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ABSTRACT In this work we consider the problem of blind system identification in noise driven by an
independent and identically distributed (i.i.d) non-Gaussian signal generated from a deterministic nonlinear
chaotic system. A new estimator for the phase space volume (PSV) which is a dynamic-based property
of chaos is derived using the maximum likelihood formulation. This novel estimator of PSV is denoted
as the maximum likelihood phase space volume (ML-PSV). The Cramér Rao Lower Bound (CRLB) of
the ML-PSV estimator has also been derived. We have shown that the mean square error of the ML-PSV
estimate gradually approaches its CRLB asymptotically. An algorithm is formulated that applies theML-PSV
estimator as an objective function in the task of blind system identification of autoregressive (AR) and
moving average (MA)models. The proposed technique is shown to improve blind identification performance
at low signal-to-noise ratio (SNR) when the system is driven by both chaotic numeric and symbolic signals.
The efficiency of our proposed method is compared with conventional blind identification methods through
simulations. Our technique is further validated through experimental evaluation based on a software defined
radio (SDR). Results show that the ML-PSV method outperforms the existing blind identification methods
producing estimates at a low SNR of ≤ 20 dB.

INDEX TERMS Chaos, nonlinear dynamics, maximum likelihood, Cramér Rao lower bound (CRLB), blind
system identification, symbolic dynamics, software defined radio.

I. INTRODUCTION
The task of system identification involves the design of the
input probing signal or driving signal [1], [2]. One of the
application areas of system identification is in channel equal-
ization where it is desired to identify the channel without any
access to the input signal [3]–[7]. This technique of identi-
fying the channel without the availability of the input infor-
mation is a blind system identification problem [8]. In blind
identification, the input signal as well as the propagation
channel parameters are unknown at the receiver.

There has been a growing interest in the use of
chaotic signals in many applications such as chaos-based
equalization [9]–[13], communications [14]–[19], and
control [20]–[23]. A chaotic signal is characterised by a
nonlinear map with sensitivity to initial conditions. Chaotic
signals have a broad-band spectrum similar towhite noise that
can be used to excite a system for identification purpose. It is
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easier to generate chaotic signals with the advancements in
analog circuits. Also, chaotic signals are deterministic, which
suggests that they can be controlled by synchronization [24].
The deterministic characteristic of chaotic signals is an added
advantage over white Gaussian noise (WGN) signals due
to which the entire signal can be generated from only its
initial condition. As such, chaotic signals are relatively easy
to implement and analyze unlike WGN signals. Furthermore,
past researchers have shown that when chaos is used as the
driving signal, blind system identification performance of the
chaotic method is similar to the nonblind least squares (LS)
method [25]. Based on these merits chaotic signals can be
an ideal choice for the design of the driving signal in sys-
tem identification and finds its application in blind channel
equalization.

There are various approaches to blind identification using
chaos. The traditional approach was the maximum likeli-
hood (ML) approach [26] which gave suboptimal perfor-
mance at a certain range of SNR and suffered from threshold
effect achieving the CRLB at a high SNR >= 20 dB [27].
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Another technique for chaos-based system identification is
the inverse filtering approach. This technique involves esti-
mation of the system coefficients by minimizing an objective
function of the output of an inverse system. The minimum
phase space volume (MPSV) technique for blind system iden-
tification using chaos is an estimation method that applies
the inverse filtering approach [9], [28]. The basic idea of
MPSV procedure is that a chaotic signal has a finite volume
in phase space (PSV) which is a characteristic unique to
chaotic signals. The MPSV method works by minimizing
the phase space volume (PSV) property of the output of an
inverse filter, which causes the parameters of the inverse filter
to converge to the correct values of the signal. The MPSV
estimation technique can be applied to random signals such as
WGN [29]. The authors have used the concept called abstract
dynamical system to model any process. It is a generaliza-
tion of the chaos approach where PSV can be defined for
random process. However, for a case such as additive White
Gaussian noise (AWGN), it becomes a very high dimensional
dynamical system and computing PSV becomes time con-
suming. Therefore, PSV is more suitable for low dimensional
system like chaos but it works in principle for AWGN. The
MPSV estimator requires a short data in comparison to least
squares (LS). However, its computational load is very heavy
and gives poor identification results at low SNR. Another
method for chaos-based blind system identification using the
inverse filtering approach is the minimum nonlinear predic-
tion error method (MNPE) [30]. The MNPE is a nonlinear
predictor that applies the short-term predictability property
unique to chaos. Based on the short-term predictability of
chaos, the received signal is passed through an inverse filter
and the system parameters are estimated by minimizing the
nonlinear prediction error (NPE) of the inverse filter output.
The MNPE estimation method is shown to achieve superior
identification performance at high SNR. However a major
drawback of the MNPE estimator is its poor performance at
low SNR. However, based on the inverse filtering approach,
it was shown that when chaos is used as the driving signal,
blind identification can be accurate when compared to the
optimal nonblind approach based on WGN input signal used
with the LS estimator [25], [31].

Another approach for chaos-based blind system
identification is the state-space representation by applying the
Expectation Maximization and Unscented Kalman filtering
(EM-UKF) technique [32]. Using this approach it was proved
that the CRLB of blind identification with chaos is the
same as that of the CRLB of nonblind identification using
WGN. Although, the state space format is convenient for
estimation, the estimates are not as accurate as the optimal
nonblind LS at low SNR. Recently, a chaos-based blind
identification method applying the state-space with EM-UKS
estimator was proposed for general signals, and the CRLB
was derived for the chaos representation [12]. This technique
employs the entropy and deterministic properties of chaos to
achieve blind identification performance close to nonblind LS
estimator. A primary challenge encountered in blind system

identification using chaos is that existing methods perform
poorly at low SNR [33], [34]. Nevertheless, the above men-
tioned approaches for chaos-based blind system identifica-
tion suggest that by exploiting certain unique characteristics
of chaos such as the PSV, short-term predictability, entropy
and determinism, blind identification performance using
chaos achieves performance comparable to the statistically
optimal nonblind LS usingWGN. Thus, chaotic signals could
be an ideal candidate for blind identification.

Our proposed method tries to address the issue of blind
identification performance of the MPSVmethod at low SNR.
In this work, we propose a new formulation of the PSV by
directly incorporating the WGN in the formulation and use
ML formulation of PSV to maximize the performance of
the PSV estimator in a noisy environment. Our proposed
technique for improving the MPSV method is called as
the ML-PSV method. An algorithm is designed to apply
the ML-PSV estimate for blind system identification using
chaotic signals. We further improve the performance of the
ML-PSV approach using symbolic dynamics. Chaotic signals
can either be used as chaotic numerical (CN) signal (which
is a real valued time series signal generated from the output
of a chaotic dynamical system) or as chaotic symbolic (CS)
signal [35]. A symbolic time series signal can be obtained
by discretizing or partitioning the CN time series using the
method of symbolic dynamics [36]. By the method of sym-
bolic dynamics a chaotic time series can be partitioned into a
finite set of disjoint regions and assigned a unique symbol to
each region. Instead of representing a signal by its numeric
values of its signal points, one watches the progression of
symbols corresponding to the alternation of the numbers as
the system evolves with time. For example, in the case of 1D
chaotic Tent map whose time series lies in the interval [0,1],
its CN signal is partitioned into 2 segments: [0, 0.5) which is
assigned a symbol of −1 and the region [0.5, 1) is assigned
a symbol of +1. This technique can extract hidden features
like the occurrence of frequent recurrent patterns [37], [38].
Even though some details of the dynamics may be lost due to
the symbolization, most of the temporal correlations remain
embedded in the structure of the symbol sequence and most
importantly, the advantages of symbolization are ease of
computation and robustness against noise [39]. In this work,
two partitions are applied to create a binary valued chaotic
symbolic (CS) time series. We further extend the ML-PSV
method to blind system identification using CS input signals
to improve the blind identification performance at low SNR.

The physical problem that we are trying to address is
equalization for wireless communication which is required
in order to mitigate the effect of intersymbol interference
(ISI) [40]–[43]. Traditionally, blind equalization is achieved
by using higher order statistics (HOS) [44]. These HOS based
methods perform well in suppressing Gaussian noise but are
sensitive to parameter settings, having slow convergence,
and requiring large amounts of data. Meanwhile, methods
based on subspace [3], [45] obtain more accurate estima-
tion results at high SNRs but perform poorly at low SNRs.
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Furthermore, subspace-based methods [46] are sensitive to
parameter estimation errors. For example, the performance of
these methods relies on the accurate estimation of the channel
order. A small error in the channel order estimationmay cause
the estimation performance to produce large errors. In this
work, the choice of the models are Autoregressive (AR) and
Moving Average (MA) models. An MA model is usually
considered for channel equalization and is also used as an
approximation to reduce the order. We have validated our
proposed approach through experimental evaluation for blind
channel equalization where the MA components represent
a finite impulse response (FIR) system. Our novel research
contributions are highlighted below:
• We have derived a new technique called as the ML-PSV
using maximum likelihood formulation for estimating
the phase space volume (PSV) of a dynamical system.

• The CRLB of the ML-PSV estimator is derived. It is
shown that the mean square error (MSE) of the ML
estimate of PSV gradually approaches its CRLB.

• The derived ML-PSV estimator is applied in an algo-
rithm as an objective function for improving blind sys-
tem identification performance using chaos. Results
prove that the ML-PSV estimator suppresses the impact
of measurement noise so that the ML-PSV estimate
converges to yield the true coefficients of the system.

• We evaluate the efficiency of ML-PSV in blind system
identification task using CN and CS signals. Overall,
the performance of our method using CS signal in blind
system identification is better than CN signal.

• The ML-PSV estimator for blind identification achieves
performance comparable to nonblind LS at a low SNR
of ≤ 20 dB and is also computationally inexpensive in
comparison to the MPSV technique.

• Our approach is validated through experimental evalua-
tion which are the first experimental results demonstrat-
ing the practicality of chaos-based channel equalization
to the best of our knowledge.

The rest of the paper is organized as follows. Section II
describes the background and motivation for our methodol-
ogy. In Section III the ML formulation of PSV and its CRLB
are derived. In Section IV an algorithm for blind system iden-
tification is presented where theML-PSV estimator is applied
forblind identification of AR and MA models. Simulation
results are also presented to evaluate the performance of the
proposed ML-PSV method. In Section V the SDR experi-
ments are used to illustrate the effectiveness of the ML-PSV
method in equalizing a real wireless communication channel.
Conclusion is given in Section VI.

II. RESEARCH BACKGROUND AND MOTIVATION
This section describes the background that is required for
developing the proposed new formulation for phase space
volume and its application to blind identification. The back-
ground areas are the phase space reconstruction and the
existing MPSV technique. We then present the motivation for
improving MPSV technique.

A. EMBEDDING THEORY FOR PHASE-SPACE
RECONSTRUCTION
Consider a discrete dynamical system in the form of:

xn+1 = f (xn), (1)

where x = [x1, x2, . . . , xn]T is the system’s state vector, f (·)
is a nonlinear map, and xn, n = 0, 1, 2, . . . is the trajectory
of the system. At any given time a dynamical system has a
state given by a set of real numbers (a vector) which can be
represented by a point in the state space or phase space. The
phase space is the space of all possible states of the system i.e,
the phase space is the number of dynamical variables of the
system. The state space reconstruction method aims to recon-
struct the state vectors from the time series, so that the time
evolution of these vectors replicates a dynamics equivalent to
that of the original system. Starting from the initial value x0,
the trajectory xn describes the evolution of the system along
time. After transient dynamics, the system’s bounded trajec-
tory will converge to an attractor, i.e., a bounded invariant set
A. The dynamics is constrained in a compact manifold M
containing the attractorA. The time evolution corresponding
with an initial value x0 ∈M is denoted by xn = f n(x0). Intu-
itively, to study the property of the attractor in the state space,
the values of all the system’s state components should be
known. However, Takens’ embedding theory [47] implies that
from a few or even one single time series observed from the
system, it is possible to study the dynamical property of the
whole system, i.e., the system can be reconstructed by obser-
vations. By sampling the time series of only single coordinate
xn, a variety of independent coordinate sets can be obtained
such as [xn, xn−τ , xn−(DE−1)τ ] is a phase space reconstruction
of the original system. Thus a multidimensional phase space
can be reconstructed and such a reconstruction implies that
the one dimensional observed time series can contain all the
information of the dynamics of the whole original system.
Here τ is the sampling interval alternately known as the delay
and DE is the embedding dimension.

The geometry of the attractor will be quite similar to that of
the original system for a proper choice of the parameters for
embedding such as the delay and the embedding dimension.
In essence an embedding means a a similarity transformation
of the coordinates having a one-to-one property between the
original system and the reconstructed system [48]. This is
an essential property because the state of a deterministic
dynamical system, as well as its future evolution, are com-
pletely specified by a point in the state space. Therefore,
the delay coordinate map actually sets up a bridge between
the dynamics of the original system and the dynamics in
the reconstructed space [49]. Theoretically, an embedding of
the original time series can be obtained for DE ≥ 2m + 1
wherem is the intrinsic or the actual dimension of the system.
Moreover, the embedding theory implies that the dynamics
in the reconstructed space is topologically conjugated with
the dynamics in the original state space. Thus, the nonlin-
ear dynamic properties such as Lyapunov exponent (LE),
entropy, PSV are preserved from the original system to the
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reconstructed system, which forms the cornerstone of the
state space reconstruction technique. The strong Whitney’s
embedding theorem provides the choice for the embedding
dimension DE and proved that the embedding dimension
DE = 2m. Such a choice yields a one-to-one correspondence
between the reconstructed phase space and the real system.
The advantage of phase space reconstruction is that by using
limited data, one can reconstruct the phase space such that
the properties of the original system are preserved. From a
sequence of scalar measurements, we can reconstruct every
state vector, in a DE -dimensional phase space, following the
delay method.

B. THE MINIMUM PHASE SPACE VOLUME APPROACH
FOR PARAMETER ESTIMATION
According to Takens’ embedding theorem time delay recon-
struction can be used to reconstruct the dynamics of a chaotic
attractor. We can work in the reconstructed time delay space
and learn essentially as much as we could from the true state
space provided that the embedding dimension is sufficient
to unfold the attractor. The parameters of a system that is
driven by a chaotic signal can be obtained by minimizing the
dynamic property of chaos known as the Phase Space Volume
(PSV). To do so, the received signal is first passed through an
inverse filter, and the parameters are estimated byminimizing
the ‘‘volume’’ of the output signal of the inverse filter in an
embedded phase space. The basic idea is that the signal is
attracted to stay in finite dimensional attractor manifold and,
hence, has a finite ‘‘volume’’ in an embedded phase space.
On the other hand, a random signal does not have any regular
behavior in any finite dimensional phase space and hence, its
‘‘volume’’ is expected to be relatively large.

The problem of blind identification analyzed in this paper
is formulated as:

yn = zn(h)+ xn + vn (2)

where zn is the signal of interest, xn is a chaotic signal and vn
is additive noise, n = 1, . . . ,N . The problem is to identify
the parameter h by analyzing the measures signal yn. This
can be done by applying the PSV as an optimization function
expressed in terms of the measured signal yn. It was shown
in [9] that the correct value of parameter h could be estimated
by PSV minimization of the inversely filtered signal:

un = yn − zn(ĥ) = zn(h)− zn(ĥ)+ xn + vn. (3)

We summarize the MPSV method for parameter estimation
in Algorithm 1:

C. MOTIVATION
The MPSV approach described above suffers from two
issues: (a) poor noise performance and (b) high computa-
tional complexity of N 2 multiplications to calculate each vol-
ume as per (4). This prohibits the real-time application of PSV
approach. For example in channel equalization, a fast estima-
tion of channel coefficients is necessary. Otherwise, during

FIGURE 1. Volume of the sphere with radius R, distance between points t
and embedding dimension DE = 2.

the calculating process, the channel coefficients may have
changed already. Then the estimation result is not correct in
that way.We focus on developing a new formulation for (4) in
an attempt to improve the blind identification performance of
the PSV approach at low SNR and to reduce the complexity
for a single volume calculation.

III. PROPOSED METHODOLOGY: MAXIMUM
LIKELIHOOD ESTIMATION OF PHASE SPACE VOLUME
In this section the ML estimate of the PSV is derived
along with its CRLB. The starting point of our method is
the state-space or phase space reconstruction for which the
embedding theory is applied.

A. DERIVATION OF ML-PSV ESTIMATOR
The starting point in the derivation of the PSV esti-
mate using maximum likelihood (ML) approach is to
delay embed an observed univariate time series given by
u1, u2, . . . , un, . . . , uN , by using Takens’ time delay embed-
ding technique. This method obtains vectors of the form un
by stacking DE previous entries of the time series un samples
uniformly in time with sampling time τ (known as delay) up
into a vector:

un = [un, u(n−τ ), . . . , u(n−(DE−1)τ )]
T. (5)

The ML approach to estimate the PSV is inspired by esti-
mation technique of the intrinsic dimension m [50] by the
principle of ML to the distances between close neighbors,
and derived the estimator m by a Poisson process approx-
imation. Figure 1 shows a pictorial representation of the
volume of sphere centered around a data point un in the
embedded phase space DE . State space reconstruction is a
fundamental step before the analysis of a time series in terms
of dynamical systems theory. The process which counts the
number of points falling into a higher dimensional sphere is
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Algorithm 1 Algorithm for Blind System Identification Using MPSV

1: Given the received signal yn, n = 1, 2, . . . ,N , construct an inverse system un where the parameter vector ĥ is the estimate
of the true parameters h.

2: Embed un into a DE dimensional phase space using the delay coordinate, i.e., un = (un, un+τ , . . . , un+(DE−1)τ ) is an
embedding dimension of the chaotic map f (·). (In this work, τ = 1).

3: Minimize the PSV of the inverse filter output vector un i.e.,

ĥ = minV (un),

= minĥ

N−DE+1∑
i=1

minj6=i |ui − uj| × . . .× |ui+DE−1 − uj+DE−1| (4)

a binomial process. λ is the average count of points falling
inside the small sphere. Since the sphere radius R is small,
the probability of a point falling into the sphere is small.
When the sample numberN is large, the binomial process can
be approximated by a Poisson process. This is the rationale
for modelling the process with the Poisson distribution. The
approach of estimating the intrinsic dimension is based on
estimating the local dimension of a point cloud data which
is the representation of data points in phase space. A similar
approach is used here to estimate the volume of data in phase
space.

Data in high dimension, DE are denoted by i.i.d samples,
U = {u1, . . . ,un, . . . ,uN ∈ RDE } obtained from the Takens’
delay embedding in (5) where a data point is represented by
un ∈ RDE . In Figure 1 a small sphere of radiusR is considered
and u ∈ RDE denotes a point inside the sphere with t as the
nearest neighbor Euclidean distance from u to its k th nearest
neighbor. The derivation is based on the assumption that
close neighbors in Rm are mapped to close neighbors in the
DE -dimensional space.

The proposed approach for estimating the ML esti-
mate of the PSV is based on the idea that if we
sample u1,u2, . . . ,un, . . . ,uN (N is fixed) from a
DE - higher-dimensional space which are i.i.d from a density
p(u), the proportion of points that fall into a ball around a
point is k

N ≈ p(u)V (m)t(u)m, where V is the volume of a
sphere with radius R. The volume V of an m dimensional
object embedded in DE dimension scales with its intrinsic
dimension m is described as:

V = V (m)tm (6)

where V (m) is the volume of the sphere in Rm and where t
represents the Euclidean distance between points. Consider-
ing ℵ(·) as the process which counts the number of points
falling into a small DE higher dimensional sphere B(R,u)
of radius R centered around a point. Assume that, N →
∞, k → ∞ and k

N → 0, p(u) is constant inside the
sphere for a small R where R lies between the range r1 and
r2, the rate λ of the counting process ℵ(·) can be written
as:

λ = p(u)V (m)mtm−1 (7)

The log-likelihood of the process ℵ(t) which counts observa-
tions within distance t from a point is then given by:

`(V ) = p(ℵ(t)|V ),

=

∫ r2

r1
ln λdℵ(t)−

∫ r2

r1
λdt (8)

where r1 < r2 denote the lower and upper limits for the
radius. We have,

`(V )

=

∫ r2

r1
ln(p(u)V (m)mtm−1)dℵ(t)

−

∫ r2

r1
(p(u)V (m)mtm−1)dt, (9)

=

∫ r2

r1
ln(exp(θ)

V
tm
mtm−1)dℵ(t)

−

∫ r2

r1
(exp(θ)

V
tm
mtm−1)dt, (10)

=

∫ r2

r1
ln(exp(θ)Vmt−1)dℵ(t)− exp(θ )Vm

∫ r2

r1

tm−1

tm
dt,

(11)

=

∫ r2

r1
(θ+lnV−ln t + lnm)dℵ(t)−exp(θ )mV

∫ r2

r1

1
t
d(t),

(12)

In practice,

= (θ + lnV − ln t + lnm)[ℵ(r2)− ℵ(r1)]

− exp(θ )mV [ln r2 − ln r1]. (13)

= (θ + lnV − ln t + lnm)[ℵ(r2)− ℵ(r1)]

− exp(θ )mV [ln(r2/r1)]. (14)

where let lnT = ln(r2/r1) which in practice denotes the
logarithm of the Euclidean distance matrix, p(u) = exp(θ ),
ln p(u) = θ1 The ML estimator for PSV is given by:

ˆVML = argmax `(V ) (15)

1We have used p(u) = exp(θ ) in order to simplify ln(p(u)) to θ and get rid
of θ when computing the derivative of the likelihood function. Thus, we have
ln(exp(θ )) = θ and θ ′ = 0 since θ is a constant.
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Differentiating the log likelihood with respect to V and equat-
ing to zero:

∂`(V )
∂V

= 0, (16)

ℵ(r2)− ℵ(r1)
V

− m exp(θ )[lnT ] = 0 (17)

V̂ =
ℵ(r2)− ℵ(r1)
m exp(θ )[lnT ]

(18)

which is the ML estimator of the PSV based on the distances
to all the neighbors of a single point and ℵ(r1) and ℵ(r2)
denotes the count of the number of points. The values of r1
and r2 have been determined by experiments and explained
subsequently. To combine the results obtained in the neigh-
borhood of allN data points to give a single inference of PSV,
we can average V̂ (u). Thus, the ML estimator for PSV can be
expressed by,

V̂ML =

∑N
n=1 V̂ (un)
N

. (19)

B. REDUCTION IN COMPLEXITY
The time complexity of our proposed ML-PSV is signifi-
cantly reduced due to the ML formulation for calculating the
PSV instead of the formulation in (4). The calculation of ML
on the inverse filter output of length N has a complexity of
O(N ) along with a sorting algorithm to find the minimum
ML-PSV which has a complexity of O(N logN ). So the total
complexity for calculating a single volume using the new
formulation of PSV in (19) is O(N + N logN ).

C. DERIVATION OF CRAMÉR RAO LOWER BOUND AND ITS
PROPERTIES
The efficiency of V̂ML can be assessed by the CRLB which is
the inverse of the Fisher information (FI) J (V ) expressed as:

var(V̂ML − V ) ≥ [J (V )]−1 (20)

where

[J (V )] = −E
[
∂2`(V )
∂V 2

]
(21)

CRLB serves as the lower bound for the estimation perfor-
mance of any unbiased estimator. Let, D = ℵ(r2) − ℵ(r1).
Computing the second order derivatives from (19):

∂2`(V )
∂V 2 =

−D
V 2 (22)

[J (V )] =
−E

[
− D

]
V 2

= E[D]
1
V 2

=
λ

V 2 (23)

where V is deterministic. The variance of the estimator error
is given by,

var(V̂ML) = E
[
1
N

N∑
n=1

V̂ (un)− E[V̂ML]
]2

=
1
N 2

N∑
n=1

E
[
V̂ (un)− V

]2
(24)

and assuming that the estimator is unbiased. Since,
var(V̂ML) ≥ 1

J (V ) , we can conclude that the estimator is
efficient and the efficiency of the estimator is,

var(V̂ML) ≥
V 2

λ
(25)

IV. APPLICATION OF ML-PSV TO BLIND SYSTEM
IDENTIFICATION
It has been proven in [9] that as the PSV occupied by the
output signal goes to the minimum, the parameters of the
inverse filter approach the correct parameters of the signal
to be estimated. Purely random signals however do not have
any regular behavior in finite low dimensional phase space
and hence its volume is expected to be relatively large. It is
to be noted that when xn is used to drive a system, the system
output yn has been shown to have an embedding dimension of
DE = L+mwherem is the intrinsic dimension of the chaotic
system [51].

The following theorem supports our claim of applying
the ML-PSV as an objective function, minimizing it with
respect to the inverse filter coefficients ĥ is expected to set
the parameter vector ĥ of the inverse filter to converge to
the true value h. This is feasible when the proposed blind
identification procedure using ML-PSV works in noise to
suppress the impact of vn on un so that the ML-PSV estimate
converges to the true value as N →∞.
Theorem: Given the inverse filter output un the ML-PSV

estimate yields the true parameters corresponding to the
minimal ML-PSV estimate value of the inverse filter output
in presence of noise i.e., h = ĥ if and only if VML(un) is
minimum.

Proof: ML-PSV estimate is calculated from the output
of the inverse filter which is a time series,

un = {u1, u2, . . . , un, . . .}. (26)

The output of the above inverse filter is delay embedded using
Takens’ delay embedding that can construct a vector un con-
taining as entries time delayed expressions of un expressed in
the form:

un = [un, u(n−τ ), . . . , u(n−(DE−1)τ )]
T. (27)

where τ is the delay time andDE is the embedding dimension
of the data where DE ≥ 2m + 1. This enables one to work
in the reconstructed time delay space and learn essentially
as much as we can from the true state space provided that
the embedding dimension is sufficient enough to capture the
dynamics of the system. ML-PSV quantifies the amount of
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FIGURE 2. Schematic diagram of the proposed blind system identification approach.

data points occupied in a fixed region in this reconstructed
phase space. It counts the number of data points falling within
r1 and r2. The distance between two reconstructed vectors in
a DE -dimensional phase space can be calculated using the
Euclidean norm as T = ||up − uq|| in phase space for p 6= q.
When a system is corrupted with white noise, it fills

densely the phase space so the divergence between close
initially points becomes infinite or large. Under ideal con-
ditions and perfect estimation, the output of the inverse filter
un = xn. Let us consider a dynamic system f (·) and vn is a
measurement noise of zero mean and unity variance. Thus we
have,

uvn = f (un−1)+ vn, (28)

Now,

||uv − f (u)|| ≥ ||u− f (u)||, (29)

where u is the noiseless system when v = 0. Then we have,

T ≤ T v. (30)

This means that the separation between two nearby points is
more in the presence of noise as the data points are dispersed
in phase space and hence the distance for the noiseless sys-
tems T is lesser than that of its noisy counterpart T v. So,
if noise is reduced then it would imply that nearby points
come closer resulting in the compactness of the phase space
and hence its volume. Thereby, the error induced due to the
effect of noise diminishes. Let,

εn = uvn − f (un−1), (31)

be the error due to noise. Using time delay embedding one
obtains vectors of the form,

ςn = [εn, ε(n+τ ), . . . , ε(n+(DE−1)τ ], (32)

In the reconstructed phase space of embedding dimension
DE , the initial separation between two nearby trajectories is
denoted by, ||ςp − ςq|| where p 6= q by t0, then we can
find all pairs of vectors in phase space with their distance
approximately ≤ t0. If we introduce a shell of radius R, then
this statement amounts to,

R ≤ ||ςp − ςq|| ≤ R+1R. (33)

where1ς is the width of the sphere and is an arbitrary chosen
small distance. Then if, ς → 0 will indicate that the trajecto-
ries come close to each other and become comparable to each

other. This, in turn implies that the error is minimized to reach
the true estimate. The set of estimates for which the ML-PSV
is minimum are considered to be the true estimates of the
system under consideration. This is the idea behind applying
ML-PSV as an objective function in parameter estimation.

Figure 2 shows the block diagram of our approach where
the inverse filter reverses the system effect so that the filter
output is equal to the chaotic input signal. i.e., un = xn.
By optimizing the ML-PSV objective function of the inverse
filter output un with respect to the parameters ĥ, the inverse
system can identify the parameters h of the original system.
We have applied the ML estimate of PSV in an algorithm for
blind system identification of AR and MA models which is
summarized in Algorithm 2:

A. CASE STUDY: APPLICATION TO BLIND IDENTIFICATION
OF AUTOREGRESSIVE AND MOVING AVERAGE MODELS
Consider the following second order autoregressive (AR)
model,

yn = zn + xn + vn,

= 0.195yn−1 − 0.95yn−2 + xn + vn. (35)

where zn =
∑L

l=1 hlyn−l , xn is a chaotic signal and vn is
AWGN with variance σ 2 for n = 1, . . . ,N . An inverse filter
is employed to estimate the coefficients ĥls for the AR model
from the received signal yn, that is:

un = yn −
L∑
l=1

ĥlyn−l,

= yn − ĥTyn−1. (36)

Using different ĥl , we can get different un from the received
signal yn. The ML-PSV of un is computed and minimized by
varying ĥ = [ĥ1, . . . , ĥL]. Another system considered here is
a second order moving average (MA) model,

yn =
L∑
l=1

hlxn−l + vn,

= xn + 0.6xn−1 + 0.3xn−2 + vn, (37)

where h = [h1, h2, . . . , hL]T is the channel coefficient vector
with L as the order and vn is the AWGN. The inverse filter of
the MA model in (37) is given by

un = yn −
L∑
l=1

ĥlun−l . (38)
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Algorithm 2 Algorithm for Blind System Identification Using ML-PSV

1: Given the received signal yn, n = 1, 2, . . . ,N , construct an inverse system un where the parameter vector ĥ is the estimate
of the true parameters h.

2: Embed un into a DE dimensional phase space using the delay coordinate, i.e., un = (un, un+τ , . . . , un+(DE−1)τ ) is an
embedding dimension of the chaotic map f (·). (In this work, τ = 1).

3: Calculate the ML estimate of PSV of the inverse filter output vector un using (19).
4: Minimize the ML-PSV estimate with respect to ĥ, i.e.,

ĥ = argmin
ĥ
(V̂ML(ĥ)) (34)

FIGURE 3. (a) The transmitted chaotic data (b) Phase space plot of the
chaotic Logistic map.

However, only yn is known in the above equation and ĥ is
the unknown parameter vector that is to be estimated. A zero
mean and unity variance chaotic signal xn is generated by the
chaotic logistic map:

xn = γ xn−1(1− xn−1). (39)

The logistic map exhibits chaotic phenomenon if the param-
eter γ falls in the range (3.56995, 4] with x resembling white
noise. When the system is chaotic, its time series output is
an ergodic process and can be considered as white noise
according to the correlation property. Figure 3 shows the time
series obtained from the chaotic logistic map along with its
phase space plot where γ = 3.98. Since xn is white, for the
purpose of system identification comparison we considered
two kinds of driving signals: zero-mean WGN process with
unit variance and a zero-mean chaotic signal with unit vari-
ance generated by the chaotic logistic map in (39). Figure 4
presents the chaotic and random input sequence and Figure 5
and Figure 6 shows the corresponding outputs of the AR and
MAmodels using the chaotic and Gaussian signals. The SNR
range used throughout this work unless otherwise stated is
0 : 5 : 40 dB.

In the absence of noise, the ML-PSV obtained for the
AR(2) and MA(2) is 0.7351 known as the true ML-PSV
volume using N = 256 data points with one trail for DE = 2
and τ = 1. The performance of blind system identification
is expressed in terms of MSE between the desired h and the

FIGURE 4. Typical waveform of white Gaussian and chaotic signals.

FIGURE 5. Signal waveforms of the noise-free AR system output:
yn = 0.195yn−1 − 0.95yn−2 + xn driven by the logistic map chaotic signal
xn and a Gaussian signal.

estimated parameters of the system ĥ as,

MSEh =
1
K

∑K
i=1 ||hi − ĥi||

2

L
(40)

In (41) K is the number of independent trials. The results in
the following sections are obtained by considering the r1 =
0.5 and r2 = 1, m = 1 and embedding dimension, DE = 2.
In this work, r1 = 0.5 gave the minimumMSEh performance
for both the AR andMAmodels followed by r2 = 1 as shown
in Figure 7. It shows theMSEh performance for AR(2) model
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FIGURE 6. Signal waveforms of the MA system output:
yn = xn + 0.6xn−1 + 0.3xn−2 when xn is generated from a logistic chaotic
map and Gaussian signal respectively.

FIGURE 7. Effect of radius on blind system identification performance for
AR model.

plotted for each radius using N = 256 and K = 30 trials.
We have used K = 30 since the variance ofMSEh is reduced
to a relatively small value after that. TheMSEh obtained with
r1 = 0.5 and r2 = 1 gives the best performance at a low SNR
of 0dB and high SNR of 40 dB. We observed a similar trend
for the MA model.

B. PERFORMANCE EVALUATION IN ABSENCE OF NOISE
A typical identification example for one trial is reported
in Table 1 which shows the performance of the MPSV and
ML-PSV methods in blind system identification of the AR
andMA systems in the absence of noise forK = 1 trial. In the
absence of noise, the volume of the phase space is invariant of
the density of the data points, p(·) when the number of points
are constant [52]. Thus, the ML-PSV estimate and the PSV
of the original method (MPSV) does not change during the
parameter estimation of the AR andMAmodels. The distance
between pairs of points remains the same in the absence of
noise. However, this imposition does not hold true in the case
of noise corrupted time series which causes the data points in
the phase space to get dispersed thereby increasing the value

TABLE 1. Blind system identification performance of AR (2) and MA(2)
models using MPSV and ML-PSV for noise free case and K = 1.

FIGURE 8. Effect of inverse filter order on MSE of the estimated
coefficients of AR model.

of PSV. Thus, the PSV and the ML-PSV values vary with
SNR. From Table 1 it can be inferred that both the techniques
perform equally well in the absence of noise.

1) EFFECT OF ORDER OF INVERSE FILTER ON ESTIMATION
Figure 8 presents the results obtained by varying the order
of the inverse filter only without changing the order of the
considered AR model. MSEh, the PSV and the ML-PSV
estimate remained about the same level for order≥ 2. Similar
result was obtained for the MA(2) model. This shows that for
both the techniques an order determination is not required.

2) EFFECT OF NUMBER OF DATA POINTS
To study the effect of data length N on the system identifi-
cation performance using MPSV and ML-PSV identification
techniques, MSEh of the AR(2) is plotted against different
number of data points for K = 1 trial in Figure 9. It can
be seen that the error depends on N and identification per-
formance improves with the increase in length of the signal.
However, this leads to the increase in the computational load.
Figure 10 shows the effect of the number of data points on
the value of PSV calculated from the MPSV method and
the proposed ML version. It is observed that PSV increases
with the increase N . This result is intuitive since the derived
ML-PSV estimate of the PSV directly depends on the number
of points inside a bounded region and as such the PSV of
the chaotic system will depend on the number of the data
points. Similar trend is observed for the PSV of the original
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FIGURE 9. Effect of length of chaotic numeric signal on system
identification using MPSV and ML-PSV.

FIGURE 10. Effect of length of chaotic numeric signal on PSV using MPSV
and ML-PSV for the (a) AR(2) and (b) MA(2) models.

MPSVmethod. It can also be concluded that the proposedML
estimate of the PSV yields a smaller PSV value in contrast
to MPSV. Similar observations were observed for the MA
model.

C. PERFORMANCE IN AWGN USING CHAOTIC NUMERIC
SIGNAL
Blind system identification performance comparison is
shown in Figure 11 and Figure 12 for AR(2) and MA(2)
models respectively. The proposed blind ML-PSV is com-
pared with blind MPSV, EM-UKS [32], MNPE, nonblind
LS with chaos and nonblind LS with WGN at various SNR
levels of AWGN of zero-mean and variance 1. Since xn
is i.i.d . and non-Gaussian, blind system identification per-
formance of ML-PSV is compared with HOS based blind
methods such as the CUM3 and CUM4. After equalization
with CUM3 and CUM4, least mean squares (LMS) is applied
to obtain the estimates of the AR andMAmodels. ML-PSV is
found to outperform the HOS methods at all levels of SNR.
The difference between ML-PSV and MNPE identification

FIGURE 11. Blind Identification performance of AR model in AWGN.

methods is that the MNPE method estimates the system
coefficients by minimizing the prediction error of the inverse
filter output. On the other hand, our method uses the ML
estimate of the dynamic metric of chaotic signals known as
the PSV. The ML-PSV estimate is applied to the output of
the inverse filter, minimize of the parameters of the inverse
filter expects to yield the true parameters of the original
system. The authors in [25] proved that using a WGN as the
driving signal, the nonblind identification with LS is shown
to achieve similar performance to blind identification with
chaos. Furthermore, using chaos the nonblind identification
performance with LS is poor than the blind identification
using chaos. In that work, it was also proved that the CRLBs
of nonblind identification using WGN is equivalent to that
of blind identification when a chaos driving signal is used.
Therefore, MPSV and ML-PSV methods perform quite sim-
ilar to the nonblind LS method with WGN but outperforms
the nonblind LS with chaos. In addition, our results show
that the proposed ML-PSV and the existing MPSV method
is robust as all extra coefficients for the AR(2) and MA(2)
models are very close to zero. For the LS method, however,
these coefficients still take a relatively large value. An order
determination method has to be used with the LS method to
determine if some coefficients are extra. Since the LS method
obtains minimal mean square error between the estimated
parameters and true parameters when the driving signal is
Gaussian, it implies that the performance of the LS iden-
tification method degrades when the driving signal is non-
Gaussian. Therefore, it is a good choice for performance
comparison to use the statistically optimal LS method when
the driving signal is a zero-mean WGN. Hence, when xn is a
WGN process, the standard nonblind LS method is employed
for performance comparison.

1) PERFORMANCE EVALUATION FOR AR MODEL USING
CHAOTIC NUMERIC SIGNAL IN AWGN
In Figure 11, the MSEh performance of blind system identi-
fication using chaotic numeric (CN) signal for AR(2) model
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FIGURE 12. Blind Identification performance of MA model in AWGN.

is shown with N = 256 data points and K = 30 trials. For
both the AR and MA models, ML-PSV method provides an
improvement of 2.3 dB at 0-15 dB SNR in comparison to the
existing MPSV in presence of AWGN. However, at SNR>=
20 dB both the methods yield similar performance. There-
fore, the proposed ML-PSV definitely shows an improved
performance of about 2.3 dB overMPSV at low SNR for both
the AR(2) and MA(2) models. ML-PSV shows a significant
improvement over nonblind LS with CN driving signal at
high SNR. This is because the LS method is suboptimal for
non-Gaussian signal such as the chaotic signal and at high
SNR chaos dominates the Gaussian signal. This result further
reinstates our claim that the application of a chaos-based
estimator such as the proposed ML-PSV aids in parameter
estimation when using chaotic signals since the estimator
encapsulates the properties/information of the chaotic signal.
Furthermore, ML-PSV also outperforms the blind MNPE
and HOS methods at all levels of SNR. The blind MNPE
method shows performance comparable to that of ML-PSV
and MPSV only at SNR > 25 dB. ML-PSV lacks behind
nonblind LS with WGN by about 1.5 dB at 0 dB SNR. How-
ever, it can also be observed from Figure 11 that ML-PSV
lacks behind the nonblind LS with WGN by about 2 dB SNR
and lacks behind the CRLB by approximately 5 dB SNR all
throughout. Both the ML-PSV and MPSV methods do not
reach the CRLB performance and give poor performance in
comparison to the statistically optimal LS method. In order to
improve the performance ofML-PSVwith chaos, we propose
to apply symbolic dynamics to convert the chaotic numeric
signal to chaotic symbolic (CS) signal. This is explained
subsequently.

2) PERFORMANCE EVALUATION FOR MA MODEL USING
CHAOTIC NUMERIC SIGNAL IN AWGN
Figure 12 shows the nonblind identification with LS with
chaos is no longer optimal and its performance is worse
than that of nonblind LS with WGN. In comparison to
the EM-UKF with chaos, ML-PSV shows a significant

FIGURE 13. Variation of ML estimate of PSV with SNR in blind system
identification of (a) AR(2), and (b) MA(2) models for K = 30 trials.

performance improvement of about 3 dB at 0 dB SNR.
From 5-15 dB SNR, ML-PSV approach closely follows
the EM-UKF thereafter ML-PSV performance degrades.
ML-PSV lacks behind nonblind LS with WGN by about
1.5 dB at 0 dB SNR, similar to that of the AR model. Once
again, as SNR increases both ML-PSV and MPSV methods
perform similarly.

Figure 13 illustrates that as the SNR increases, the ML
estimate of the PSV gradually decreases for AR and MA
models respectively. As observed, theML-PSV and its CRLB
has a monotonic decreasing trend with the increase in SNR
in Figure 14 which is for the MA model (since similar trend
was observed for the AR model), as is the case for theMSEh
in Figures 11 and 12. Figure 14 shows the plot of the MSE
of the ML-PSV estimate for the MA(2) model and the CRLB
of the ML-PSV estimate. The MSE was calculated between
the trueML-PSV under noise-less condition and theML-PSV
at various SNRs and averaged over K = 30 trials when the
AR and MA models are corrupted by AWGN at SNR =
0 : 5 : 30 dB. It is observed that the MSE of the ML-PSV
estimated for the AR model gradually approaches the CRLB
of the ML-PSV estimate. This result shows that as noise
reduces, the ML-PSV estimate of the inverse filter output
gradually reaches the minimum which should be close to that
of the true estimate of ML-PSV in the absence of noise and
this value corresponds to the true parameters of the MA(2)
model as shown in Figure 13(b).

3) EFFECT OF HIGHER DIMENSION ON ESTIMATION
PERFORMANCE USING CHAOTIC NUMERIC SIGNAL
Here we examine the MSEh performance with respect to the
embedding dimension, DE for the MA model with chaotic
numeric input at SNR= 15 dB. On each trial, the embedding
dimension is held constant and the MSEh is plotted versus
different embedding dimensions in Figure 15 for K = 30
using N = 256 data points in each trial. It is observed that
the minimum MSEh of approximately −25 dB occurs when
the embedding dimension DE = 2 for the chaotic Logistic
map that has an attractor dimension (intrinsic dimension) of
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FIGURE 14. CRLB of the estimate of ML estimate of PSV and the MSE of
these estimates using the PSV of the Logistic map.

m = 1. This is due to the reason that with the knowledge of
the attractor dimensionm used for generating a chaotic signal,
the ML-PSV can be minimized by adjusting the parameters
of the inversely filtered signal by using Whitney’s mini-
mum Embedding theorem using an embedding dimension of
DE >= 2m [51]. Since the chaotic logistic map is a 1-D
dynamic, an embedding dimension of two should be suffi-
cient for phase-space reconstruction. As a result, the MSEh
performance drops from DE = 1 to 2 and stays at the same
level for any higher embedding dimension. Although the
MSE drops fromDE = 1 to 2 as expected, it increases steadily
for higher embedding dimensions. The reason is that the
ML-PSV calculation depends on the number of points. For
DE = 2, N = 256 points are enough to display the dynamics
of the signal. However, for higher embedding dimensions like
DE = 4, 256 points are dispersed in the 4-D phase-space and
distributed scarcely. In fact, it has been shown before that for
a chaotic signal it is expected that the error will decrease to
an optimal value as the embedding dimension is increased
to the correct minimal embedding dimension, and remains
close to the minimum error level when the dimension exceeds
the minimal embedding dimension. The result from Figure 15
supports our choice of selecting the embedding dimension as
DE = 2. For the AR(2) model, similar observation has been
noted.

D. NOISE SENSITIVITY ANALYSIS
The evaluation of blind system identification performance
under different kinds of measurement noise is presented for
AR(2) and MA(2) models in Figure 16 and Figure 17 respec-
tively. The blind identification performance of ML-PSV is
compared with blind MPSV using CN signal for different
kinds of measurement noise, v: (a) WGN of a fixed variance
of 0.5, (b) Uniform White noise, and (c) chaotic noise using
N = 256 data points and K = 30 trials. From Figure 16
it is observed that when the AR(2) model is corrupted by
WGN noise of variance = 0.5, ML-PSV method shows an
improvement of approximately 1dB over MPSV at SNR =
0 − 25 dB after which both the methods show quite similar

FIGURE 15. Effect of embedding dimension on MSE of estimated
parameters of the MA model at SNR = 15 dB.

FIGURE 16. Comparison of blind system identification for AR(2) in WGN,
Uniform and chaotic noise using CN signal.

performance. However, when the received signal is corrupted
with a Uniform White noise, ML-PSV method shows an
improvement of 2 dB for SNR = 0 − 10 dB over MPSV.
Gradually from SNR>= 15 dB onwards, both the techniques
show same performance. Figure 16 also shows theMSEh per-
formance from measurements corrupted by a chaotic signal
that is obtained from another chaotic map known as the Tent
map. It is a one dimensional chaotic dynamical system in
the unit interval [0, 1] and is represented by the following
dynamical system:

g : [0, 1] → [0, 1]

g(v) =


2v, for 0 ≤ v ≤ 1/2
2− 2v, for 1/2 ≤ v ≤ 1 (41)

Iterating the chaotic Tent map in (41) generates a time series
(v0, v1, v2, . . . , vn, . . . , vN−1) where each vn is a point in the
unit interval [0, 1]. ML-PSV shows a performance improve-
ment of approximately by about 5-6 dB at 0 dB and 5 dB
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FIGURE 17. Comparison of blind system identification for MA(2) in WGN,
Uniform and chaotic noise for CN signal.

SNR in comparison to being corrupted with AWGN. There-
after, the performance of ML-PSV under the influence of
chaotic measurement noise increases by 11 dB to 12 dB for
SNR= [10,15,20,30] dB. In comparison to MPSV, ML-PSV
achieves a performance improvement of 2 dB at SNR =
0-10 dB. Eventually, both the methods perform similarly
giving the lowest MSEh performance amongst all kinds of
noises. This is because the addition of chaotic signal fills
the phase space with data points from chaotic systems and
as such the dynamic estimators are able to capture more
information from the chaotic dynamics. The blind identifi-
cation performance of the proposed ML-PSV method shown
in Figure 17 for the MA(2) model shows similar performance
improvement in chaotic noise. From these results, we can
infer that blind system identification of AR and MA mod-
els with ML-PSV and MPSV methods are most resilient to
distortion from chaotic noise and ML-PSV gives superior
performance over MPSV method overall. ML-PSV gives the
worst performance for measurements corrupted by AWGN.

E. BLIND SYSTEM IDENTIFICATION WITH CHAOTIC
SYMBOLIC SIGNAL
The choice of driving input signals has an important role
in system identification. Here we discuss the advantage of
using CS over CN in improving system identification per-
formance using chaos. The results obtained reinstates the
rationale for selecting a CS signal as a candidate for driving
input signal in system identification. A symbolic time series
signal generated by a chaotic system by the method of sym-
bolic dynamics is denoted as a chaotic symbolic (CS) signal.
Symbolic dynamics is a method that converts the real-valued
trajectories into symbol sequences. This method helps to
study the dynamics of the chaotic system using symbolic
representation. In essence we divide the phase space of the
system, assign a symbol to each section of the phase space,
and create a symbolic sequence by looking at the time series
that passes through these divisions. Pictorically, the con-
cept of symbolic dynamics is illustrated in Figure 18 for an

FIGURE 18. Illustration of the evolution of time series in phase space and
associated symbols.

FIGURE 19. Normalized auto-correlation function (a) Random signal
(b) Chaotic signal.

embedding dimension DE = 3. The phase space is parti-
tioned into two regions, each of which is labelled with a
unique symbol±1 according to a rule. Each data point (state)
in the phase space gives a sequence of symbols and the
evolution of the system is described by the progression of
these symbols. In general, we can consider only one variable
to obtain the symbolic dynamics. In this work, a symbolic
sequence is generated by a chaotic map as:

sn =

{
+1, if xn ≥ µ
−1, otherwise

(42)

where µ = 1
N

∑N
n=1 xn is the mean of the chaotic signal.

It is desirable to analyze the properties of the CN and
CS signals as well as random binary signal known as
pseudo-random binary signal (PRBS). We study the average
cross correlation function and the crest factor which are the
properties of a signal required for system identification. The
average cross correlation function of CN and CS signals are
shown in Figure 19. From Figure 19(a) and 19(b) it can
be observed that the auto-correlation of a random binary
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FIGURE 20. Performance comparison using CN and CS signals in system
identification of the AR(2) model in AWGN.

signal and the CS signal are similar to each other having a
pure delta function. A signal having a pure delta function
means that it only correlates with itself at lag= 0. Therefore,
closer the auto-correlation of a process is to a delta function,
it is more uncorrelated. This is a desirable property since it
means that the signal achieves the largest power having a
maximum amplitude. In other words,the CS has better fre-
quency spectrum suitable for system identification compared
to the numerical sequence. Figure 19(b) clearly shows that
for a finite chaotic sequence, the correlation function of the
CS signal has better peak to valley ratio compared to its
numerical counterpart. This implies that the CS has even have
better frequency spectra for system identification. Another
guideline for choosing the input signal is that it should be
able to deliver as much input power to the system as possible.
The smaller the crest factor, the better the signal excitation.
A better signal excitation results in larger total energy deliv-
ery and enhanced signal-to-noise ratio. The theoretical lower
bound for the crest factor is 1. From numerical simulations,
the crest factor for the CN signal obtained is 1.9901 dB and
1.4468 dB for CS signal. Thus, the CS sequence transfers
more energy to the system which results in a better system
identification performance. These properties of chaos helps in
system identification where the CS acts as the driving signal.
As a result, a CS obtained from a CN can play an important
role in our work.

We now present results demonstrating the advantage of
using CS over CN in improving system identification per-
formance. Figures 20 and 21 demonstrate the effectiveness
of using a CS over CN in driving the models for blind
system identification which are obtained using N = 256
and K = 30 trials. When xn is generated from a random
general signal which is a zero mean white Gaussian process
with unity variance, we have applied the LS technique. In
Figure 20 for the AR(2) model, theMSEh performance using
theML-PSVmethod with the CS signal shows a performance
improvement of 2.4 dB over its CN counterpart at 0 dB SNR
which gradually improves giving an improvement of 5 dB at

FIGURE 21. Performance comparison using CN and CS signals in system
identification of the MA(2) model in AWGN.

SNR= 40 dB. Similar performance improvement is obtained
by ML-PSV using CS for the MA(2) model as observed from
Figure 21. The impact of using CS over CN signals is that the
CS signal helps the MSEh performance for both the methods
to reach the performance of the nonblind LS with PRBS
which otherwise showed poor performance with CN signal
before. ML-PSV with CS shows improved performance over
CN signal in comparison to EM-UKS with CS. At 0 dB SNR,
ML-PSV with CS signal shows a performance improvement
of about 2 dB in comparison to EM-UKF with CS. The per-
formance improvement by ML-PSV with CS over EM-UKS
with CS continues from 5 − 15 dB and thereafter both show
similar performance. On the other hand, ML-PSV with CS
shows better performance at 0−20 dB SNR in comparison to
MPSVwith CS. The proposedML-PSV estimation technique
with CS input lacks behind nonblind LS with PRBS by about
1.5 dB at 0 dB SNR and then by 1 dB for SNR = 0− 25 dB
giving similar performance thereafter.

V. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of the dynamic
based identification method through experimental evaluation
using software defined radio (SDR) for blind equalization in
wireless communications for which ARMA model is seldom
used. An AR model considered as an autoregressive moving
average (ARMA) should be able to be approximated by
an AR with sufficient order. The experimental results vali-
date the improved equalization performance of the proposed
ML-PSVmethod. In this work, we have applied ourML-PSV
estimate for equalization of a fading and multipath channel
that is modeled by an FIR filter. Thus, the received signal is
represented as:

yn =
L∑
l=1

hlxn−l + vn. (43)

where h = [h1, h2, . . . , hL]T is the channel coefficient vector
with L as the order and vn is the AWGNwith variance σ 2. The
objective of blind identification/equalization is to estimate the
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FIGURE 22. Experiment environment.

unknown channel parameters h and the transmitted chaotic
signal xn from the received noisy signal yn. We apply the
ML-PSV estimator derived in (19) as the objective function
in (34) for blind system identification using noisy observa-
tions yn only. The inverse filter of (43) is given by,

un = yn −
L∑
l=1

ĥlun−l . (44)

However, only yn is known in the above equation and ĥ is the
unknown parameter vector that is to be estimated.

A. EXPERIMENTAL SETUP
The purpose of the experiments is to generate chaotic sig-
nals using software and passing it through a system model
to demonstrate the merit of ML-PSV estimator in blind
equalization. The experiment setup for blind equalization is
demonstrated in Figure 22. It includes two Universal Soft-
ware Radio peripherals (USRP), each controlled by a desktop
computer via an Ethernet cable. The USRP is a SDR platform
equipped with a X310 motherboard, a WBX-120 daughter-
board that covers 50 MHz to 2.2 GHz frequency band, and
two omnidirectional antennas. The softwares installed on
the desktop, including USRP Hardware Driver (UHD) and
GNURadio, allow users to control and communicate with
USRP devices. Then we use one USRP to transmit it on radio
frequency (RF), and use the other one as a receiver. At the
transmitter side, a self-defined module generates a sequence
using the logistic map in (39) with initial condition x0 =
0.8. Without loss of generality, we choose γ = 3.98. The
generated sequence is shown in Figure 23. The chaotic signal
then passes through a MA(2) model or an FIR system with
impulse response h = [1, 0.6, 0.3]T. Note that the chaotic
signal we get has a mean value of 0.5518. The actual values
of the MA coefficients are assumed to be known for the
purpose of MSE calculation. These values are unavailable
at the receiver. After passing the chaotic signal through the
FIR system, the signal contains a non-zero DC component
and its maximum amplitude exceeds 1. As we cannot trans-
mit DC component over RF and the USRP does not allow
amplitude greater than 1, we remove the DC component by

FIGURE 23. Logistic map time domain signal.

FIGURE 24. Schematic diagram of the transmitter and receiver design in
GNURadio.

subtracting the mean value and scale down the signal. After
that, the USRP transmits the signal at a speed of 2 M Sam-
ples/s on the 915 MHz ISM band.

Figure 24 shows the schematic diagram for the transmitter
and receiver. The USRPs have independent clocks. If they
are not synchronized, the received signal would be different
from the transmitted one. Hence we use one clock to provide
reference signals through the hardware port to the other one
so that the timing error is minimized. We also amplify the
received signal. It does not change the chaotic nature and has
no impact on system identification performance. Although
we transmit a real signal, the received one is complex due
to the channel delay. We use a Costas loop to perform carrier
synchronization so that the phase rotation is corrected. The
two SDRs are placed relatively close to each other so that
the channel noise can be considered as AWGN. At the end,
we perform blind equalization using the received signal.

B. EXPERIMENT RESULTS
MSEh is used as the performance measure to evaluate the
system identification performance in AWGN for N = 1000
and K = 30 and use the real component of the received
signal from experimental setup. Figure 25 shows the result
of the comparison of blind system identification under the
experimental setup. The simulation result of the ML-PSV
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FIGURE 25. Comparison of simulation and experimental MSEh
performance of ML-PSV for MA model using CN and CS signals.

FIGURE 26. Comparison of simulation and experimental MSEh
performance of ML-PSV using CN and CS signals corrupted by different
types of measurement noise.

method lacks behind its experimental result using CN by
about 2.8 dB at SNR= 0−15 dB. Thereafter, the performance
gap reduces to 1.5 dB. However, the experimental result of
ML-PSV using CS shows remarkable improvement lacking
behind its simulation counterpart by less than 1 dB SNR.
Both simulation and experimental results gradually reach the
CRLB performance with CS signal. Thus, once again the
experimental results show the merit of using CS signal in
system identification. In contrast, the HOS methods show
poor performance all throughout.

In Figure 26, the blind identification performance for
experimental and simulation is compared for the FIR channel
corrupted by different types of measurement noise. It can be
seen that the blind identification performance of ML-PSV
under chaotic measurement noise gives the best MSEh per-
formance followed by WGN with fixed variance and the
worst performance is given by Uniform noise for both the
CN and CS types of signals. Once again, it is observed that
eventhough the ML-PSV with CN signal performs poorly
for different cases of noise, the CS counterpart boosts its

FIGURE 27. Equalization performance for MA model using ML-PSV with
CN signal at SNR = 15 dB.

performance by a huge margin. Figure 27 shows the equaliza-
tion result for the AWGNmeasurement case using CN plotted
for the first 100 data points. The equalized signal is the esti-
mated chaotic numeric valued signal which is obtained from
deconvolution of the received noisy signal at SNR = 15 dB
using ML-PSV method. The equalized signal that is plotted
in Figure 27(a) closely resembles to the actual known chaotic
signal with its error plot in Figure 27(b) remaining near
zero. Therefore, the performance of the proposed ML-PSV
method is validated using experiments to show improved
performance over blind HOS basedmethods using CN signal.

VI. CONCLUSION AND DISCUSSION
The objective of this work is to derive a parameter esti-
mation method for improving blind system identification
performance when the input driving signal is an unknown
chaotic signal. The motivation for using chaos as the driving
input signal is based on previous research findings where it
has been proved that chaotic signals are effective in system
identification. One such method which applies chaotic signal
for blind identification is the MPSV method. However, it has
been found that it does not perform well at high noise level.
To tackle this problem, we present a new improved method of
MPSV technique. Our proposed method is based on deriving
the PSV estimate using maximum likelihood formulation.
The derived ML estimate of PSV is denoted as ML-PSV.
We have also derived the CRLB of the PSV estimate and
shown that the the mean square error of the PSV gradually
approaches its CRLB.

We then applied the derived ML estimate of PSV (known
asML-PSV) in an algorithm as an objective function for blind
system identification of AR and MA models, minimizing
it with respect to the inverse filter coefficients we expect
the inverse filter coefficients to get close to the true system
parameters. Our results show that the proposed new method
is an improved version of an existing method known as the
Minimum Phase Space Volume (MPSV). ML-PSV method
provides an improvement of 2.3 dB at 0 − 15 dB SNR in
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comparison to the existing MPSV in presence of AWGN.
At SNR >= 20 dB both the methods yield similar perfor-
mance. The performance of the proposedmethod is compared
with CRLB of WGN and nonblind LS. By comparing to the
conventional blind identification methods based on higher
order statistics (HOS) and chaos-based methods, the pro-
posed ML-PSV based blind identification was shown to have
superior performance at low SNR region of 0 : 5 : 15 dB.
Noise sensitivity analysis shows that ML-PSV method yields
the best performance for measurements corrupted by chaotic
noise.

We have also evaluated the performance of our approach
in blind system identification using chaotic symbolic CS)
signal obtained from the symbolic dynamics of the chaotic
numeric (CN) valued signal. Our results showed that the
performance of CS signal usingML-PSV is better than that of
CN signal for both the AR(2) and MA(2) models. ML-PSV
method with CS achieves performance close to nonblind with
PRBS. Furthermore, with CS the ML-PSV method showed
improved performance at SNR = 0 : 5 : 20 dB in com-
parison to EM-UKF with CS thereafter both the methods
yielded similar performance. It can be observed that the
MSEh of the proposed method with CS closely follows the
CRLB. This result opens an opportunity for the application
of chaos and symbolic dynamics for improving blind system
identification.

Our goal is to develop a technique for blind channel
equalization for improving wireless communication by our
proposed method. Hence, we have evaluated our technique
using AR and MA models as they are popular models in
communication. We then validated our method using experi-
mentation with a real dataset collected from software defined
radio (SDR) and applied our method for blind equalization
of a channel where the MA components represent a finite
impulse response and is modeled as a FIR system. Using
SDR, the proposed method is also shown to have superior
performance compared to HOS based blind methods. Based
on our analysis, we can infer that chaotic signals either in
numeric or symbolic format can act as an ideal candidate
for blind system identification using our proposed ML-PSV
method. Apart from chaos-based equalization application
which we have presented in our work, we could also apply
the ML-PSV estimator in narrow-band interference cancel-
lation for spread spectrum communications and in chaos-
based pulse amplitude modulated (CPAM) UWB radar. The
chaos-based UWB radar finds its application in through-wall
imaging for detection.
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