
Received December 19, 2020, accepted January 9, 2021, date of publication January 14, 2021, date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051874

Clustered Multicast Source Routing
for Large-Scale Cloud Data Centers
JARALLAH ALQAHTANI 1, HASSAN H. SINKY 2,
AND BECHIR HAMDAOUI 1, (Senior Member, IEEE)
1School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
2College of Computer and Information Systems, Umm Al-Qura University, Makkah 24381, Saudi Arabia

Corresponding author: Jarallah Alqahtani (alqahtaj@eecs.oregonstate.edu)

This work was supported by the Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia, under
Grant UQU-IF-P2-20-001.

ABSTRACT The multi-tenancy concept in cloud data center (DC) networks paves the way towards
advancements and innovation in the underlying infrastructure such as network virtualization. Multicast
routing is essential in leveraging multi-tenancy to its full potential. However, traditional IP multicast routing
is not suitable for DC networks due to the need to support a massive amount of multicast groups and hosts.
State-of-the-art DC multicast routing approaches aim to overcome these scalability issues by, for instance,
taking advantage of the symmetry of DC topologies and the programmability of DC switches to compactly
encode multicast group information inside packets, thereby reducing the overhead resulting from the need to
store the states of flows at the network switches. Although these approaches scale well with the number of
multicast groups, they do not perform well with group sizes and, as a result, yield substantial traffic control
overhead and network congestion. In this article, we present Bert, a scalable source-initiated DC multicast
routing approach that scales well with both the number and size of multicast groups through the clustering
of multicast group members where each cluster employs its own forwarding rules. Compared to the state-
of-the-art approach, Bert yields much less traffic control overhead by significantly reducing packet header
sizes and eliminating switch memory usage across the switches.

INDEX TERMS Cloud data center networks, multicast routing, multicast scalability, multi-tenancy, network
virtualization.

I. INTRODUCTION
Modern data center infrastructures have shifted from tradi-
tional on-premise physical servers to virtual networks where
data and services exist and are connected across pools of data
centers, both on-premises and in the cloud. Cloud computing
is an emerging service model where massive data centers
are built by cloud providers to offer services to tenants.
Today’s cloud data centers (DCs) host hundreds of thou-
sands of tenants [1], [2], with each tenant possibly running
hundreds of workloads supported through thousands of vir-
tual machines (VMs) running on different servers [3]–[5].
These workloads often involve one-to-many communications
among the different servers runningVMs supporting the same
workload/application [6]–[8]. Therefore, to enable efficient
communication and data transfer among different servers,

The associate editor coordinating the review of this manuscript and

approving it for publication was Thanh Ngoc Dinh .

multicast routing protocol designs must be revisited to suit
today’s cloud data center network topologies. In this article,
we study a critical requirement of DC topologies, i.e., multi-
cast scalability. Traditional IP multicast routing is primarily
designed for arbitrary network topologies and Internet traffic,
with a focus on reducing CPU and network bandwidth over-
heads, and hence is not suitable for DCs due to the need for
supporting large numbers of groups in commodity switches
with limited memory capability. In other words, DC switches
will have to maintain per-group routing rules for all multicast
addresses, because they cannot be aggregated on per prefix
basis.

That said, there have been few research efforts devoted
to overcome this scalability issue [9]–[15]. For instance,
Elmo [12], a recently proposed source-initiated multicast
routing approach for DCs, overcomes the scalability issue
and is shown to support millions of multicast groups with
reasonable overhead in terms of switch state and network

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12693

https://orcid.org/0000-0001-5704-0626
https://orcid.org/0000-0002-2649-5860
https://orcid.org/0000-0002-6085-4505
https://orcid.org/0000-0001-6698-8419

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

traffic. Elmo does so by taking advantage of programmable
switches [16] and the symmetry of DC topologies to com-
pactly encode multicast group information inside packets,
thereby reducing the overhead resulting from the need to
store the states of flows at the network switches. However,
although Elmo scales well with the number of multicast
groups, it does not do so with multicast group sizes. When
considering large multicast group sizes, Elmo header can
carry on several hundreds of bytes extra, which increases
traffic overhead in the network. In addition, the number of
extra transmissions Elmo incurs due to compacting of packet
rules increases significantly with the size of multicast group,
yielding higher traffic congestion in the DC’s downlinks.
To overcome Elmo’s aforementioned limitations, we propose
in this article Bert, a source-initiated multicast routing for
DCs. Unlike Elmo, Bert scales well with both the number and
the size of multicast groups, and does so through clustering,
by dividing the members of the multicast group into a set of
clusters with each cluster employing its own forwarding rules.
In essence, Bert yields much lesser multicast traffic overhead
than Elmo by (1) significantly reducing the forwarding header
sizes of multicast packets, (2) avoiding spurious downstream
packet transmissions and (3) eliminating switch memory
usage across DC switches.

The rest of this article is organized as follows. In Section II
we discuss related works. Related state-of-the-art works
and limitations are described in Section III. We present
Bert, the proposed multicast routing scheme, in Section IV.
We study and evaluate the performances of Bert com-
pared to those obtained under Elmo in Section V. Finally,
we conclude the paper and discuss future directions
in Section VI.

II. RELATED WORK
Multicast technology enables group communication where
data is addressed to multiple destinations simultaneously
allowing for a source to efficiently send to a group of des-
tinations using a single transmission. Improving IP multi-
cast routing protocols such as IGMP [17] and PIM [18] has
been the focus of a large body of research. These proto-
cols were originally designed for irregular topologies and
Internet traffic which differ significantly from DC networks.
Thus, we restrict this section to works that are related to
DC networks.

DC multicast has been studied from various perspectives.
For example, frameworks proposed in [19]–[21] studied the
resource allocation and embedding of multicast virtual net-
works. They focus mainly on how to place and restore VMs
to provide high-performance non-blocking multicast virtual
networks while reducing hardware costs in fat-tree DCs.
Other works, including ours [22], focus on other
multicast routing problems such as scalability and load bal-
ancing in DCs. These works can be classified as decentral-
ized [11], [23], SDN-based [10], [24], [25], or source-routed
approaches [26]–[29].

A. SOURCE ROUTED MULTICAST
In [26]–[29], bloom filters are used to encode forwarding
state inside packets. These approaches import unnecessary
traffic leakage (unnecessary multicast transmissions). More-
over, these approaches can’t either support large group sizes
or large network topology. On the other hand, Elmo [12]
exploits programmable switches and the symmetry of
DC topologies to compactly encode forwarding states inside
packets. However, when considering large multicast group
sizes, Elmo header can carry on several hundreds of bytes
extra, which increases traffic overhead in the network. More-
over, Elmo incurs many unneeded multicast packet transmis-
sions, yielding higher traffic congestion in the DC’s down-
links. Contrary to these approaches, Bert improves scalability
with regards to the number and size of multicast groups in
DC networks as detailed in Section IV.

B. SDN-BASED MULTICAST
In [10], a centralized controller partitions the address space,
and local address aggregation are implementedwhen the table
space in switches is not enough. This approach suffers from
exhausting network switch resources with a large number of
flow-table entries, as well as a high number of switch entry
updates. [9], [30]–[32] focus, on the other hand, on multicast
tree reconstruction, but without addressing any scalability
issues.

C. DECENTRALIZED MULTICAST
In [11] and [23], the authors present new address mapping
schemes and discuss decentralized load balancing strategies,
whereas [33] presents prioritized multicast scheduling in
DCs. These approaches, however, do not scale well with large
numbers of groups due to their reliance on network switches
to store and forward multicast packets. Moreover, today’s
DCs operate under a single administrative domain and no
longer require decentralized protocols like PIM and IGMP.

III. DATA CENTER NETWORKING AND TECHNIQUES
Cutting edge cloud DC networks consist of massive numbers
of servers enabling multi-tenant occupancy, network virtual-
ization and programmable switches. Next, we discuss state-
of-the-art components and current limitations with modern
cloud DCs solutions.

1) DC TOPOLOGIES
Large-scale DCs typically are multi-rooted, tree-based
topologies (e.g., fat-tree [34] and its variants [35]–[37]).
These types of topologies provide large numbers of par-
allel paths to support high bandwidth, low latency, and
non-blocking connectivity among servers. The servers are
tree leaves, which are connected to top-of-rack (ToR)
(edge/leaf) switches. In general, DCs contain three types
of switches, leaf, spine, and core, with each type residing
in one layer, as shown in Figure 1. At the lowest layer,
leaf (aka edge) switches are interconnected through spine

12694 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

FIGURE 1. An example of a three-tier multicast Clos tree topology with four pods. In this topology, there are 4 hosts under each leaf switch (ToR).
H1 is the multicast source, and H4, H14, H15, H19, H25, H26, and H29 are the destinations of the multicast group.

(aka aggregation) switches, which constitute the second layer
of switches. The core switches, constituting the top/root layer,
serve as connections among the spine switches. With such a
DC topology, every server can communicate with any other
server using the same number of hops.

2) MULTI-TENANT DCs
In Multi-tenant DCs (like Microsoft Azure [3], Amazon Web
Services (AWS) [5], and Google Cloud Platform [4]), a frac-
tion of computing resources (e.g., CPUs, memory, storage,
and network) are rented to customers/tenants (e.g., commer-
cial or government organization, or an individual) by means
of virtualization technology. These multi-tenant DCs need
to guarantee resource isolation and sharing of bandwidth
among different tenants. By moving towards multi-tenant
DCs, tenants can lower their operational cost of maintain-
ing private infrastructure, meet scalability demands with
changing workload, and withstand disasters. For example,
Netflix, the world’s leading online video streaming service
provider, uses AWS for nearly all its computing and storage
needs [38].

3) VIRTUALIZATION IN DCs
In multi-tenant data centers, computing and network
resources are virtualized. Typically, this is done by using
software or firmware called a hypervisor [39]. The hyper-
visor allows one host computer to support multiple guest
VMs by virtually sharing its resources, such as memory
and processing. A virtual switch in the hypervisor, called
the vswitch [40], manages routing traffic between VMs on
a single host, and between those VMs and the network at
large. Moreover, these DCs employ tunneling protocols (like
VXLAN [41]) to guarantee resource isolation and fair share
of network resources among tenants.

4) PROGRAMMABLE SWITCHES
Emerging programmable switch ASICs (e.g., Barefoot
Tofino [42]) render flexible packet parsing and header manip-
ulation through reconfigurable match-action pipelines that
allow network operators to customize the behavior of physi-
cal switches. Network operators can program these switches
using high-level network-specific languages like P4 [43].
P4, a language for Programming Protocol Independent Packet
Processors, is a recent innovation providing an abstract model
suitable for programming the network data plane.

IV. CLUSTERED MULTICAST SOURCE ROUTING
The proposed multicast routing protocol, Bert, expands on
Elmo while addressing the multicast scalability issues. Bert
adequately splits multicast group destinations into a set of dis-
joint multicast clusters and encodes forwarding information
for each cluster to reduce packet header sizes and eliminate
switch memory utilization.

A. ELMO
Elmo [12] is a recently proposed DC multicast routing pro-
tocol that scales well with the number of multicast groups.
Elmo is a promising source-based routing protocol suitable
for modern cloud DCs through its use of virtualization and
programmable switches. In Elmo, packet headers are encoded
with packet forwarding state/rules to limit the flow state infor-
mation maintained at DC switches. Elmo exploits the pro-
grammable capability of DC switches and the symmetry of
DC topologies to compactly encode multicast group informa-
tion in packets, thereby reducing packet header overhead and,
consequently, network traffic load. Furthermore, Elmo’s use
of programmable switches in multicast environments avoids
the need for additional network hardware. These benefits are
essential for high performance modern cloud DCs.

VOLUME 9, 2021 12695

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

Although Elmo has shown to scale well with the number
of multicast groups, it still suffers from scalability issues in
terms of incurred traffic overhead when facing large group
sizes. For example, a packet header can carry on several hun-
dreds of bytes to encode all p-rules (packet rules) [12], incur-
ring excessive network traffic overhead and link congestions.
Elmo tries to overcome this by: (1) removing per-hop p-rules
from the header as packets traverse the network switches;
unfortunately, the downstream spine and leaf switches, which
happen to consume most of the header space, are removed
last, causing most of the traffic overhead to disseminate
over the network topology. (2) Switches in the downstream
paths having same or similar bitmaps are mapped to a single
bitmap. For example, as shown in Figure 1a, at the leaf layer,
L7 and L8 can share one p-rule; i.e. L7,L8 : 1100, yielding one
extra transmission in L8. However, sharing bitmaps results
in extra packet transmissions, which can increase traffic
overhead.

In order to overcome the aforementioned challenges of
Elmo, we propose Bert, which first clusters the set of mul-
ticast destination members into multiple subgroups, then
encodes multicast information in packet headers for each of
these clusters.

B. MOTIVATING EXAMPLE
To illustrate the limitations of Elmo and motivate the design
of the proposed scheme, Bert, we present a detailed example
in Figure 1. At a high level, for each multicast group, the con-
troller first computes a multicast tree and corresponding for-
warding rules, then installs these rules in the hypervisor of
the multicast group source. The hypervisor intercepts each
multicast packet and appends the forwarding rules to the
packet header. Elmo essentially focuses on how to efficiently
encode a multicast forwarding policy in the packet header.
Conversely, Bert, in addition to efficiently encoding the for-
warding rules, aims to alleviate traffic overhead caused by
header size and extra packet transmissions in the downstream
paths. The forwarding header consists of a succession of
p-rules that include rules for upstream leaf and spine
switches, as well as for the downstream core, spine, and leaf
switches. Each switch in the multicast tree will remove its
p-rules from the header when forwarding the packet to the
next layer. For both Elmo and Bert, each multicast packet’s
journey can be explained in two main phases:

1) UPSTREAM PATH
This path involves leaf-to-core switches. The p-rules for
upstream switches (leaf and spine) consist of downstream
ports and a multipath flag. When the packet arrives at the
upstream leaf switch, the switch forwards it to the given
downstream ports as well as multipathing it to the upstream
spine switch using an underlying multipath routing scheme;
i.e. ECMP [44]. In Elmo, only one packet goes through
upstream paths. Using Figure 1b for illustration, leaf switch
L1 first removes its p-rules (0001−M) from the packet, then
forwards it to the host H4 as well as multipathing it to any

spine switch P1. The upstream spine switches will do the
same to forward the packet to the core switches. Our proposed
Bert, on the other hand, first clusters the destination members
of the multicast group into multiple (two in the example)
clusters, and then sends multiple (two in the example) copies
of the packet (with different headers but same payload), one
for each cluster; more detail on the clustering part will be
provided later. The first packet has the same upstream p-rules
as Elmo; i.e. R1, while the second packet (i.e. R2) does not
have any downstream rules for the leaf and spine switches
to avoid any extra transmissions. In Bert, although packet
duplication incurs some extra (minor) traffic in upstream
paths, it results in substantial traffic reduction in downstream
paths when compared to Elmo. That is, the overall traffic of
both upstream and downstream paths is significantly reduced
under Bert when compared to Elmo.

2) DOWNSTREAM PATH
This path involves core-to-leaf switches. The p-rules for the
core, spine, and leaf switches in the downstream path consist
of downstream ports and switch IDs. In the downstream
path, the core switches forward the packet to the given pod
based on the core switch p-rules. In Elmo, one core switch
sends the packet to the spine switches, which in turn forward
it (based on the spine switch p-rule) to the leaf switches.
The leaf switches do the same to deliver the packet to the
destination hosts. Note that because of topology symmetry,
any core switch can forward the packet to the destination
pods. Referring to the example in Figure 1b again, in Elmo,
core switch C sends the packet to P2, P3 and P4 switches
(three packets in total), and once the packet arrives at the
downstream spine switch, it is then forwarded based on the
spine switch p-rules to the leaf switches. These leaf switches
do, in turn, the same to deliver the packet to the destination
hosts. In Bert, C4 forwards the first packet (i.e. R1) to P2 and
P3, while C1 forwards the second packet (i.e. R2) to P4 (see
Figure 1a). Note that the number of core-pod packets, which
is three in the example, is the same in both Elmo and Bert.

This example shows that Bert greatly reduces the header
size. For instance, the header size of the first packet (R1)
and second packet (R2) is 40 and 24 bits respectively. To iden-
tify switches, we use four bits for each of the spine and
leaf switches. Hence, the average header size in Bert is
about 32 bits per packet whereas with Elmo it is 62 bits
(see Figure 1b). Thus, the average header size for the down-
stream packet in Bert is 1

k of that of Elmo’s packet, where
k is the number of clusters of the multicast group, a design
parameter of Bert.

In Elmo, in order to reduce the header size, switches in
downstream paths can share the same p-rules. Referring to the
example in Figure 1b, when all leaf switches in the multicast
tree share one p-rule—which should then be bitwise OR of
all these leaf switches (i.e., L4,L5,L7,L8 : 1111), Elmo
incurs 10 extra packet transmissions. This reduces Elmo’s
header size to 50 bits, which is still larger than Bert’s header.
However, these unnecessary packet transmissions can cause

12696 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

switch processing, network traffic, and power consummation
overheads.

C. BERT ARCHITECTURE
Bert consists of three main components: a centralized con-
troller, hypervisor switches, and network switches. Figure 2
illustrates our design architecture and is summarized below:

FIGURE 2. Bert’s architecture. A multicast group is clustered into two
clusters, blue and green. The forwarding rules for each cluster are
installed in the multicast source’s hypervisor. The hypervisor copies each
multicast packet and adds the p-rules R1 and R2 to the original and
copied packet respectively.

1) CONTROLLER
The controller is responsible for calculating themulticast tree,
the traffic cost, and the optimal number of clusters for each
multicast group. It also encodes the forwarding rules (p-rules)
for each cluster and installs them in the source hypervisor.

2) HYPERVISOR SWITCH
The hypervisor software switch, which is deployed at the end
server, is in charge of maintaining p-rules for the multicast
groups whose multicast source resides in that server. The
hypervisor switch intercepts each multicast packet generated
from multicast sources and matches the multicast IP address
to the p-rules at the forwarding table. Based on the number of
clusters of the corresponding multicast group, the hypervisor
switch makes copy/copies of the multicast packet. Finally,
the hypervisor switch adds the corresponding p-rules to each
copy/copies of the multicast packet.

3) PHYSICAL SWITCHES (NETWORK SWITCHES)
As in Elmo, we assume DCs are running P4 programmable
switches [43], which allow for parsing up to 512 bytes of
the packet’s header size [12]. Bert uses the network switches
(programmable switches) only to parse and forward the mul-
ticast packets. However, in addition to that, Elmo uses these
switches to store some forwarding rules, s-rules, when the
size of a multicast group is large.

D. OPTIMAL NUMBER OF CLUSTERS
In Bert, although the number of clusters, k , is a tunable design
parameter, there exists an optimal k value that yields the

highest performance improvement in overall traffic savings,
and in this section we aim to determine it. To gain some
insights on the impact of the value of k on the overall (payload
plus header) incurred traffic, we show in Figure 3 how the
amount of traffic incurred in the upstream (from leaf switches
to core switches) and downstream (from core switches to
leaf switches) paths varies as k increases for a multicast
group scenario with 5000 members and 1500-byte payload.
Observe that while the upstream traffic always increases
with k , the downstream traffic keeps decreasing as k increases
(though the decrease rate is higher for smaller k). However,
the overall combined traffic decreases at first, then starts to
increase again, with an optimal overall traffic amount being
achieved when k is about 7.

FIGURE 3. Multicast group size is 5000 members. Packet payload
B = 1500 Bytes. The member placement strategy is leaf-based, described
in Section V. The total (payload + header) traffic is minimized when k = 7.

For the general scenario, let us consider a multicast group
whosemembers are already placed across the DC servers, and
let us denote the forwarding header size by H , the packet
payload size by B, and the number of hops between leaf
and core switches by h. We want to mention here that H
depends on the size of the multicast group, as well as on
where the group members are placed in the DC servers, and,
hence, it is constant for this considered multicast group. Also,
the parameter h is DC-topology specific; for instance, h = 1
in 2-tier fat-tree topologies and h = 2 in 3-tier fat-tree
topologies. The overall (upstream and downstream) traffic
incurred by Bert can be expressed as

h(H + kB)+
h∑
i=1

ri(
H
k
+ B) (1)

where ri, 1 ≤ i ≤ h, is the total number of destination
switches in the downstream path at hop i. For example,
referring to Figure 1a for illustration, we have h = 2, r1 = 3,
and r2 = 4. In Eq. (1), the terms h(H+kB) and

∑h
i=1 ri(

H
k +B)

represent the total traffic in the upstream and downstream
paths, respectively.

Note that, like header size H , the parameter ri depends on
the multicast group size and on the placement of the group

VOLUME 9, 2021 12697

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

members across the DC servers, but not on the number k of
clusters chosen by the multicast group. After simple calcula-
tion, the optimal value of k that minimizes the total traffic can
be expressed as (xh

∑h
i=1 ri)

1/2 where x = H/B is the faction
of the header size to the payload size. Since this optimal
value may not be an integer, for practical and evaluation
purposes, we set the optimal k to the closest integer. We want
to mention here that, as will be explained in Section IV-E,
group members are clustered based on the pods as opposed to
the leaf switches to prevent redundant packet transmissions.
Therefore, we also restrict k to be lesser than the number of
pods.

E. MULTICAST GROUP CLUSTERING
Bert aims to reduce the control message traffic by reducing
the traffic overhead that Elmo incurs in the downstream
paths, as well as the size of the multicast packet header.
As illustrated in the motivating example given in the previous
section, Bert achieves this goal by clustering the set of group
members into k clusters using Algorithm 1. The optimal k
from Section IV-D is calculated for each multicast group
independently. Before presenting the clustering approach of
Bert, we introduce the following notations/parameters of the
studied three-tier DC: throughout, let us denote the number
of pods by n, the number of ports per-leaf switch by l,
the number of leaf switches per pod by m. Note that although
in traditional fat-tree DC, m = n/2 and l = n/2, for the
sake of keeping our technique applicable to any tree-based
DC topologies, we use the general parameter notation. Also,
let L jg,i be the l-bit binary vector, corresponding to the jth
leaf switch belonging to the ith pod, where 1 ≤ i ≤ n and
1 ≤ j ≤ m, with each bit corresponding to one port of the
leaf switch and taking 1 when the port is serving a member
of the multicast group g and 0 otherwise. For each multicast
group g and each pod i, let Lg,i be the concatenation of the m
l-bit vectors of the m leaf switches belonging to pod i. That
is, Lg,i = L1g,i||L

2
g,i|| . . . ||L

m
g,i; here, Lg,i is a binary vector of

size l × m.
Back to Bert’s clustering method, we begin by mentioning

that in Bert, we choose to cluster group members based on
the pods as opposed to the leaf switches. That is, for each
multicast group g, Bert clusters the set of n vectors, Lg,i
with 1 ≤ i ≤ n, as opposed to the set n × m of vectors,
L jg,i with 1 ≤ i ≤ n and 1 ≤ j ≤ m. This choice is
supported shortly via an example. Bert uses K-Means clus-
tering algorithm with the Hamming distance as the distance
metric, where the Hamming distance between two binary
vectors is simply the number of bit positions in which they
differ. For each multicast group g, K-Means algorithm takes
as an input the set of n vectors, Lg,i with 1 ≤ i ≤ n, and
the number of clusters, k , and outputs k clusters, with each
cluster specifying a subset of the pods that need to belong
to the same cluster. Once clustering is done, the p-rules of
each cluster are created by the hypervisor, which makes one
copy of the multicast packet (data + header/p-rules) for each

cluster. For example, in Figure 1a, when the hypervisor of
host H1 receives the multicast packet, it creates another copy
of this packet, and adds the R1 rules to the first packet and the
R2 rules to the second packet.

F. POD-BASED VERSUS LEAF-BASED CLUSTERING
In Section IV-E we mentioned that Bert adopts pod-based
clustering rather than leaf-based. The reason for that is as fol-
lows: if we cluster the downstream pods based on the p-rules
for the downstream leaf switches regardless of which pod
they belong to, extra packets transmissions will occur at the
core and spine switches in the downstream path. For example,
in Figure 4b, when clustering is based on leaf switches only
and when using the Hamming distance similarity, L4 and L5
will be clustered in the same cluster (i.e. R2), and L3 and L6
will be clustered in the other/second cluster (i.e. R1). In this
case, because L3 and L4 are in the same pod (pod 2) but they
are in different clusters, the packet will be sent twice at both
core and spine downstream layers. The same thing happens
with L5 and L6. To avoid this, Bert adopts a clustering choice
that is locality-aware of leaf switches (see Figure 4a).

Algorithm 1 Clustering of Multicast Group
Input: Multicast Group G
Output: k clusters G1,G2, ..,Gk
1: calculate TRBert
2: int(k) = argmin TRBert (k)
3: if k > n then

%n is the number of pods.
4: k = n
5: end if
6: if k > 1 then
7: initializeM
8: for i ∈ {1, . . . , n} do
9: for j ∈ {1, . . . ,m} do

10: for l ∈ {1, . . . , l} do
11: if l ∈ G then
12: M (i, j ∗ l) = 1
13: else
14: M (i, j ∗ l) = 0
15: end if
16: end for
17: end for
18: end for
19: k-means(M , k, hamming distance)
20: return k clusters, with each cluster specifying a subset

of the pods that need to belong to the same cluster.
21: else
22: exit %no need for clustering.
23: end if

G. KEY FEATURES OF BERT
Bert strikes to balance between two conflicting objectives:
maintaining low network overhead while not increasing CPU
overhead substantially. Here CPU overhead is captured in

12698 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

FIGURE 4. Clustering choice example of a three-tier multicast Clos tree topology with four pods. In this topology, there are 4 hosts under each leaf
switch (ToR). H1 is the multicast source and H4, H10, H12, H13, H14, H17,H19,H23, and H24 are the destinations of the multicast group.

terms of number of packet replications the source needs to
make, which in some sense captures other aspects of CPU
cost, like processing delay, CPU power consumption, etc.
That is, Bert avoids substantial overhead caused by unicast
and overlay mulicast [45] approaches where all packet repli-
cations occur at the host while reducing traffic cost and switch
memory usage. Although Elmo avoids packet replications
caused by Bert at the source, Bert surpasses Elmo in the
following regards:

1) REDUCING PACKET HEADER SIZE
In multi-rooted Clos topologies, unlike traffic load in
upstream paths which are equally distributed, downstream
paths are much heavier and are always the main bottleneck
of the network. This is because, in these types of topologies,
the upstream routing is fully adaptive, while the downstream
routing is deterministic. Moreover, the multicast workload
may make this worse because multicast packets are repli-
cated at the downstream paths in order to reach each group
member. In Elmo, by adding the p-rules to the packet, a data
packet may have several hundreds of bytes of forwarding
rules for each packet. In Bert, the average header size for the
downstream packet is inversely proportional to the number of
clusters k , i.e., 1k , of that of Elmo’s packet, as explained in the
previous subsection.

2) REDUCING NUMBER OF EXTRA TRANSMISSIONS
One of the key designs of Elmo that reduces header sizes is
to map multiple switches in downstream paths to a single
p-rule, as a bitwise OR of their individual p-rule. Unfor-
tunately, this strategy introduces huge amount of unwanted
redundant packets in downstream switches. These redun-
dant packets waste network bandwidth and induce net-
work switches processing overhead. Bert on the other hand,

significantly reduces the header size without incurring any
redundant transmissions in downstream paths.

3) ELIMINATE SWITCH MEMORY USAGE
In Elmo, when a multicast group is large and cannot be
encoded entirely in the packet header (i.e. header size ≥ 512
bytes), network switches are used to store forwarding rules.
Because header sizes in Bert are significantly smaller than in
Elmo, Bert does not use switch memory at all, which in turn
conserves switch memory resources.

V. PERFORMANCE EVALUATION
Multicast routing in large DC networks should be simple to
implement, scalable, robust, use minimal network overhead
and consume minimal memory resources. Scalability can be
evaluated not only in terms of the network overhead cost
in the presence of a large number of groups but also by
the number of participants per group and by groups whose
participants change often over time. For an accurate and fair
comparisonwith Elmo, wemimic the numerical experimental
setup of [12] and [10] where full-sized cloud DC topologies
are simulated, rather than implementing Bert on a small test-
bed. Running packet-level network simulations is not feasible
at such a large scale (e.g. we simulate tens of thousands of
groups each with hundreds or thousand members).

A. EXPERIMENT SETUP
In this section, we conduct a series of experiments to evaluate
and compare Bert and Elmo in terms of multicast scalability
on full-sized cloudDC topologies.Multi-tenant environments
are simulated while adjusting parameters such as the number
of tenants, number of VMs per tenant, VM placement strate-
gies, and number of multicast groups and their sizes. We also
consider P4 switches in the DC network so that network

VOLUME 9, 2021 12699

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

TABLE 1. Simulation environment.

operators can specify how a physical switch processes and
steers packets. Table 1 depicts the components used for our
simulation environment.

1) DC Topology: we use a symmetric 3-tierd fat-tree
DC topology consisting of 48 pods each with 24 leaf
switches where each leaf switch is connected to
24 hosts serving 27,648 hosts in total. The 3-tierd
fat-tree topology is the most widely used DC topology
network.

2) Tenants and their VMs: our DC network is populated
by 3000 tenants where the number of VMs per tenant is
exponentially distributed between 10 and 5,000. Each
physical server can host at most 20 VMs and tenant
VMs do not share the same host.

3) VMplacement: we consider three placement strategies
when mapping a tenant’s VMs to a physical host: (i)
a) pod-based where a pod is selected uniformly at

random and tenant VMs are greedily placed in all
the available pod hosts. If more VMs need to be
placed, another pod is selected at random and the
process is repeated. In this strategy, tenant VMs
tend to be too close.

b) leaf-based where a pod and leaf are selected uni-
formly at random and tenant VMs are placed
based on leaf host availability. If more VMs need
to be placed, a pod and leaf are selected at random
and the process is repeated. Here, tenant VMs
tend to be placed close to each other but not too
close as in the pod-based strategy.

c) random where a pod, leaf, and host are selected
uniformly at random to host tenant VMs. All
placement strategies are repeated until there are
no tenant VMs to be placed.

4) Multicast groups: the number of multicast groups
assigned to each tenant is proportional to the ten-
ant’s size. Each tenant’s group sizes are uniformly dis-
tributed between the minimum group size (i.e. 5) and
the entire tenant size. Note that varying the number of
groups and group sizes is a suitable strategy to measure
scalabilty.

In addition, our setup combines p-rules only when bitmaps
are the same, thus, preventing extra packet transmissions in

downstream switches. This, in turn, conserves overall net-
work resources.

B. PERFORMANCE ANALYSIS
We evaluate Bert and Elmo scalability behavior from two
perspectives: 1) A single multicast group with different mem-
ber sizes (e.g. 100-5000 members), and 2) different number
of multicast groups (e.g. 10K-100K multicast groups) each
with differentmember sizes. For each perspective, we analyze
Bert’s clusters, header sizes, traffic overhead, switch memory
costs, and source packet replications using the aforemen-
tioned VM placement strategies.

1) OPTIMAL NUMBER OF CLUSTERS
The number of Bert clusters depends on both the place-
ment strategy and the group size. In this analysis, the opti-
mal number k of clusters is based on our calculations from
Section IV-D. In pod-based and leaf-based placement strate-
gies, where group members are close to one another,
we observe from the results shown in Figure 5 that the optimal
number of clusters is small particularly when group sizes are
small (i.e. less than 1000 members). However, this number
slightly increases as group sizes increase. For example, when
group sizes are around 500 members, optimal k is 1 for both
pod-based and leaf-based placement strategies. Moreover,
when group sizes are around 3500, optimal k is 4 and 5 in
pod-based and leaf-based placement strategies, respectively.
Conversely, the random placement strategy requires larger
header sizes and is more optimal when the number of clusters
is large. For example, Bert generates 5 to 44 clusters as
group sizes increase. We verify our results by calculating and
showing in Figure 6 the average optimal number of clusters
achieved by averaging over multiple different groups. When
group members are placed very close to one another (i.e. pod-
based), the average of optimal k tends to be small (i.e. 1).
With a random placement strategy, where header size usually
is large, optimal k is around 14.

FIGURE 5. Number of clusters as a function of group size.

2) HEADER SIZE
Figure 7 shows the header size as a function of group size
using a single multicast group. For each placement strat-
egy, we calculate the header size for one multicast group

12700 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

FIGURE 6. Average number of clusters as a function of number of
multicast groups.

FIGURE 7. Header size as a function of group size: (a) pod-based, (b)
leaf-based and (c) random.

as the group size is varied between 100 and 5000. Elmo
shows to be sensitive to both the placement strategy used and
the size of the multicast group. In each placement strategy,
Elmo’s header size increases as the size of the group increases
whereas Bert adapts and keeps the forwarding header at the
smallest possible size by clustering the multicast groups.
Here, Bert obtains the optimal number of clusters using the
process described in Section IV-D.

We notice as group size increases, more switches need
to be encoded in the downstream path resulting in larger
header sizes (i.e. 1024 switches require 10 bits to identify).
In Figure 7a, with the pod-based placement strategy, Elmo
requires 100 to 300 bytes to handle group sizes of 1000 to
5000 members while the average header size of Bert’s clus-
ters is roughly 75 bytes. In Figure 7b, with the leaf-based
placement strategy, Elmo requires a maximum header
size of 512 bytes when the number of members reaches
2000 whereas the average header size of Bert’s clusters do
not exceed 135 bytes for all group sizes. Finally with the
random placement strategy, Elmo is forced to use the max-
imum header size for all group sizes where Bert only needs
100 bytes as shown in Figure 7c.

We observe that if groupmembers (i.e. VMs) are placed too
close to one another as in the pod-based strategy, we encode
fewer downstream switches in the packet header and thus,
header sizes are small. However, if group members are placed
at random, more downstream switches are encoded into the
header which, in turn, results in larger header sizes. In addi-
tion, as multicast group sizes increase, more switch infor-
mation needs to be encoded. Bert’s ability to calculate the
optimal k and cluster multicast groups into k clusters allows
for smaller header sizes to be used. That is, header sizes are
much smaller compared to Elmo when k > 1.

Figure 8 shows the average header size as the number of
multicast groups is varied from 10K to 100K groups. Bert
significantly reduces the header size by 55% and 73% for
the leaf-based and random placement strategies respectively.
In addition, Bert shows a 10% improvement in header size in
the pod-based placement strategy. Note that Elmo’s average
header size is comparable to Bert only in the pod-based
placement strategy particularly when group sizes are small
(as previously shown in Figure 7a).

FIGURE 8. Average header size as a function of the number of multicast
groups.

3) TRAFFIC COST
In this experiment, we evaluate the overall network overhead
incurred by Elmo and Bert (normalized to Elmo). In Figure 9,
we show the normalized traffic cost in terms of network
overhead incurred in the upstream and downstream paths
as described in Section IV. The figure evaluates pod-based
(Figure 9a), leaf-based (Figure 9b), and random (Figure 9c)
placement strategies using a multicast group with 5000 mem-
bers and a packet payload of 1500 bytes. Observe that Bert
contributes negligible network overhead in the upstream
paths (less than 0.1% of total traffic), however, more than
makes up for it in the downstream paths with a total improve-
ment of 11% for pod-based placement, 18% for leaf-based
placement, and 14% for random placement compared to
Elmo. Bert does incur overhead in the upstream path when
clusters or subgroups are greater than one, however, reduces
network traffic costs in the downstream paths resulting in
overall improvements in network performance.

Figure 10 illustrates the network traffic cost as a function
of group size using a single multicast group with different

VOLUME 9, 2021 12701

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

FIGURE 9. Upstream vs downstream traffic cost (d=5000): (a) pod-based,
(b) leaf-based and (c) random.

FIGURE 10. Traffic cost as a function of group size: (a) pod-based,
(b) leaf-based and (c) random.

VMplacement strategies. As shown in Figure 10a (pod-based
placement) and Figure 10b (leaf-based placement), when
multicast group sizes are small (i.e. few hundreds), Elmo
and Bert both incur additional traffic overhead compared to
the optimal (zero header overhead). However, as multicast
group sizes increase, Elmo contributes more traffic overhead
(25%) than Bert (8%) compared to the optimal as shown
in Figure 10b when group sizes are greater than 4000 in the
leaf-based placement strategy. Similar behavior is exhibited
in Figure 10c for all group sizes with the random placement
strategy where Elmo and Bert contribute 26% and 13% more
traffic compared to the optimal. Thus, by minimizing header
size, Bert is able to minimize total traffic overhead.

In addition, in Figure 11 we measure the average traffic
cost as a function of the number of multicast groups. Bert
shows improvements in traffic cost for both leaf-based and
random placement strategies. However, when most multicast
members are within the same pod, Elmo and Bert perform
similarly as shown in Figure 11a.

FIGURE 11. Traffic cost as a function of the number of groups:
(a) pod-based, (b) leaf-based and (c) random.

In Figure 12 traffic cost is analyzed using 100K multi-
cast groups and varying the packet payload sizes between
64 bytes (minimum transmission unit) and 1500 bytes. Here
we emphasize the benefit of Bert compared to Elmo when
different packet payload sizes are used. Bert provides sub-
stantial benefits when smaller payload sizes are used. For
example, with 64-byte payload sizes, Bert reduces traffic
overhead by 10%, 67% and 73% in pod-based, leaf-based,
and random placement strategies, respectively. For large pay-
load sizes (i.e. 1500 bytes), Bert reduces traffic overhead by
10% and 14% in leaf-based and random placement strategies,
respectively. That is, when packet payload sizes are small
Bert outperforms Elmo particularly in both leaf-based and
random placement strategies.

12702 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

FIGURE 12. Traffic cost as a function of packet payload size in bytes.

4) SWITCH MEMORY COST
Programmable switches typically set restrictions on the
packet header sizes they can parse (i.e., 512 bytes) [12].
In Elmo, when forwarding headers reach their maximum size
and not all forwarding rules can be encoded into the header,
switch memory is exploited to store the remaining rules.
In this experiment, we calculate the total memory usage at
the downstream switches for Bert and Elmo using amaximum
header size of 512 bytes.

In Figures 13 and 14, we evaluate and show the total
switch memory utilization by a single and multiple multicast
groups, respectively. In both leaf-based and random place-
ment strategies, Bert shows drastic improvements in switch
memory utilization whereas Elmo must use switch memory
to store its larger header sizes. Unlike Elmo, Bert does not
use switch memory to store forwarding rules as depicted
in Figures 13 and 14. Furthermore, in Elmo, when both the
size and the number of multicast groups increase, the switch
memory usage also increases. In the case of pod-placement
strategy, since the header size of Elmo and Bert do not exceed
512 bytes for all sizes of the multicast group, there is no need
to store rules and hence switch memory usage is zero for both
Elmo and Bert (figure for this scenario is not included).

FIGURE 13. Switch memory use with one multicast group.

5) SOURCE PACKET REPLICATIONS
Although Bert significantly reduces traffic overhead and
switchmemory usage, replicating packets at the source hyper-
visor might incur extra overhead. However, this overhead
is much lesser than that of unicast-based multicast proto-
cols, where separate end-to-end connections are needed for

FIGURE 14. Switch memory use with multiple multicast groups.

each receiver, and than that of overlay-based multicast proto-
cols [45], where all multicast packet replications occur at the
source. Figure 15 depicts the number of packet replications
incurred at the source for different group sizes. Regardless
of the group size or placement strategy, it is shown that Elmo
maintainsminimal overhead since only one packet replication
is done at the source. Contrarily, unicast and overlaymulticast
techniques replicate all packets at the source. For example,
if there are 2000 multicast members, overlay multicast would
need to replicate the packet 2000 times. This high number of
replications can inflate CPU overhead (i.e. processing delay,
CPU power consumption, etc.). In Bert, packets are replicated
per cluster where the number of packet replications depends
on the placement strategy used and group size. For instance,
given a group size of 2000, the number packet replications
in pod-based and leaf-based placement strategies is 2 and 3,
respectively. For a group size of 100, only one packet repli-
cation is done at the source in both pod-based and leaf-based
placement strategies.

FIGURE 15. Number of packet replications as a function of group size.

For the random placement strategy, the number of packet
replications ranges between 1 and 44 where group sizes range
between 10 and 5000 members. In other words, random
placement requires more clusters (more packet replications
at the source) because forwarding rules (header sizes) are too
large to encode even for small group sizes (e.g. k = 5 when
groupmembers are 100). This scenario is challenging for both
Bert and Elmo. In fact, Elmo suffers when groupmembers are
dispersed across the network (i.e. random placement), even

VOLUME 9, 2021 12703

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

when combined rules and switch memory are used; Elmo’s
traffic overhead is shown to increase by 123% compared to
overlay multicast in such scenarios [12]. Please note that,
in Bert, the number of clusters (k) is a tunable design param-
eter, and can be set to a small number such as 2 or 3, which,
in turn, can avoid extra overhead at the source. However, this
can also limit the amount of improvement in network traffic
and switch memory usage that Bert can achieve.

VI. CONCLUSION AND FUTURE DIRECTIONS
We proposed Bert, a scalable, source routed multicast scheme
for cloud data centers. Bert builds on existing approaches
to better suit state-of-the-art cloud data center networks.
By wisely clustering a multicast group into subclustes, Bert
alleviates traffic congestion at downstream paths (usually
highly congested links) by reducing both the packet header
sizes and the number of extra packet transmissions as well
as eliminating switch memory utilization. Experiments show
that Bert can reduce traffic overheads between 73–14% com-
pared to Elmo for 64-byte and 1500-byte packets. In brief,
unicast/overlay-based approaches incur excessive CPU over-
head, but minimal network overhead; Elmo reduces CPU
overhead substantially but at the price of increasing network
overhead; Bert offers a better balance between the two.

Current advancements in DC networks unlock a variety
of applications and open challenges. Contemporary literature
lacks real-world multicast studies related to cloud DCs.
Most works focus on flow characteristics such as flow sizes,
arrival rates and distributions [46]. Very few analyzemulticast
communication patterns which frequently arise in cloud DCs.
Thus, we believe there is still a need for studies to analyze
multicast behavior in detail such as the number of multicast
groups and their sizes in real-world data centers. These
studies would not only help in understanding communication
patterns in general but also in evaluating newly proposed
multicast approaches for DCs. In addition, many works addr-
ess load balancing and resource scheduling issues [47]–[49]
in DC networks pertaining to unicast communication and do
not consider multicast traffic [50]–[56]. As a result, there is a
clear need for load balancing protocols that handle both uni-
cast and multicast traffic. In addition to scalability and load
balancing, a reliable multicast protocol should easily handle
common multicast group dynamics when members leave
or join an existing group requiring forwarding information
in switches or packet headers to be updated. This behavior
known as churn, exhausts network hardware resources and
increases control plane overhead. Thus, stability and adaptiv-
ity against churn are of crucial importance for reliable multi-
cast protocols in cloud DCs. Evaluating Bert on a small-scale
testbed for proof-of-concept while considering multicast load
balancing and group membership dynamics are left for future
work.

REFERENCES
[1] Amazon Cloud Has 1 Million Users. Accessed: Feb. 19, [Online]. Avail-

able: https://arstechnica.com/information-technology/2016/04/amazon-
cloud-has%-1-million-users-and-is-near-10-billion-in-annual-sales

[2] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, ‘‘Energy-efficient
resource allocation and provisioning framework for cloud data centers,’’
IEEE Trans. Netw. ServiceManage., vol. 12, no. 3, pp. 377–391, Sep. 2015.

[3] Microsoft Azure. Accessed: Feb. 10, 2020. [Online]. Available:
https://azure.microsoft.com/

[4] Google Compute Engine. Accessed: Feb. 10, 2020 [Online]. Available:
https://cloud.google.com/compute/

[5] Amazon Aws Kernel Description. Accessed: Feb. 10, 2020. [Online]. Avail-
able: https://aws.amazon.com/

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-
tributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST), May 2010, pp. 1–10.

[7] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[8] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, ‘‘Toward energy-
efficient cloud computing: Prediction, consolidation, and overcommit-
ment,’’ IEEE Netw., vol. 29, no. 2, pp. 56–61, Mar. 2015.

[9] A. Iyer, P. Kumar, and V. Mann, ‘‘Avalanche: Data center multicast using
software defined networking,’’ in Proc. 6th Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2014, pp. 1–8.

[10] X. Li andM. J. Freedman, ‘‘Scaling IPmulticast on datacenter topologies,’’
in Proc. 9th ACMConf. Emerg. Netw. Exp. Technol., Dec. 2013, pp. 61–72.

[11] F. Fan, B. Hu, K. L. Yeung, and M. Zhao, ‘‘MiniForest: Distributed and
dynamic multicasting in datacenter networks,’’ IEEE Trans. Netw. Service
Manage., vol. 16, no. 3, pp. 1268–1281, Sep. 2019.

[12] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, ‘‘Elmo: Source routed multicast for public clouds,’’ in Proc. ACM
Special Interest Group Data Commun., 2019, pp. 458–471.

[13] D. Li, M. Xu, M.-C. Zhao, C. Guo, Y. Zhang, and M.-Y. Wu, ‘‘RDCM:
Reliable data center multicast,’’ in Proc. IEEE INFOCOM, Apr. 2011,
pp. 56–60.

[14] W.-K. Jia, ‘‘A scalable multicast source routing architecture for data center
networks,’’ IEEE J. Sel. Areas Commun., vol. 32, no. 1, pp. 116–123,
Jan. 2014.

[15] W. Cui and C. Qian, ‘‘Dual-structure data center multicast using soft-
ware defined networking,’’ 2014, arXiv:1403.8065. [Online]. Available:
http://arxiv.org/abs/1403.8065

[16] Barefoot Tofino: World’s Fastest P4-Programmable Ethernet Switch Asics.
Accessed: Feb. 10, 2020. [Online]. Available: https://barefootnetworks.
com/products/brief-tofino/

[17] H. Holbrook, B. Cain, and B. Haberman, Using Internet Group Man-
agement Protocol Version 3 (Igmpv3) and Multicast Listener Discovery
Protocol Version 2 (mldv2) for Source-Specific Multicast, Standard RFC
4604 (Proposed Standard), Internet Engineering Task Force, 2006.

[18] B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, R. Parekh, Z. Zhang,
and L. Zheng, Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification (Revised), document RFC 7761, 2016, pp. 1–137.

[19] J. Duan and Y. Yang, ‘‘Placement and performance analysis of virtual
multicast networks in fat-tree data center networks,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 10, pp. 3013–3028, Oct. 2016.

[20] S. Ayoubi, C. Assi, Y. Chen, T. Khalifa, and K. B. Shaban, ‘‘Restoration
methods for cloud multicast virtual networks,’’ J. Netw. Comput. Appl.,
vol. 78, pp. 180–190, Jan. 2017.

[21] J. Duan and Y. Yang, ‘‘MCL: A cost-efficient nonblocking multicast inter-
connection network,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 9,
pp. 2046–2058, Sep. 2018.

[22] J. Alqahtani and B. Hamdaoui, ‘‘Bert: Scalable source routed multicast
for cloud data centers,’’ in Proc. Int. Wireless Commun. Mobile Comput.
(IWCMC), Jun. 2020, pp. 1752–1757.

[23] F. Fan, B. Hu, and K. L. Yeung, ‘‘Distributed and dynamic multicast
scheduling in fat-tree data center networks,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[25] Z. Guo, Y. Xu, M. Cello, J. Zhang, Z. Wang, M. Liu, and H. J. Chao,
‘‘JumpFlow: Reducing flow table usage in software-defined networks,’’
Comput. Netw., vol. 92, pp. 300–315, Dec. 2015.

[26] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikan-
der, ‘‘LIPSIN: Line speed publish/subscribe inter-networking,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 39, no. 4, pp. 195–206, Aug. 2009.

12704 VOLUME 9, 2021

J. Alqahtani et al.: Clustered Multicast Source Routing for Large-Scale Cloud DCs

[27] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, ‘‘ESM: Efficient and scalable
data center multicast routing,’’ IEEE/ACM Trans. Netw., vol. 20, no. 3,
pp. 944–955, Jun. 2012.

[28] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, ‘‘Revisiting IP multicast,’’
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun. -
SIGCOMM, 2006, pp. 15–26.

[29] X. Gao, T. Chen, Z. Chen, and G. Chen, ‘‘NEMO: Novel and efficient
multicast routing schemes for hybrid data center networks,’’ Comput.
Netw., vol. 138, pp. 149–163, Jun. 2018.

[30] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, ‘‘PortLand: A scalable
fault-tolerant layer 2 data center network fabric,’’ inProc. ACMSIGCOMM
Conf. Data Commun. - SIGCOMM, 2009, pp. 39–50.

[31] A. Latif, P. Kathail, S. Vishwarupe, S. Dhesikan, A. Khreishah, and
Y. Jararweh, ‘‘Multicast optimization for CLOS fabric in media data cen-
ters,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 4, pp. 1855–1868,
Dec. 2019.

[32] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen, ‘‘Reliable
multicast in data center networks,’’ IEEE Trans. Comput., vol. 63, no. 8,
pp. 2011–2024, Aug. 2014.

[33] S. Luo, H. Yu, K. Li, and H. Xing, ‘‘Efficient file dissemination in data
center networks with priority-based adaptivemulticast,’’ IEEE J. Sel. Areas
Commun., vol. 38, no. 6, pp. 1161–1175, Jun. 2020.

[34] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Oct. 2008.

[35] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, ‘‘VL2: A scalable and flexible
data center network,’’ in Proc. ACM SIGCOMM Conf. Data Commun.
SIGCOMM, 2009, pp. 51–62.

[36] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, ‘‘F10: A fault-
tolerant engineered network,’’ in Proc. 10th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2013, pp. 399–412.

[37] J. Alqahtani and B. Hamdaoui, ‘‘Rethinking fat-tree topology design for
cloud data centers,’’ in Proc. IEEEGlobal Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–6.

[38] What is a Hypervisor. Accessed: Oct. 25, 2020. [Online]. Available:
https://www.vmware.com/topics/glossary/content/hypervisor

[39] Netflix on Aws. Accessed: Oct. 25, 2020. [Online]. Available:
https://aws.amazon.com/solutions/case-studies/netflix/

[40] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, and K. Amidon, ‘‘The design and imple-
mentation of open vswitch,’’ in Proc. 12th USENIX Symp. Netw. Syst.
Design Implement., 2015, pp. 117–130.

[41] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, and C. Wright, Virtual Extensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks Over
Layer 3 Networks, document RFC 7348, 2014, pp. 1–22.

[42] Intel Programmable Ethernet Switch Products, Accessed: Oct. 25, 2020.
[Online]. Available: https://www.intel.com/content/www/us/en/
products/network-io/programmabl%e-ethernet-switch.html

[43] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ SIGCOMMCom-
put. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[44] C. Hopps, ‘‘Analysis of an equal-cost multi-path algorithm,’’ RFC Editor,
Redmond, WA, USA, Tech. Rep. RFC2992, 2000. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2992.txt

[45] Overlay Multicast in Amazon Virtual Private Cloud. Accessed:
Dec. 13, 2020. [Online]. Available: https://aws.amazon.com/articles/
overlay-multicast-in-amazon-virtual-pri%vate-cloud/

[46] J. Alqahtani, S. Alanazi, and B. Hamdaoui, ‘‘Traffic behavior in cloud
data centers: A survey,’’ in Proc. Int. Wireless Commun. Mobile Comput.
(IWCMC), Jun. 2020, pp. 2106–2111.

[47] M. Dabbagh, B. Hamdaoui, and A. Rayes, ‘‘Peak power shaving for
reduced electricity costs in cloud data centers: Opportunities and chal-
lenges,’’ IEEE Netw., vol. 34, no. 3, pp. 148–153, May 2020.

[48] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, ‘‘Hawk:
Hybrid datacenter scheduling,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2015, pp. 499–510.

[49] M. Dabbagh, B. Hamdaoui, A. Rayes, and M. Guizani, ‘‘Shaving data
center power demand peaks through energy storage and workload shift-
ing control,’’ IEEE Trans. Cloud Comput., vol. 7, no. 4, pp. 1095–1108,
Oct. 2019.

[50] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc.
NSDI, vol. 10, no. 8, 2010, pp. 89–92.

[51] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
‘‘CONGA: Distributed congestion-aware load balancing for datacenters,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 503–514,
2014.

[52] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, andH. Fugal, ‘‘Fastpass:
A centralized zero-queue datacenter network,’’ Comput. Commun. Rev.,
vol. 44, no. 4, pp. 307–318, 2014.

[53] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford, ‘‘CLOVE:
How i learned to stop worrying about the core and love the edge,’’ in Proc.
15th ACM Workshop Hot Topics Netw., Nov. 2016, pp. 155–161.

[54] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, ‘‘Presto:
Edge-based load balancing for fast datacenter networks,’’ACMSIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 465–478, Sep. 2015.

[55] P. Wang, G. Trimponias, H. Xu, and Y. Geng, ‘‘Luopan: Sampling-based
load balancing in data center networks,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 1, pp. 133–145, Jan. 2019.

[56] S. Alanazi and B. Hamdaoui, ‘‘CAFT: Congestion-aware fault-tolerant
load balancing for three-tier clos data centers,’’ in Proc. Int. Wireless
Commun. Mobile Comput. (IWCMC), Jun. 2020, pp. 1746–1751.

JARALLAH ALQAHTANI received the B.S.
degree from King Khalid University, Abha, Saudi
Arabia, and the M.S. degree from the Illinois
Institute of Technology, Chicago, IL, USA. He is
currently pursuing the Ph.D. degree in computer
science with Oregon State University, Corvallis,
OR, USA. He received the academic Scholarship
from Najran University, in 2012, to support this
Ph.D. research work. His research interests include
data center networking and cloud computing.

HASSAN H. SINKY received the M.S. and
Ph.D. degrees fromOregon State University, USA.
Since 2017, he has been an Assistant Profes-
sor with the College of Computer and Informa-
tion Systems, Umm Al-Qura University, Saudi
Arabia. He specializes in large urban wireless
communication networks, content-delivery and
content-centric networks, quality of service and
quality of experiencemethods, cross-layer assisted
multi-path TCP, and seamless handoffs in wireless
mobile scenarios.

BECHIR HAMDAOUI (Senior Member, IEEE)
received the M.S. degree in ECE, the M.S. degree
in CS, and the Ph.D. degree in ECE from the
University of Wisconsin–Madison, in 2002, 2004,
and 2005, respectively. He is currently a Profes-
sor with the School of Electrical Engineering and
Computer Science, Oregon State University. His
research interests include computer networking,
network security, and wireless communication,
with a current focus on edge cloud computing,

network analytics, autonomous systems, dynamic spectrum management,
5G systems, and datacenters. He is a Senior Member of IEEE Com-
puter Society, IEEE Communications Society, and IEEE Vehicular Tech-
nology Society. He won several awards, including the ISSIP 2020 Distin-
guished Recognition Award, the ICC 2017 Best Paper Award, the IWCMC
2017 Best Paper Award, the 2016 EECS Outstanding Research Award, and
the 2009 NSF CAREERAward. He also chaired/co-chaired many IEEE con-
ference programs/symposia, including the 2017 INFOCOM Demo/Posters
Program, the 2016 IEEE GLOBECOM Mobile and Wireless Networks
Symposium, and many others. He also serves as the Chair for the IEEE
Communications Society’s Wireless Communication Technical Committee
(WTC). He served as a Distinguished Lecturer for the IEEE Communica-
tion Society in 2016 and 2017. He serves/served as an Associate Editor
for several journals, including IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE TRANSACTIONS ONWIRELESS COMMUNICATIONS, IEEE NETWORK, and IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

VOLUME 9, 2021 12705

