
Received December 30, 2020, accepted January 12, 2021, date of publication January 14, 2021, date of current version January 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051854

Enhanced Multiplicity on Shaped Patterns by
Introducing Symmetric Pure Real Distributions:
Taylor Linear and Circular Sources
AARÓN Á. SALAS-SÁNCHEZ 1,2,
J. ANTONIO RODRÍGUEZ-GONZÁLEZ 2, (Senior Member, IEEE),
M. ELENA LÓPEZ-MARTÍN3, AND FRANCISCO J. ARES-PENA 2, (Fellow, IEEE)
1ELEDIA@UniTN (DISI - University of Trento), 38123 Trento, Italy
2Department of Applied Physics, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
3Department of Morphological, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

Corresponding author: Francisco J. Ares-Pena (francisco.ares@usc.es)

This work was supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación under Project
TEC2017-86110-R. The work of Aarón Á. Salas-Sánchez was supported by the Xunta de Galicia under the Postdoctoral
Fellowship under Grant ED481B 2018/008.

ABSTRACT The techniques on the generation of multiple solutions in shaped-beam pattern synthesis
are standardly focused on the use of patterns with complex nature as input. Otherwise, in order to derive
a symmetric pure real distribution from the canonical pattern synthesis techniques, a generation of a
pure-real pattern has to be imposed. In the present work, the exploitation of the multiplicity of the shaped
pattern generated by this symmetric pure real distribution is proposed, without constraining the solutions
to necessarily meet the pure-real pattern requirement. Therefore, an increase on the degrees of freedom
is produced and a greater number of continuous distributions (presenting different natures) is achieved,
by omitting the restrictions found in the state-of-the-art methodologies. Thus, a general multiplicity of
solutions can be reached and the design protocol can increase its number of alternatives for facing different
feeding network structures. In such a way, this article is devoted to illustrate the improvements in terms
of number of feasible solutions reached by the general method, including alternative symmetric pure real
distributions as input within the procedure. In this manner, two different approaches, constraining the pattern
to present the same number of ripples or a similar main beam width, are discussed. Examples of both Taylor
distributions linear and circular are illustrated.

INDEX TERMS Antenna theory, aperture antennas, linear sources, planar sources.

I. INTRODUCTION
Shaped-beam patterns have been attracting a great attention
due to their advantageous performance within satellite appli-
cations. These types of desired patterns are highly interesting
for guaranteeing the illumination of a controlled part of the
Earth from any kind of space vehicle.

An example of numerical analysis for continuous distribu-
tions in antenna array designs can be referred [1]. In this work,
the performance of reconstructing different shaped-beam pat-
terns are analyzed. More precisely, a control of the phase
distribution of the aperture for a fixed amplitude distribution
has been implemented.

A very interesting feature of shaped-beam pattern synthe-
sis is the generation of a multiplicity of solutions in terms
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of continuous aperture distributions for obtaining equivalent
antenna radiation patterns. In this manner, the selection of a
more convenient distribution regarding practical realization
and/or quality of the solution can be addressed.

Until now, among the procedures devoted to generate
multiple continuous aperture distributions in shaped-beams
patterns [2], [3], the idea of introducing a pure-real radia-
tion pattern constraint has been linked to generate a unique
solution in terms of aperture distribution [4], [5]. In this
case, the realization of this unique solution as itself, based
on a symmetric pure real continuous aperture distribution,
is outlined as an advantage, because it represents the only way
to obtain a distribution of such nature.

Conceptually, the generation of the multiplicity of solu-
tions regarding continuous aperture distributions is based on
phase changes of the far-field pattern and its reference level.
As it is well-known [6] the phase of the far-field pattern
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is seldom specified and this adds a degree of freedom to
the work of a designer devoted to find a more realizable
antenna. In such a way, an intelligent search among the
different phase distributions of the pattern results in the sim-
plest physically realizable current distribution within a spe-
cific synthesis problem. In the particular case of symmetric
pure real distributions [2], [3], the inexistence of multiplicity
is based on the condition of keeping a null value of this
phase.

Another interesting approach is [7], where the concept
of multiplicity of pure-real pattern constraints has been
exploited for linear arrays. In this case, a generation of
solutions based on altering the positions of the roots in
the Schelkunoff unit circle representation [8] has been
conducted.

Among the literature focused on power pattern synthesis
problems, an interesting approach first introduced in [9] and
then fully exploited in [10] can be highlighted. In these works,
equivalent aperture distributions for circular patterns without
deep-nulls have been obtained bymeans of local optimization
techniques. Here, no discussion about the physical realiza-
tion nor conceptual methodologies about the nature of the
solutions were addressed.

In the present work, the concept of multiplicity of solutions
is proposed for the pure-real pattern case (led by a symmetric
pure real distribution) by eliminating the restriction in phase
for the far-field pattern and allowing solutions which generate
complex far-field pattern expressions. In such away, a general
methodology which completes the state-of-the-art alterna-
tives of multiplicity and performs a comparison between
the different approaches, is analyzed. More precisely, both
linear and circular Taylor distributions devoted to generate
equivalent pattern characteristics are considered.

For an interested reader, it is worth mentioning that, in the
same basis of altering the nulls of the shaped-beam radi-
ation patterns, alternative analytical sources could be also
addressed by this procedure. For instance, shaped-beam pat-
tern namely Rhodes [11] or Ludwig [12] distributions can
be also straightforward configured as valid approaches in
linear or circular sources. These patterns are generated by
distributions which have been derived for going linearly to
zero at the edges. Thus, they present wider beams and con-
sequently, a reduced directivity level and aperture efficiency
[13] in comparison with the Taylor case. So, the analysis of
these approaches are out of the scope of this research.

II. METHOD
Let us consider both line and circular sources. Regarding
line sources, as it is shown in the mathematical description,
the methodology here proposed is also inspired in previous
approaches [14] devoted to exploit asymmetrical continu-
ous aperture distributions. At the same time, on circular
sources, ϕ-symmetry will be assumed by the theoretical basis
[5]. As it was above-mentioned, Taylor-based patterns have
been considered in their both linear [15] and circular [16]
alternatives.

A. LINEAR SOURCES
Let us consider a line source of length 2l and centered in
the origin. In such a way, the asymmetry of the aperture dis-
tribution of a shaped-beam pattern can be directly exploited
from the basis of the formulation by following the general
notation

F (u) = f (u) ·
M∏
n=1

r1l (u) · r2l (u) · rε3l (u) · r
ε
4l(u)

·

n̄−1∏
n=M+1

(
1−

u2

u2n

)
(1)

where

ril (u) =
(
1+ (−1)i

u
uin + jδin |vin|

)
, (2)

uin + jδin |vin| are the root positions and δin = ±1 depend on
the nature of the solution,

f (u) =
sin (πu)
πu

·
1∏n̄+εM−1

n=1

(
1− u2

n2

) , (3)

where u =
(
2l
λ

)
cos θ, being θ the angular direction, and M

the number of filled nulls present on the pattern.
For the specific case of a pure-real pattern generated by

a real symmetrical distribution, ε = 1 and the quadru-
plet of roots (u1n, v1n) = (un,+ |vn|) , (u2n, v2n) =
(un,+|vn|) , (u3n, v3n) = (un,− |vn|) , (u4n, v4n) =

(un,−|vn|) ; it is, Eδn = (+1,+1,−1,−1) for each n.
Based on the invariance of the pattern under changes of

sign in the imaginary parts of the roots (vin) a group of
continuous aperture distribution can be generated, by means
of the expression

g (ρ) =
1
2l

n̄+M−1∑
m=−(n̄+M−1)

F (m) ejm
πρ
l , (4)

where ρ ∈ [−l, l] sweeps spatially the aperture.
This formulation permits to include both the initial com-

plex pattern (ε = 0) and the initial pure-real pattern (ε = 1)
alternatives and at the same time to generate the multiplicity
of solutions by means of δ = ±1 in both cases.

B. CIRCULAR SOURCES
Regarding circular sources, a compact expression for the far-
field pattern is [5]

F (u) = f (u) ·
M∏
n=1

r1c (u) · rε2c (u) ·
n̄−1∏

n=M+1

(
1−

u2

u2n

)
(5)

where u =
(
2a
λ

)
sin θ, being θ the angular direction and a the

radius of the distribution,

ric (u) =
(
1+

u2

(uin + jδin |vin|)2

)
, (6)
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with the root positions expressed as uin + jδin |vin|, and δin =
±1 depending on the nature of the solution,

f (u) =
J1(πu)
πu

·
1∏n̄+εM−1

n=1

(
1− u2

γ 21n

) . (7)

The terms γ1n are the zeroes of the Bessel function of first
kind [J1 (πγ1n) = 0] .

For the particular case of a pure-real pattern generated by
a pure real symmetrical distribution, ε = 1 and the pair
of complex numbers (u1n, v1n) = (un,+ |vn|) , (u2n, v2n) =
(un,−|vn|) ; it is, Eδn = (+1,−1) for each n.
It is worth highlighting that the number of ric(u) terms

represent the half of the ril(u) terms in the linear approach
and additionally they are introducing the squared value of
each root. This change of procedure is motivated by the
already mentioned assumption about the symmetry of the
distributions.

In this case, the continuous aperture distribution which
generates the far field pattern (5), (6), and (7), follows the
expression [5]

g (ρ) =
1
2a

n̄+M−1∑
m=0

F (γ1m)

J20 (γ1mπ)
J0
(
γ1m

πρ

a

)
, (8)

where ρ ∈ [0, a] in this case represents a radial sweep of the
circular continuous aperture distribution.

III. RESULTS
In order to analyze the proposed methodology for includ-
ing a new group of solutions based on introducing initially
symmetric pure real distributions, two Taylor descriptions
(linear and circular) are discussed. Therefore, the synthesis
of shaped-beam radiation patterns with a nominal side lobe
level (SLL) of−25 dB and a ripple of 0.5 dB will be analyzed
in all the present work.

A. LINE SOURCES
Let us consider continuous linear distributions which gen-
erate the far-field patterns showed in Fig. 1. In particular,
3 cases are illustrated: the standard complex pattern, the input
pure-real pattern constrained to present the same number of
ripples than the reference (it is, 2 on each side of the shaped
region) and the input pure-real pattern derived by the same
number of roots than the complex pattern. In this last case,
as it can be noted from Fig. 1, the generated pattern presents
the half of the ripples comparing with the standard pattern.
This fact is based on the reduction of the filled nulls in order
to fit the requirement in terms of number of roots.

To highlight the differences between patterns, the width of
the shaped region can be analyzed by means their half-power
beamwidth. Regarding this parameter, while the complex
pattern case presents 26.87◦, the width for the pure-real case
with the same number of ripples is of 43.47◦ (an increase
of a 61.78%). At the same time, it is worth highlighting that
the alternative proposed by keeping the same number of roots
presents a half-power beamwidth of 23.35◦. This behaviour

FIGURE 1. Results of the linear source scenario. Far-field radiation
patterns of a nominal SLL of −25dB and a ripple of ±0.5 dB: initial
complex pattern with M = 2 (black solid curve), initial pure-real pattern
with M = 2 (red dotted curve), and initial pure-real pattern with M = 1
(blue dashed curve).

TABLE 1. Comparison of Dynamic Range Ratios |Imax |/|Imin| Between
the Different Solutions in Linear Sources

is confirmed by analyzing the values of directivity on each
case: 16.38 dBi for the complex pattern, while 12.44 dBi
for the pure-real pattern of M = 2, and 17.50 dBi. These
differences in width and directivity of the pattern motivates
the inclusion of the alternative with the same number of roots,
as an addition to the one devoted to generate the same pattern
shape (which exactly reconstruct the same number of ripples).

Studies on the multiple solutions for the equivalent pattern
generation of this linear case are reported in Table 1 by means
of the analysis of the dynamic range ratio, defined as the ratio
of the maximum and the minimum value of the excitation
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FIGURE 2. Comparison between the solution with minimum (green solid
curve) and the solution with maximum (red dashed curve) dynamic range
ratio (|Imax |/|Imin|) of the initial pure-real case (ε = 1) with same number
of ripples (M = 2).

FIGURE 3. Comparison between the solution with minimum (green solid
curve) and the solution with maximum (red dashed curve) dynamic range
ratio (|Imax |/|Imin|) of the initial pure-real case (ε = 1) with same number
of roots (M = 1).

in absolute value (|Imax| /|Imin|). To develop this analysis,
the distributions have been discretized on 19 elements with
an inter-element spacing of 0.5λ. Here, the minimum and
maximum value of the dynamic range ratio for each one of
the alternatives (complex and pure-real withM = 2 and pure-
real withM = 1) are reported. Additionally, the shapes of the
solution showing the least variation and the solution showing
the greatest variation are found in Figs. 2 and 3. It is worth
highlighting that the solutions with maximum variability are
pure-real and they will present a change on their phases of
180◦. In such a way, the amplitudes of the continuous distri-
butions have necessarily to cut the axis. The greatest differ-
ences between extreme cases are the ones reported byM = 2,
where minimum and maximum variability on dynamic range
are 5.17 (obtained by 2 complex symmetrical solutions) and
326.88 (obtained by 2 real symmetrical solutions), respec-
tively. At the same time, in the case of the M = 1 alternative
these values are 5.27 and 44.60.

Regarding practical implementation, these multiple solu-
tions give the opportunity to the designer to select an adequate

FIGURE 4. Illustration of different types of linear array models: A)
end-fed, and B) center-fed series feed. Regarding practical realization,
resonantly-spaced arrays modelled by means of these architectures will
need distributions with different natures. W/G short represents a short
circuit implemented at the edges of the waveguide.

nature of the continuous aperture distribution on the synthesis
stage in accordance with the feeding network structure.
A methodology to synthesize continuous aperture distribu-
tions can be developed by sampling at N + 1 equispaced
values of ρ to determine the excitation of a linear array
consisting of N + 1 equispaced elements [6]. In the case
of the multiplicity led by the pure-real pattern with the
same number of ripples, 81 solutions are derived: 1 real
symmetrical, 8 real asymmetrical, 8 complex symmetrical,
and 72 complex asymmetrical. On the other hand, the case
of the multiplicity led by the pure-real pattern with the
same number of roots represents 9 different solutions: 1 real
symmetrical, 2 real asymmetrical, 2 complex symmetrical,
and 4 complex asymmetrical. Thus, depending on the linear
array model selected (for instance, examples of waveguide
antenna designs are sketched in Fig. 4), some alternatives
would be more interesting than others for discretizing the
continuous distribution. More precisely, it can be highlighted
that solutions involving asymmetrical aperture distributions
are more interesting in the case of resonantly-spaced end-fed
structures (Fig. 4.A), while symmetrical ones are of inter-
est from the point of view of resonantly-spaced center-fed
structures (Fig. 4.B). Otherwise, if the spacing of the array
is d 6= λg/2, a travelling wave excitation model [6] has to be
applied.

B. CIRCULAR SOURCES
In the case of circular sources, by developing the same ratio-
nale developed for the linear problem, other 3 test cases
have been analyzed. Therefore, a comparison between the
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FIGURE 5. Results of the circular source scenario. Far-field radiation
patterns of a nominal SLL of −25dB and a ripple of ±0.5 dB: initial
complex pattern with M = 2 (black solid curve), initial pure-real pattern
with M = 2 (red dotted curve), and initial pure-real with M = 1 (blue
dashed curve).

standard multiplicity withM = 2, the alternative based on an
initial pure-real pattern keeping the same number of ripples
(with also M = 2) and the alternative of an initial pure-real
pattern keeping the same number of roots and therefore a half
number of ripples (M = 1) are reported in Fig. 5.
To highlight the differences between the effective patterns

obtained by each development, the width of the shaped region
is also analyzed by means of its half-power beamwidth.
Regarding this parameter, while a value of 16.48◦ is obtained
from the complex pattern, the width for the pure-real case
with the same number of ripples is of 26.24◦ (an increase
of a 59.22%). At the same time, it is worth highlighting that
the alternative proposed by keeping the same number of roots
presents a half-power beamwidth of 14.32◦. These results are
in line with the values of directivity obtained for each case.
They are 23.03 dBi for the complex pattern, while 19.13 dBi
for the pure-real pattern of M = 2, and 24.17 dBi.
Studies on the multiplicity of the circular case are reported

in Table 2. Here, among the analysis of the dynamic range
ratio by discretizing the distributions in 20 rings with an
interspacing of 0.5λ between them, the solutions with mini-
mum and maximum variability are highlighted. Additionally,
the shapes of the best and the worst solutions of the sets are
reported in Figs. 6 and 7. In the particular case of Fig. 7,
a maximum variability in the solution is led by a pure-real
distribution (red dashed curve). The maximum variability
of this solution can be expected due to the negative region
present in the function. In the same manner than for linear
sources, a high level of difference between extreme cases
occurs for M = 2. For these solutions, the minimum and
maximum variability on dynamic range are 13.30 (obtained
by 2 complex solutions) and 141.79 (obtained by pure-real
solutions), respectively. At the same time, in the case of the
M = 1 alternative these values are 18.29 and 51.92 and their
natures coincides are also complex and pure-real respectively.
So, we can conclude that the pure-real solutions present a
variability much higher than the complex alternatives. This
issue reinforces the impact of alternatives based on producing

TABLE 2. Comparison of Dynamic Range Ratios |Imax |/|Imin| Between
the Different Solutions in Circular Sources

FIGURE 6. Comparison between the solution with minimum (green solid
curve) and the solution with maximum (red dashed curve) dynamic range
ratio (|Imax |/|Imin|) of the initial pure-real case (ε = 1) with same number
of ripples (M = 2).

complex solutions within the framework of the pure-real
pattern constraint, as the one here devised.

Thus, regarding practical implementation and to illustrate
the importance of exploiting a new group of natures for the
distribution we can analyze the sketch from Fig. 8, where
a practical 2D design involving waveguide slot array anten-
nas is depicted. This implementation can be conducted by
conventional sampling the continuous distributions [6]. For
instance, the theory behind the procedure to reconstruct a
certain continuous distribution in order to generate a desired
radiation pattern has been improved in [17].

Furthermore, an extension to conformal arrays can be per-
formed by means of straightforward methods. For instance,
in [18] a rapid synthesis of irregular footprints was proposed.
In order to achieve an arbitrary footprint, it is necessary to
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FIGURE 7. Comparison between the solution with minimum (green solid
curve) and the solution with maximum (red dashed curve) dynamic range
ratio (|Imax |/|Imin|) of the initial pure-real case (ε = 1) with same number
of roots (M = 1).

FIGURE 8. Illustration of a center-fed series feed planar array. Regarding
practical realization, for planar waveguide slot antenna arrays with
resonantly-spaced elements the unique feasible solution is the real
symmetric aperture distribution. W/G short represents a short circuit
implemented at the edges of the main line feed waveguide.

match the extent of the region to be illuminated on each
pattern cut. This can be done by stretching or shrinking the
continuous circular aperture distribution namely a radius that
is inversely proportional to the desired flat-top half-power
beam width (HPBW ).
So, a general example of center-fed array is drawn in

Fig. 8, where symmetrical circular solutions are, in general,
realizable solutions. In this analysis of circular sources the
initial pure-real alternative generating the same number of
ripples represents an addition of 9 new distributions (1 real
and 8 complex) instead of just 1 real. On the other hand,
the other pure-real alternative with the same number of roots
adds 3 new (1 real and 2 complex) solutions, instead of just
the real one. In the particular case of resonantly-spaced planar
antenna of a center fed structure (Fig. 8) just solutions with
pure-real nature represent a feasible alternative.

IV. CONCLUSION
New alternatives concerning different natures of continuous
aperture distributions in antenna pattern synthesis can be
introduced for improving shaped-beam multiplicity studies.

Not only a valuable contribution to this issue is performed by
the solutions which generate patterns with the same number
of ripples in the shaped region, but also solutions which
generate an equivalent pattern with the same number of roots
reported interesting potentials. Therefore, a procedure to pro-
duce an enhanced multiplicity of solutions in the case of
shaped-beam patterns has been proposed.

Additionally, as it has been illustrated in this work, the
practical realization of an array according with the feeding
network characteristics motivates the analysis of different
types (in terms of nature) of continuous aperture distributions
which generate equivalent shaped-beam patterns. To this end,
simple sketches of feasible situations which can be addressed
by means of the general multiplicity procedure here devised
have been shown.

The inclusion of this procedure has been derived in both
frameworks: linear and circular sources. By analyzing the
numerical results showed in case of linear distributions, com-
plex symmetrical solutions represent an advantage in terms of
aperture variability, while the real asymmetrical alternatives
represent a more extreme solution in terms of variability and
therefore, they are more difficult to implement in practice.
Alternatively, regarding circular aperture distributions, com-
plex solutions represent advantages against real ones, because
these last ones represent the worst alternative in terms of
dynamic range ratio for generating a shaped-beam patterns.

In this manner, the multiplicity of solutions reached by
the present methodology can be highlighted and interest-
ing potentials for facing different antenna designs can be
reported, since they represent an increased number of alterna-
tives to consider. Thus, that discussion reinforces the impor-
tance of looking for new alternatives out of the state-of-the-art
by means of different continuous aperture natures, in order
to add more degrees of freedom for implementing a global
strategy on antenna design.
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