
structure of our proposed method is composed of the EDSR
model, which is the fully convolutional network and is appli-
cable to any image resolution, as is stated in Sec. II-C.
Therefore, it was only necessary for us to reconstruct the
512 x 512 QF 60 JPEG images and evaluate its the perfor-
mance. As the resolution increases, the detectability increases
because of increasing abundance of information. On the other
hand, as shown in Table. 7 and 8, our proposed method has
showed a similar level of undetectability in the large reso-
lution. Therefore, our proposed method is also appropriate to
reconstruct image of any resolution with high undetectability.

V. CONCLUSION

In this work, we proposed a CNN for anti-forensics of JPEG
and DJPEG detection. The network is composed of EDSR
and DCT constraints. We found that training only with a loss
function for visual quality, which is MSE loss was adequate
for deceiving the non-aligned DJPEG detectors, but it was
inadequate for anti-forensics of JPEG and DJPEG detection.
Therefore, we proposed two anti-forensical loss functions,
histogram loss and deblocking loss. The histogram loss func-
tion helped to learn uncompressed DCT histogram distribu-
tion and increased undetectability in both the pixel and DCT
domains. The deblocking loss function also helped to increase
undetectability in both pixel and DCT domains by reduc-
ing the distance between boundary and center distribution.
In addition, to improve undetectability, soft constraints of
DCT was necessary as strict constraints had some limitations
regarding their undetectability when facing several detectors.
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The previous JPEG reconstruction tasks were introduced
into two streams: JPEG restoration and anti-forensics of
JPEG detection. JPEG restoration tasks only focused on
visual quality, and it used only visual quality loss function
in training. They improved visual quality, but the JPEG
DCT histogram feature persisted after reconstruction. There-
fore, they could not deceive JPEG and DJPEG detectors.
However, they could deceive non-aligned DJPEG detectors.
Anti-forensics of JPEG could make similar DCT histograms
with uncompressed ones, but they differed little from the orig-
inal. Therefore, they degraded the visual quality but removed
the JPEG artifacts, especially in the DCT domain, that can
be disguised in uncompressed images. However, they showed
low undetectability in the pixel domain, especially in the non-
aligned cases. Our work represents CNN-based anti-forensics
of JPEG and DJPEG that can achieve high undetectability
in both the DCT and pixel domains with less degradation to
visual quality.

For the generalization to deal with real cases, we evaluated
our model’s robustness in the diverse QFs and resolution. Our
model was robust to the QFs that are similar with trained one
and was also robust to the large resolution.
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