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ABSTRACT Network pruning can effectively reduce a model’s capacity and computational load, thereby
making model deployment in mobile devices less difficult than that without pruning. To improve the pruning
rate of the model while maintaining the kernel’s feature extraction ability, this paper designs a progressive
kernel pruning method for CNN model compression based on the proposed information mapping sparsity
index. This method first prunes the kernels in the filter and then prunes the kernels in the convolution
layer when the model reaches a certain compression ratio. The whole process is called progressive kernel
pruning (PKP). For the kernel pruning process, this paper defines the information mapping sparse index
(IMSI), which is used to measure the mapping ability of the convolution kernel related to the amount
of information transferred by the convolution operation. When pruning the kernels of filters and layers,
according to the IMSI, the kernels with the strongest mapping abilities are retained to transfer as much
information as possible with the least number of kernels. Progressive kernel pruning can make use of the
characteristic that the model is easy to optimize when kernel pruning in the filter, and it avoids having the
model easily fall into local optima when kernel pruning in the layer directly. The experimental results on the
CIFAR-10/100 and ImageNet datasets show that compared to the existing CNNmodel compressionmethods,
the IMSI-based progressive kernel pruning method exhibits better compression performance in processing
the model compression tasks that are currently popular. In particular, pruning VGG-16 on CIFAR-10 with
our model achieves a compression ratio of 80.8x and an acceleration ratio of 14.8x, which are 5.8x and 4.2x
higher than the best results at present, respectively, and the classification accuracy decreases by only 0.59%
relative to that of the baseline.

INDEX TERMS Progressive kernel pruning, information mapping sparse index, convolutional neural
network, compression.

I. INTRODUCTION
In recent years, deep learning has achieved great success in
computer vision tasks, such as image recognition [1], [2],
target detection [3], [4], semantic segmentation [5], [6], and
target tracking [7]. A deep model usually has a substantially
deep (and sometimes wide) structure with a large number of
parameters, and this makes it difficult to deploy such a model
on a mobile terminal.

Model compression and acceleration are conducive to
the application of deep learning methods in various fields.

The associate editor coordinating the review of this manuscript and
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Increasing the compression ratio of the model, which is
achieved through network pruning, can easily solve the
problem of deploying deep learning technology on a mobile
terminal. Network pruning assumes that the convolutional
network has many redundant parameters, and these param-
eters can be discarded by certain methods. After model
pruning, the parameters of the model have high sparseness,
and this reduces the model storage space requirements and
computational complexity. The model structure consists of
weights, convolution kernels, filters, and convolution lay-
ers. Generally, network pruning is divided into weight prun-
ing, convolution kernel pruning, and filter pruning. Among
them, weight pruning is a type of unstructured pruning, and
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FIGURE 1. Illustration of the progressive kernel pruning. Kernel pruning is performed on the original model
for each filter and then in the layers. From the original model to KPF and then to KPL, we call it progressive
kernel pruning.

convolution kernel pruning and filter pruning are structured
pruning methods.

The purpose of weight pruning is mainly to remove
unimportant connections among the parameters with rel-
atively small amplitudes [8]. The sparse models obtained
from this pruning method are all irregular convolution ker-
nels, which require special software/hardware for acceler-
ated inference [9]. Structured pruning, including convolution
kernel pruning [10]–[12], filter/channel pruning [13]–[22],
and block pruning [23], removes structural weights; a pruned
model that can achieve accelerated inference does not require
specific software/hardware and is thus easy to deploy. In this
paper, we mainly discuss convolution kernel pruning.

The convolution kernel is the smallest structural unit for
feature extraction in a convolutional network. In structured
pruning, the convolution kernel has the smallest pruning
granularity, and these can be combined into a coarse gran-
ular structure, such as a filter or layer. The basis of coarse
granularity pruning stems from the relationships between
these granularities, for example, determining the importance
of filters according to the filter norm [13], [14], [24], deter-
mining which filters need to be pruned by minimizing the
reconstruction error of the feature output [16], [25], [26],
and using sparse regularization training [8], [17], [20], [21],
[27], [28].These coarse granularity pruning methods take
the relationships between filters in the entire convolutional
layer into account. In fact, even if the filter is considered
to be redundant, some convolution kernels in the filter may
still have an important role. This coarse granularity pruning
method generally causes a drop in the classification accuracy
of the model.

Kernel pruning is based on the relationships between the
kernels in the filter/layer; granularity pruning is done using
the metric method [12], the regularization method is used for
sparse pruning [10], and the kernel sparsity and entropy index
guide model compression [11]. The kernel is the smallest
structural unit of feature extraction, and they can be combined
into filters and layers. Thus, some retained kernels may have
similar functions and are unable to achieve the optimal prun-
ing effect.

Regarding the local relationships between the convolution
kernels in the filter and the overall relationship between
all convolution kernels in the convolution layer, this paper
proposes a progressive kernel pruning (PKP)method from the
local kernel pruning of each filter to the global kernel pruning
of the convolution layer. The information mapping sparse
index (IMSI) of the filter and the layer is defined according
to the maximum mapping ability of the kernel. First, kernel
pruning in the filter (KPF) is performed according to the
IMSI, and then kernel pruning in the layer (KPL) is per-
formedwhen the predetermined compression ratio is reached,
as shown in Figure 1. The progressive pruning approach
based on the IMSI proposed in this paper makes the retained
kernel transmit as much effective information as possible.
At the same time, the idea of progressive pruning, which con-
siders the local relationships and global relationships between
convolution kernels, can improve the convergence speed of
pruning training and the pruning rate of the model while
maintaining the performance of the model.

The innovations and contributions of this paper include the
following: (1) A progressive kernel pruning method based on
the IMSI is proposed. Themethod first prunes the convolution
kernels with local relations by using the IMSI between the
convolution kernels in each filter, and then it prunes the
convolution kernels with global relations by using the IMSI
between the convolution kernels in the whole convolution
layer. Progressive kernel pruning exhibits the characteristics
of better convergence and easier optimization than other
methods when performing KPF, and it avoids the problem
of easily falling into local optima when performing KPL
directly. (2) In KPF and KPL, a new IMSI is defined to mea-
sure the relationships between convolution kernels. A certain
number of retained kernels, selected according to the IMSI,
can enable the maximum amount of effective information to
pass through the filter. (3) The pruning process is easy to
implement while achieving a high model compression ratio
on the basis of maintaining network performance. In particu-
lar, pruning VGG-16 on CIFAR-10 achieves a compression
ratio of 80.8x and an acceleration ratio of 14.8x, and the
accuracy decreases by only 0.59%; these are the best results
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known at present. When pruning from scratch, the perfor-
mance is almost the same as that of the pretrained mode
(pruning VGG-16 on CIFAR-10).

II. RELATED WORKS
Network pruning is an effective method for reducing model
redundancy. Some of the pioneering work with regard
to pruning includes [29] and [30]. With the development
of deep learning, network pruning is mainly divided into
unstructured pruning and structured pruning. Weight pruning
[8], [31]–[35] is the major form of unstructured prun-
ing, while structured pruning mainly includes kernel
pruning [10]–[12] and filter/channel/layer/block pruning
[13]–[25], [27], [28], [36]–[43].

A. WEIGHT PRUNING
Han et al. [8] maintained their original model accuracy
after discarding the parameters with the smallest abso-
lute values. In particular, their subsequent work [31] inte-
grated weight pruning, quantification, and a Huffman code
into the models, and this further reduced their capacity.
Karen Ullrich et al. [32] introduced the method of soft
weight sharing, which can achieve quantification and prun-
ing together during the retraining process based on [31].
Xiao et al. [33] optimized a set of trainable auxiliary param-
eters to replace the original weights; the pruning process was
highly robust to noise and insensitive to hyperparameters, and
it achieved a high compression ratio. Wang et al. [34] and
Liu et al. [35] both transferred weight to the DCT domain
for pruning purposes and obtained excellent results.

B. KERNEL PRUNING
Lin et al. [10] applied sparse regularization to automatically
identify useless kernel connections and pruned connections
with small synaptic strength in the convolution layer to gener-
ate a compact model with kernel-level sparsity.When regular-
izing the synapse strength, only the sparseness of the kernel in
the convolutional layer is considered. In addition, it is difficult
to optimize the addition of regular terms. Li et al. [11] pro-
posed kernel sparsity and entropy (KSE) indicators to guide
model compression and performed kernel clustering based on
these KSE indicators to achieve high-precision compression.
However, compression can only be performed within the
group, and the kernels generated after kernel clustering may
need additional fine tuning. Mao et al. [12] explored pruning
at different granularity levels, such as weight pruning, vector
pruning, kernel pruning, and filter pruning.

C. FILTER PRUNING
Li et al. [13] and He et al. [24] proposed hard filter pruning
and soft filter pruning methods, respectively. Lin et al. [19]
proposed a global and dynamic filter pruning method.
Liu et al. [15] added a channel-wise scaling factor to the
batch normalization layer and then added L1 regulariza-
tion to make it sparse. Luo et al. [16] determined which
channels needed to be pruned by minimizing the feature

reconstruction errors. Zuo et al. [18] proposed a filter pruning
method without damaging network capacity. Wen et al. [17]
used the group lasso method for sparse regularization train-
ing (SSL) and explored the structural sparsity of differ-
ent levels in channels, filters, filter shapes, and depths.
Huang et al. [20] used the APG algorithm to make a mask
sparse and achieved structured pruning by introducing a
learnable mask. Lin et al. [21] proposed a structured sparse
regularization method that contains two different regular-
ization terms; this method can fully coordinate the global
output and the local pruning operations to adaptively prune
the filter. Zhu et al. [37] added decorrelation regularization
to SSL [17], further reducing the correlation between fil-
ters. Wang et al. [23] proposed online ensemble distillation
for pruning blocks/layers. Liu et al. [38] studied acceler-
ation and pruning from the viewpoint of data differences
and proposed instance feature sparse regularization, making
the feature maps sparse. Molchanov et al. [39] proposed a
sparse variational dropout method that expands the original
variational dropout to adjust the dropout rate and tailor a
model with a sparse solution. Lin et al. [41] proposed an
optimal, structured network pruning method based on gen-
erative adversarial learning that uses unsupervised end-to-
end training to prune redundant heterogeneous structures
in the network. Ding et al. [22] utilized a long short-term
memory (LSTM) to learn the hierarchical characteristics of
a network and generate a global network pruning scheme.
Ding et al. [42] proposed Centripetal SGD (C-SGD) opti-
mization method, which can train several filters to col-
lapse into a single point in the parameter hyperspace.
Ding et al. [43] proposed Approximated Oracle Filter Prun-
ing (AOFP), which continues to search for the least important
filters in a binary search manner.

The kernel is the smallest structural unit for extracting
features in a convolutional network. Direct kernel pruning
avoids accidental pruning of the important role kernel during
coarse-grained pruning. This paper proposes to directly mea-
sure the feature extraction ability of kernels and obtain dif-
ferent information mapping sparsity indexes according to the
relationships between the kernels in different spaces, which
can be used to guide the selection of appropriate numbers of
retained kernels in the different spaces. Kernel pruning in a
small space and kernel pruning in a large space are beneficial
to pruning training.

III. THE METHOD OF PROGRESSIVE KERNEL PRUNING
This section introduces the proposed IMSI for filters and
layers. We first analyze the principle of convolution kernel
mapping to achieve the IMSI. The IMSIs of filters and layers
are used as the basis for kernel pruning. Then, we propose the
progressive pruning method for kernel pruning in the filters
and in the layers.

A. INFORMATION MAPPING SPARSE INDEX OF A CNN
Convolution mapping in the convolution layer is the
most basic operation for extracting features from a CNN.
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FIGURE 2. The simplified structure schematic of the CNN, which shows the mapping process of l -th layer in detail, where the input
features Y (l−1) are the output of (l − 1)-th layer, there are a total of M channels; The output characteristic in which convolution
result X (l ) passing through nonlinear mapping is Y (l ), and there are N channels in total.

Therefore, the key to maintaining the performance of the
pruned network is to retain a convolution kernel with
strong feature extraction ability. This section analyzes the
mapping of convolution layers in theory and proposes a
measurement index that reflects the ability of convolution
mapping. As shown in Figure 2, Y(l−1)

= [Y(l−1,1), · · ·

Y(l−1,m), · · ·Y(l−1,M )] ∈ RM×D(l−1)
×D(l−1)

is the output of the
(l−1)-th layer, which is the input for the l-th layer. In the l-th
layer, the output is Y(l)

= [Y(l,1), · · · ,Y(l,N )] containing N
channels, which are computed by the activation function:

Y(l,n)
= ReLU (X(l,n)), n = 1, 2, . . . ,N (1)

where X(l,n)
= {X(l,n,1), · · · ,X(l,n,M )

}. X(l,n,m) is got by the
convolution operation

X(l,n,m)
= Y(l−1,m)

∗ c(l,n,m)

= k (l,n,m)
(
Y(l−1,m)

)
=

(
Y(l−1,m), c(l,n,m)

)
(2)

where c(l,n,m) is the mth convolution kernel of the nth filter
c(l,n) = {c(l,n,1), · · · , c(l,n,M )

} in the l-th layer. X(l,n,m) is
computed by a linear map determined by the convolution
kernel c(l,n,m). By Riesz representation theorem [44], there
is a bounded linear function k (l,n,m)(·). The norm ‖k (l,n,m)‖
of the bounded linear function k (l,n,m)(·) satisfies:

‖k (l,n,m)‖ = ‖c(l,n,m)‖ (3)

The input signal Y(l−1,m) is mapped by the linear func-
tion k (l,n,m)(·) to the output signal X(l,n,m). The operator
norm ‖k (l,n,m)‖ can be regarded as a metric of the mapping
Y(l−1,m)

→ X(l,n,m). This metric reflects the capability of the
mapping that the information in the feature map Y(l−1,m) is
mapped to the feature map X(l,n,m) through the convolution
kernel c(l,n,m). The output Y(l,n) of the nth channel in layer l
is the sum ofM bounded linear functions.

X(l,n)
=

M∑
m=1

Y(l,n,m)

= k (l,n,1)(Y(l−1,1))+ · · · + k (l,n,M )(Y(l−1,M )) (4)

From the nature of the bounded linear operator’s norm:

‖

M∑
m=1

k (l,n,m)‖ ≤
M∑
m=1

‖k (l,n,m)‖ =
M∑
m=1

‖c(l,n,m)‖ (5)

Let

K (l,n)
=

M∑
m=1

‖k (l,n,m)‖ =
M∑
m=1

‖c(l,n,m)‖ (6)

Then K (l,n) can be seen as a metric of mapping ability for
the nth filter of the l-th layer. Since Y(l−1,1), · · ·Y(l−1,m), · · ·

Y(l−1,M ) and X(l,n) are feature maps with limited size, which
have limited information capacity. X (l,n) can be understood as
the superimposed result ofM channels. Due to the limitation
of the information capacity of the input and output channels,
if as few convolution kernels as possible approach the upper
limit of the information mapping ability, the structure of the
CNN can be effectively simplified. For the filter c(l,n) =
[c(l,n,1), · · · c(l,n,m), · · · c(l,n,M )], the upper mapping ability of
the kernel in this filter is

‖c(l,n,∗)‖ = max{‖c(l,n,1)‖, · · · ‖c(l,n,m)‖, · · · ‖c(l,n,M )‖
}

(7)

The informationmapping sparse index (IMSI) q(l,n) of the nth
filter c(l,n) is defined as

q(l,n) =
⌊

K (l,n)

‖k (l,n,∗)‖

⌋
=

⌊
‖c(l,n,1)‖ + · · · + ‖c(l,n,m)‖ + · · · + ‖c(l,n,M)

‖

‖c(l,n,∗)‖

⌋
(8)

where b·c is a downward rounding function. q(l,n) reflects
the number of convolution kernels needed for mapping by
using the kernel with the upper mapping ability ‖c(l,n,∗)‖ that
the current convolution kernels can achieve. Therefore, IMSI
q(l,n) of the filter c(l,n) can be used as the basis for kernel
pruning in the filter c(l,n).

Considering the mapping ability of the convolution ker-
nel in the whole convolutional layer, for the overall output
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FIGURE 3. Schematic representation of the information mapping sparse index. (a) Input features; (b) Kernel
norm (×10−4), the red box are the retained kernel norm; (c) Output features corresponding to the convolution
kernel (before pruning); (d) Output features corresponding to the convolution kernel (after pruning),
the number of retained kernels is q(l,n) = 5, the number of output effective features is 5, other features are
no information; (e) The output feature of the filter before pruning, which is the accumulation of the features
in (c); (f) The output feature of the filter after pruning, which is the accumulation of the features in (d).

X(l)
= [X(l,1), · · · ,X(l,N )] of the l-th convolution layer, there

are N filters:

c(l,n) = [c(l,n,1), · · · c(l,n,m), · · · c(l,n,M )], n = 1, 2, · · ·N

(9)

which contain N × M convolution kernels. Then, the upper
mapping ability that the convolution kernel c(l,n,m) of the
whole l-th layer can currently reach:

‖c(l,∗,∗)‖ = max{‖c(l,1,1)‖, · · · ‖c(l,1,M )
‖, · · · ,

‖c(l,n,m)‖, · · · , ‖c(l,N ,M )
‖} (10)

The information mapping sparse index (IMSI) q(l) of the l-th
layer can be defined as

q(l) =

⌊∑N
n=1

∑M
m=1 ‖c

(l,n,m)
‖

‖c(l,∗,∗)‖

⌋
=

⌊∑N
n=1 K

(l,n)

‖c(l,∗,∗)‖

⌋
(11)

The IMSI q(l) of the l-th convolution layer reflects the number
of convolution kernels needed for mapping using the upper
mapping ability ‖c(l,∗,∗)‖ that the current convolution kernels

can achieve. Therefore, IMSI q(l) can be used as the basis for
the overall convolution kernel pruning in the whole convolu-
tion layer by considering the overall relationship in layer.

In order to show the working principle of information
mapping sparse index, we take the 15-th filter of the Conv-2
in VGG-16 as an example. When kernel pruning in the filter,
IMSI is used to select the retained kernels, and the changes
of output features before and after pruning is observed.
As shown in Figure 3. (a) is the input channel feature, which
is the output feature of the previous layer; (b) is the norm
value of the convolution kernel (×10−4), which corresponds
to the input feature; (c) is the features extracted by the con-
volution kernel before pruning. Most of the features have no
information, some are noises, and a few have clear contours;
(d) is the features extracted by the convolution kernel after
pruning; the number of retained kernels is q(l,n) = 5; the
output feature contours corresponding to the retained kernels
are all very clear, and other features have no information;
(e) and (f) are the summation of the features in (c) and (d),
which represent the output features of the filter before and
after pruning, respectively. We can observe that (e) and (f) are
almost the same. Themodel compression ratio is significantly
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improved and themodel performance is hardly affected, when
the right number of convolutional kernels with stronger map-
ping ability is selected according to the IMSI guidance.

B. KERNEL PRUNING BASED ON OF IMSI IN THE FILTER
This section introduces the first stage of the proposed pro-
gressive pruning method, which is kernel pruning based on
the IMSI in the filter. The filter in the convolution layer
consists of multiple convolution kernels. As shown in equa-
tion (4), the output signal of each channel is obtained by
accumulating multiple convolution results. The accumulation
of signals can be regarded as a low-pass filter. In the filter,
the information output by a kernel with poor mapping ability
‖k (l,n,m)‖ is not only less important than other information
but also interferes with the output information of the filter
due to its average effect. Therefore, pruning a kernel with
a small mapping ability is conducive to effectively retaining
the information output by a kernel with a stronger mapping
ability, thereby making the output characteristics of the filter
more significant. Therefore, KPF is proposed according to the
IMSI of the filter in equation (8). Through the IMSI q(l,n) of
the filter, the convolution kernels with the strongest mapping
abilities are retained, and the mapping abilities of the retained
kernels are adjusted by iterative training so the filter can
approach its maximum mapping ability with as few convo-
lution kernels as possible. For the filter c(l,n), the convolution
kernels are sorted according to their mapping ability.

‖c(l,n,s1)‖ ≥ · · · ≥ ‖c(l,n,sp)‖ ≥ · · · ≥ ‖c(l,n,sM )
‖ (12)

Let p = q(l,n), the set of the first p convolution kernels with
stronger mapping ability retained:

P(l,n) = {c(l,n,s1), c(l,n,s2) · · · , c(l,n,sp)} (13)

The remainingM−p convolution kernel c(l,n,sp+1), . . . c(l,n,sM )

in the nth filter c(l,n) is pruned. When the mapping abilities
of all convolution kernels in the entire filter are equal:

‖c(l,n,∗)‖ = ‖c(l,n,1)‖ = · · · = ‖c(l,n,M )
‖ (14)

there is

q(l,n) =

⌊∥∥c(l,n,1)∥∥+ · · · + ∥∥c(l,n,m)∥∥+ · · · + ∥∥c(l,n,M )
∥∥∥∥c(l,n,∗)∥∥
⌋

=
M‖c(l,n,∗)‖∥∥c(l,n,∗)∥∥ = M (15)

In this case, the actual number of kernels retained is the
total number M in the filter. When the mapping ability of
the convolution kernel with the strongest mapping ability is
greater than the sum of the mapping abilities of the remaining
convolution kernels:∥∥∥c(l,n,∗)∥∥∥ = ∥∥∥c(l,n,s1)∥∥∥ > 1

2

M∑
m=1

∥∥∥c(l,n,m)∥∥∥ (16)

there is

q(l,n) =

⌊∥∥c(l,n,1)∥∥+ · · · + ∥∥c(l,n,m)∥∥+ · · · + ∥∥c(l,n,M )
∥∥∥∥c(l,n,∗)∥∥
⌋

= 1 (17)

In this case, the number of kernels actually retained in
the filter is 1. The number of kernels retained in the filter is
gradually reduced from M to 1, so this can be regarded as a
pruning method with a gradual increase in the pruning rate,
allowing the information of the data to be gradually gathered
into the retained kernel during the training process.

Algorithm 1 Kernel Pruning in Filter

1. Obtain the parameter c(l,n,m)i of all convolution kernels
at the i-th iteration of the model;
2. Calculate the IMSIq(l,n) of the filter according
to Eq. (8);
3. According to Eq. (12), sort the convolution kernels in
the filter according to the size of the mapping abilities;
4. Keep the weights of the first q(l,n) convolution kernels
with stronger mapping abilities in the filter unchanged, and
set the weights of other convolution kernels to zero;
5. Follow steps (2-4) for each filter in each convolutional
layer;
6. Next iteration;

C. KERNEL PRUNING BASED ON THE IMSI IN THE LAYER
This section introduces the second stage of the proposed
progressive pruning method, the kernel pruning based IMSI
in the layer. When KPF, whether the kernel is pruned is
determined by the relationships between the kernels inside the
filter. The metric characteristics of the information mappings
between different filters in the same layer are not considered.
When the highest mapping ability of the best kernel in the
filter is lower than those of the kernels in other filters and
the overall mapping ability of the filter is lower than those
of other filters, the information of this filter’s output feature
map is less valid than those of other filters. When the overall
mapping ability of the filter is strong and the maximum
mapping ability of the kernel in the filter is weaker than those
of the kernels in other filters, the mapping abilities of the
kernels retained in this filter by KPF are weak. Due to the
low-pass filtering effects between the kernels in the filter,
the feature map output by this filter is reduced and is less
important. For the process of KPF, it is difficult to prune
the filters and kernels that output the least important feature
maps. For each filter, the information validity of its output
feature map is mainly determined by the convolution kernel
with the strongest mapping ability in the filter. Even if the
overall mapping degree of the filter is small, if one of the
convolution kernels in the filter has a strong mapping ability,
the effectiveness of the feature map output by the filter is
strong. For the whole convolution layer, the relative mapping
ability of the kernel has a direct impact on the importance of
the corresponding feature map output by the filter. Therefore,
the information mapping sparse index IMSI q(l) of the con-
volution layer is introduced to prune the convolution kernels
and the filters in the convolution layer.
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The structure of KPL is similar to that of KPF. The role of
the filter in the whole convolution layer is considered in KPL.
According to equation (11), the convolution kernels with
the strongest relative mapping abilities are selected by the
IMSI q(l,n) of the layer. The mapping abilities of the retained
kernels are adjusted by iterative training so the filter can reach
its maximummapping ability with as few convolution kernels
as possible. ‖c(l,∗,∗)‖ is the current maximummapping ability
of a kernel in the l-th layer, and the actual mapping ability of
the retained kernel is also strongest in the current layer, so the
information output by the retained kernel is most likely to
approach the upper limit of the corresponding information
output of the filter. When the maximum kernel mapping
ability ‖c(l,n,∗)‖ in a filter is small, the retained value is low,
and the whole filter is not retained in equation (11); this is
conducive to further improving the compression ratio of the
model.

Arrange all convolution kernels c(l,1,1), · · · , c(l,1,M ), · · · ,

c(l,n,m), · · · , c(l,N ,1), · · · , c(l,N ,M ) in l-th layer:

c(l)1 , · · · c
(l)
t , · · · c

(l)
NM (18)

where t = n ×M + m, c(l)t = c(l,n,m). All kernels are sorted
according to the mapping ability:

‖c(l)s1 ‖ ≥ · · · ≥ ‖c
(l)
sp ‖ ≥ · · · ≥ ‖c

(l)
sNM ‖ (19)

Let p = q(l), the set of the first p convolution kernels with
stronger mapping ability retained:

P(l) = {c(l,s1), c(l,s2) · · · , c(l,sp)} (20)

The remaining N ×M − p convolution kernel c(l)sp+1 , . . . c
(l)
sNM

in the l-th layer is pruned. When the mapping abilities of all
convolution kernels in the entire layer are equal:

‖c(l,∗,∗)‖ = ‖c(l)s1‖ = · · · = ‖c
(l)
sNM‖ (21)

there is

q(l) =

⌊∑N
n=1

∑M
m=1

∥∥c(l,n,m)∥∥∥∥c(l,∗,∗)∥∥
⌋

=
N ×M × ‖c(l)s1‖∥∥∥c(l)s1∥∥∥

= N ×M (22)

In this case, the actual number of kernels retained is the
total number N×M in the filter. When the strongest mapping
ability of the convolution kernel is greater than the sum of the
mapping abilities of the remaining convolution kernels:∥∥∥c(l,∗,∗)∥∥∥ = ∥∥∥c(l,s1)∥∥∥ > 1

2

NM∑
m=1

∥∥∥c(l,m)∥∥∥ (23)

there is

q(l) =

⌊∑N
n=1

∑M
m=1

∥∥c(l,n,m)∥∥∥∥c(l,∗,∗)∥∥
⌋
= 1 (24)

In this case, the number of kernels actually retained in the
layer is 1. Following pruning training, the number of retained
kernels in the convolutional layer is gradually reduced from
M × N . Ideally, the number of retained kernels is 1. When
the compression ratio of the model reaches its set value,
the pruning process stops. The number of kernels retained
in each layer is adaptively adjusted according to the network
training situation. The IMSI q(l) is calculated by the retained
kernel of the entire convolutional layer.

D. FILTER - LAYER PROGRESSIVE KERNEL PRUNING
This section integrates KPF andKPL to propose a progressive
kernel pruning method. In the KPF stage, there are fewer
convolution kernels in the filter than in the convolution layer,
so the model converges more easily during pruning training.
However, if the mapping ability of the retained kernel in the
filter is small, the information transferred from the filter to the
next layer of the network is small, so the retained structure has
a certain degree of redundancy; this causes a problem in terms
of the further simplification of the overall network structure.
The KPL stage prunes the convolution kernel by consider-
ing the relationships between all convolution kernels in the
convolution layer. If the mapping abilities of all convolution
kernels in a filter are generally small, then all convolution
kernels in the filter are pruned by the KPL process. Therefore,
all convolution kernels of the filter, which are of relatively
small importance in the process of KPF pruning, can be
pruned, and the pruning rate is further improved. Since the
convolution layer is composed of multiple filters, pruning
by directly considering the importance of the kernels in the
whole layer complicates the optimization of the process of
obtaining pruning results. The probability of obtaining the
local optimal solution increases during pruning training, and
the network performance after pruning is greatly affected.

Therefore, this paper proposes a two-stage pruning method
(PKP) based on the IMSI. This is a progressive kernel pruning
method ranging from convolution kernel pruning in the filter
to convolution kernel pruning in the convolution layer. KPL
can be regarded as a progression of KPF. Due to the better
convergence of KPF training than KPL training, the retained
kernel in the filter can be fully trained to achieve the set model
pruning rate. KPL training on this basis not only reduces the
difficulty of pruning training but also further improves the
pruning rate of the model.

Progressive pruning is divided into two stages, KPF and
KPL. In the KPF stage, the compression ratio of the model
continues to improve during the training process, and the
accuracy of the model gradually increases. When the model
compression ratio increases slowly, the number of convolu-
tion kernels in the filter stabilizes, and the retained kernels
become fully trained. The KPF stage can progress to the KPL
stage to further increase the compression ratio of the model.
According to equations (8, 11), in KPF, the number of kernels
retained in each filter is q(l,n), and for KPL, the number of
kernels retained in each convolutional layer is q(l). Pruning is
based on the use of a two-dimensional convolution kernel as
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FIGURE 4. The progressive kernel pruning (PKP). In the KPF stage, kernel pruning for each filter, the number
of retained kernels is IMSI q(l,n), when the CR can not increase, progressive to KPL stage, the number of
retained kernels is IMSI q(l ), which obtain a higher CR.

the smallest unit, and the number of convolution kernels in the
l-th layer isN×M . The parameters of the batch normalization
layer are 2N (l). In KPF, the compression ratio CRKPF is as
follows:

CRKPF =
L∑
l=1

N∑
n=1

N (l)
×M (l)

× k (l) × k (l) + 2N (l)

q(l,n) × k (l) × k (l) + 2N (l)

=

L∑
l=1

N∑
n=1

N (l)
× (M (l)

+ 2)
q(l,n) + 2N (l) (25)

Therefore, the final compression ratio of the model is as
follows:

CRKPL =
L∑
l=1

N (l)
×M (l)

× k (l) × k (l) + 2N (l)

q(l) × k (l) × k (l) + 2N (l)

=

L∑
l=1

N (l)
× (M (l)

+ 2)
q(l) + 2N (l) (26)

Let the average compression ratio of the previous consec-
utive Ib iterations after completing the I th iteration in the
model pruning training is as follows:

CR
(I )
=

1
I − Ib

I∑
i=I−Ib+1

CR(i) (27)

CR(i) is the compression ratio of the model after the ith itera-
tion. Only when the compression ratio of the model increases
very slowly can we switch from KPF to KPL. In the KPF
stage, let 1ξ (I ) = CR

(I )
KPF − CR

(I−1)
KPF . When 1ξ (I ) is small,

the compression ratio of themodel remains almost unchanged
after repeated pruning. The model compression ratio cannot
be significantly improved, and it is necessary to switch to
KPL to further improve the model compression ratio.

The schematic diagram of the PKP based on IMSI is
shown in Figure 4. The filter sets Sorg, SKPF , and SKPL
represent the filter sets of the l-th layer without pruning, after
KPF, and after KPL respectively. Red cubes represent the
pruned kernels. The soft kernel pruning method is adopted

for training purposes, and the convolution kernel with the
strongest mapping ability is selected according to the IMSI.
First, kernel pruning is performed for each filter in each layer
according to the IMSI q(l,n), using as few kernels as possible
to approach the upper limit of the output information capacity
of the filter. The aim of this process is to find a suitable
kernel for retention by considering the relationships between
the convolution kernels in the filter. Because a filter with a
convolution kernel in the layer can be regarded as a subset
of all convolution kernels in the layer, kernel pruning based
on the IMSI q(l) in the layer can be regarded as the transition
from the local subset to the overall set to find the best kernel
for retention. Because most of the remaining kernels are well
trained via the KPF process, it is easy to prune the convolution
kernels in the whole convolution layer. This progressive con-
volution kernel pruning method has more obvious direction
and purpose, simpler training, and easier optimization than
other methods. The progressive kernel pruning algorithm is
as follows:

The compressed model has a small number of kernels, and
the network can be accelerated by sharing the convolution
results. Themodel computational consumption ismainly con-
volution operations, therefore, the model theory acceleration
ratio (AR) is calculated as follows:

AR '

∑L
l=1 N

(l)
×M (l)

× D(l)
× D(l)

× d (l) × d (l)∑L
l=1 q

(l) × D(l) × D(l) × d (l) × d (l)
(28)

IV. EXPERIMENTS AND ANALYSIS
This section mainly introduces the experimental settings
and the performance of model compression achieved by
our method compared to those of the existing meth-
ods on classical networks and datasets. In this paper,
VGG [1], ResNet [2], and MobileNet V2 [45] are pruned on
CIFAR-10/100 [46], ImageNet [47] datasets. These models
contain heavyweight (VGG-16, ResNet-18) and lightweight
(ResNet-56/110, MobileNet V2) models and single-branch
(VGG-16) and multi-branch (ResNet-18, MobileNet V2)
models. The method is completed on PyTorch [48].
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TABLE 1. Results for pruning VGG-16 and ResNet-18 on CIFAR-10.

Algorithm 2 Progressive Kernel Pruning
1. Prepare the pretrained model;
2. In the KPF stage:
a. Pruning training;
b. Select the retained kernel according to Equation (8);
c. Calculate the model CR according to Equation (25);
d. if 1ξ (I )KPF ≤ 0.01:

go to Step 3.
else:
return a.

3. In the KPL stage:
e. Pruning training;
f. Select the retained kernel according to Equation (11);
g. Calculate the model CR according to Equation (26);
h. if 1ξ (I )KPL ≤ 0.01:

obtain set P(l), CR, AR, and go to Step 4.
else:
return e.

4. Training retained kernels;
5. Obtain the performance of the model after pruning.

The filter in the first convolution layer of a given model con-
tains 3 convolution kernels, which is not enough for pruning
with KPF, so pruning is only performed with KPL. When
pruning the fully connected layer, this paper regards each
weight as a convolution kernel of size 1 × 1 and prunes in
the same way as the progression from KPF to KPL. In this
paper, the classification accuracy used is Top-1 accuracy, and
the equation is as follows:

accuracyTop-1 =

∑
TPj

Numtotal
(29)

where, j represents the j-th category,Numtotal is the total num-
ber of test samples. True positives (TP) are examples correctly
labeled as positives. False positives (FP) refer to negative
examples incorrectly labeled as positive. True negatives (TN)
correspond to negatives correctly labeled as negative and

false negatives (FN) refer to positive examples incorrectly
labeled as negative. Each experiment is conducted ten times
and each result is presented as the mean. The model uses the
same evaluation indexes of classification accuracy before and
after pruning.

A. RESULTS ON CIFAR-10
1) VGG-16/ResNet-18
The results of pruning VGG-16 and ResNet-18 on CIFAR-10
are shown in Table 1. In VGG-16, the proposed PKP has the
highest compression ratio (CR) and acceleration ratio (AR),
reaching 80.84× and 14.82× respectively. The accuracy is
decreases by 0.59% from the original, reaching 92.76%. The
classification accuracy of [10] is slightly higher than the
baseline, but the CR and AR are 25× and 2.1×, respec-
tively. For the ‘‘pruning from scratch’’ mode, the CR and
AR of the PKP are 80.03× and 14.12×, respectively, and
the classification accuracy is 92.42%. Compared to the pre-
trained mode, the CR of the PKP is 0.72× lower, and the
classification accuracy decreases by 0.31%. The CR and
AR of the method [49] are 52.20× and 8.8×, respectively,
when pruning from scratch, and the classification accuracy is
1.32% lower than that of the pretrained mode. Table 2 shows
the kernel sparsity ratio in each layer. It can be observed
that the higher the layer is, the higher the sparsity rate. For
example, in Conv-12, the kernel sparsity rate is 99.92%,
and the number of kernels actually retained is only 197.
For the ResNet-18, the proposed PKP has the highest CR
and AR, reaching 85.42× and 14.70×, respectively, and the
classification accuracy is decreases by 0.64% from that of
the baseline. When pruning from scratch, the CR of the
PKP method is 82.73×, which is significantly higher than
the 54.20× CR of the method in [49]. For VGG-16 and
ResNet-18, the proposed PKP has the highest CR and AR and
achieves the best performance. When pruning from scratch,
it also exhibits excellent performance. Table 3 shows the PPV
and TPR of VGG-16/ResNet-18. Regardless of the original
model or the pruned model, the values between PPV are
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TABLE 2. The kernel sparse rate in each layer (In VGG-16 for CIFAR-10).

TABLE 3. The PPV and TPR of VGG-16/ResNet-18.

TABLE 4. Results for pruning ResNet-56/110 and MobileNetV2 on CIFAR-10.

relatively close, and the values between TPR are relatively
close too. Because the classification accuracy of the model
after pruning will be slight decrease, but the model in all
categories of classification performance is relatively uniform,
there is no large deviation, which also shows that the model
in the high compression ratio and acceleration ratio, classifi-
cation performance has better stability.

2) ResNet-56/110 AND MobileNetV2
The results for pruning ResNet-56/110 and MobileNetV2 on
CIFAR-10 are shown in Table 4. In ResNet-56, the CR
and AR of the PKP method are 2.51× and 2.54×, respec-
tively. The classification accuracy is 93.51%, which is a
decreases of 0.09% from that of the baseline and is the highest
compared to those of the methods in [11], [13], [14], [18],

[21]–[23], [41]. The CR of the method in [41] reaches 2.93×,
but the classification accuracy is 91.58%, which is a decrease
of 2.39%. The AR of the method in [23] reaches 3.09×, and
the classification accuracy is 92.29%, which is a decreases
of 1.68%. For ResNet-110, the proposed PKP has the highest
CR and AR, reaching 2.32× and 2.18×, respectively, and
the classification accuracy decreases by 0.45% from that of
the baseline, reaching 93.82%; this is also the highest when
compared to the classification accuracies of the methods
in [13], [14], [18], [23], [41]. For MobileNetV2, the pro-
posed PKP has the highest CR and AR, reaching 2.22×
and 2.02× respectively, and the classification accuracy is
increased by 0.13%, reaching 93.41%, which is also the
highest. The proposed PKP can achieve the highest CR and
AR for ResNet-56/110 and MobileNetV2 and has the best
classification accuracy. This is because progressive pruning
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TABLE 5. Results for pruning VGG-16 on CIFAR-100.

TABLE 6. Results for pruning ResNet-110 and MobileNetV2 on CIFAR-100.

TABLE 7. Results for pruning ResNet-18 on ImageNet.

not only takes the relationships between the local convolution
kernels in the filter into account but also considers the overall
relationships between the convolution kernels in the convo-
lution layer, making it simple for the method to approach the
global optimum.

B. RESULT ON CIFAR-100
1) VGG-16
The results for pruning VGG-16 on CIFAR-100 are shown
in Table 5. In VGG-16, the proposed PKP has the high-
est CR and AR, reaching 27.25× and 7.20× respectively,
the classification accuracy is decreases by 0.15%, reaching
72.77%. Although the CR of the method in [50] reaches
17.5×, the classification accuracy was only 72.20%, which
was decreases by 0.7%. In method [37], the CR of the model
is 3.90×, but the accuracy after compression is slightly higher
than the baseline. However, when PKP reaches a 10.10×
CR, the acc classification accuracy is increased significantly
by 0.68%. From the scratch mode, the CR and AR of the
PKP method are 20.12× and 5.50×, respectively, which is
also significantly higher than that of the method [50]. Using
the PKP method for pruning, the model accuracy will be
significantly improved when the model CR is low. When
the model CR is high, the classification accuracy decrease
is not obvious, especially in the scratch mode, the model
classification accuracy does not decrease much.

2) ResNet-110 AND MobileNetV2
The results for pruning ResNet-110 and MobileNetV2 on
CIFAR-100 are shown in Table 6. In ResNet-110, the CR and

AR of the PKP method are 2.42× and 2.37×, respectively.
The classification accuracy is 72.21%, which is decreases by
0.61%, and is the highest compared to [18], [23]. In addition,
in MobileNetV2, the proposed PKP has CR and AR are
2.11× and 1.91×, respectively, the classification accuracy is
75.39%, which is decreases by 1.01%. The results show that
the PKP method selects the retained kernel according to the
IMSI in the two-stage pruning process, which can reduce the
false prune rate of the retained kernel and effectively improve
the CR and AR of the model under the premise of ensuring
performance.

C. RESULT ON IMAGENET
The results for pruning ResNet-18 on ImageNet are shown
in Table 7. The CR of the method in [40] is 2.00×, the Top-1
classification accuracy decreases by 2.29%, and the Top-5
classification accuracy decreases by 1.38%. The CR and
AR of the PKP method are 2.83× and 2.00×, respectively,
the Top-1 classification accuracy decreases by 0.40%, and
the Top-5 classification accuracy decreases by 0.06%. The
classification accuracy of method [14], [24] decrease more.
It can be observed that the PKP method is more robust in
pruning training.

D. ABLATION STUDY
1) RESULTS ON KPF AND KPL
This section presents the experimental results of the KPF and
KPL methods separately, as shown in Table 8. On CIFAR-10,
the compression test for VGG-16 shows that the KPF pro-
vides better performance thanKPLwith the pretrainedmodel.
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TABLE 8. The pruning effect of using KPF and KPL, separately (Pruning VGG-16 on CIFAR-10).

FIGURE 5. Model accuracy at different CRs. (Solid line and shadow
denotes the mean values and standard deviation of three experiments,
respectively.) (a) Pruning VGG-16 on CIFAR-10. (b) Pruning ResNet-18 on
CIFAR-10.

While the CR reaches 39.03×, the classification accuracy
decreases by only by 0.38%. However, if the maximum map-
ping abilities of kernels in the filter are very small, KPF
cannot delete these kernels, making it difficult to further
increase the CR.When the KPLmethod is used alone, the CR
is 40.67×, while the classification accuracy decreases greatly
(by 1.45%), because it is difficult to optimize all convolution
kernels in the convolution layer without using KPF.

2) THRESHOLD SELECTION
In the KPF stage, if Ib = 5 and 1ξ (I )KPF ≤ 0.01, the retained
kernel in the filter is considered fully trained, so it is necessary
to switch to KPL to further improve the model compression
ratio.

3) ACCURACY CORRESPONDING TO DIFFERENT CRs
This section analyzes the changes in classification accuracy
for different CRs, as shown in Figure 5. Solid line and
shadow denotes the mean values and standard deviation of

three experiments, respectively. For pruning VGG-16 on the
CIFAR-10, the experimental results are shown in Figure 5(a).
Under the pretrained mode, when the CR provided by the
proposed PKP is less than 50×, the compressed model can
basically reach the classification accuracy of the baseline
through fine tuning. When CR ≥ 80×, the classification
accuracy of the model decreases rapidly. When CR = 95×,
the classification accuracy of the model is 1% less than that
of the baseline. When pruning from scratch, compared to the
pretrained mode, when CR < 70×, the accuracies of the two
methods are similar. For Pruning ResNet-18 on CIFAR-10,
the experimental results are shown in Figure 5(b). Under
the pretrained mode, when CR ≤ 90×, the classification
accuracy of the model decreases slowly. When CR > 90×,
the classification accuracy of the model decreases rapidly.
When CR = 105×, the accuracy is nearly 2% lower than
that of the baseline. When pruning from scratch mode,
when CR < 50×, the classification accuracy of the model
decreases slowly. When CR > 50×, the decrease in accuracy
is slightly faster. We believe that in the method using a
pretrained model, the model is pruned under a better model.
Although the CR is higher, it is easier to obtain results that are
not much different from those of the baseline. It is important
to select the best kernel when pruning from scratch. The
method of progressive pruning training is also very impor-
tant, showing that the method in this paper has excellent
robustness.

E. STATISTICAL ANALYSIS OF RESULTS
In this paper, various types of models have been pruned on
CIFAR-10/100 and ImageNet. Based on the experimental
results, it can be observed that the proposed PKP can achieve
high CR and AR, and the classification accuracy is not
significantly reduced. Compared to the reference methods,
the PKP exhibits some performance advantages, especially
when pruning from scratch. Through progressive pruning,
KPF is carried out first so that the mapping abilities of a
few kernels can approach the upper limit of the information
output capacity as closely as possible. During this process,
the relationships between convolution kernels in each filter
are considered for kernel pruning purposes; this approach
is easy to optimize and can achieve better accuracy than
those of other approaches. On this basis, KPL considers the
relationships between convolution kernels in the convolution
layer for kernel pruning. KPL is optimized on the basis of
KPF. Compared with the direct use of KPL, the difficulty
of optimization for KPF is significantly reduced, and better
accuracy can be obtained. Therefore, the progressive kernel
pruning method proposed in this paper can be applied to
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the pruning of heavyweight/lightweight models and single-
branch/multi-branch networks, respectively, and has good
universality. By calculating the PPV and TPR of the subcat-
egories, it is found that the classification performance of the
prunedmodel has good stability under high compression ratio
and acceleration ratio.

V. CONCLUSION
This paper proposes the PKP method based on the IMSI for
CNN model compression. The proposed IMSI measures the
mapping abilities of convolution operations. The filter IMSI
is used to prune the kernels in each filter. Then, the layer IMSI
is used to prune the remaining kernels in the entire layer.
During the process of kernel pruning, the kernel with the
strongest mapping ability is retained. The network passes as
much effective information as possible during the convolution
process. The proposed PKP can further improve the CR and
AR of the model on the basis of KPF while avoiding the dif-
ficulty of optimizing the KPL method directly. Through the
experimental results, it can be observed that the CR and AR
of the proposed PKP are higher than those of other pruning
methods, and the accuracy can be maintained at a comparable
level to that of the baseline. Furthermore, it exhibits certain
advantages in terms of performance, especially when pruning
from scratch.
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