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ABSTRACT Detection of voice changes in Parkinson’s Disease (PD) patients would make it possible for
early detection and intervention before the onset of disabling physical symptoms. This study explores static
and dynamic speech features relating to PD detection. A comparative analysis of the articulation transition
characteristics shows that the number of articulation transitions and the trend of the fundamental frequency
curve are significantly different between HC speakers and PD patients. Motivated by this observation,
we propose to apply Bidirectional long-short term memory (LSTM) model to capture time-series dynamic
features of a speech signal for detecting PD. The dynamic speech features are measured based on computing
the energy content in the transition from unvoiced to voiced segments (onset), and in the transition from
voiced to unvoiced segments (offset). Under the two evaluation methods of 10-fold cross validation (CV)
and splitting the dataset without samples overlap of one individual, the experimental results show that the
proposed method remarkably improves the accuracy of PD detection over traditional machine learning
models using static features.

INDEX TERMS Parkinson’s disease, speech signal processing, deep learning, dynamic features, bidirec-
tional long short term memory.

I. INTRODUCTION
Parkinson’s disease (PD) is currently the second most fre-
quent neurodegenerative disease, after Alzheimer disease [1].
Generally, there are two kinds of symptoms of PD, motor
symptoms and non-motor symptoms. The main motor symp-
toms of PD are tremor, slowness of movement (bradykinesia),
stiffness (rigidity), and poor balance (postural instability).
Non-motor symptoms mainly include mood disorders, cogni-
tive dysfunction, pain, sensory dysfunction, and dysautono-
mia [2]. Motor speech disorders are common among PD
patients. Speech disturbances such as very quiet and hurried
speech occur in more than half of the patients [3]. Analysis
of speech signals is considered as an important non-invasive
method for PD identification. Noninvasive identification and
prediction technology of PD is attractive to clinicians and
neuroscientist. In addition, detection of voice changes in
PD patients would make it possible for early detection and
intervention before the onset of disabling physical symptoms,
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giving a relevant effect on both the quality of life of patients
and the healthcare system.

The development of modern speech processing technol-
ogy mostly relies on interdisciplinary research in the areas
of multimodal signal processing and artificial intelligence.
A number of methods have been developed with the aim
of solving various Human-computer interaction (HCI) prob-
lems [4]. Some results based on PD speech analysis have
shown that people with Parkinson have shorter maximum
phonation time, higher jitter and shimmer, decreased pitch
range and increased phonation threshold pressure [5]. Based
on these analyses, many machine learning (ML) models have
been applied for PD detection [6]–[11].

ML based approaches cast the problem of PD detection
from speech into a classification problem. The dominant ML
methods generally fall under two broad categories: traditional
ML based methods and Deep Learning (DL) based meth-
ods. Traditional ML based methods include Support Vec-
tor Machine (SVM) [12]–[14], K-Nearest Neighbor (KNN)
[12], Naïve Bayes (NB) [12], [15], [16], Decision tree [12],
Genetic Algorithm [14], and their combinations [17], [18].
Traditional ML based methods usually extract global static
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features based on different measurements such as Mel-
Frequency Cepstral Coefficients (MFCC), pitch, jitter,
shimmer values from voice signals. Then, feature selection
techniques such as Least Absolute Shrinkage Selection Oper-
ator (LASSO), Minimum Redundancy Maximum Relevance,
Relief and Local Learning-Base Feature Selection (LLBFS)
are used to select the best features. After that, dimensional-
ity reduction technology like Principal Component Analysis
(PCA) is often applied to compress a dataset onto a lower-
dimensional feature subspace for reducing the model com-
plexity and avoiding overfitting.

Different from the feature selection techniques used in
traditional ML based methods, one of the strong points
of DL is precisely the hierarchical feature selection along
the successive level of increasing abstraction in detecting
patterns. Several studies have explored PD detection from
speech based on DL, such as Convolutional Neural Network
(CNN) [19]–[22].

Most of previous studies made their efforts on finding
effective static features for PD speech classification; some
studies used continuous speech features while ignoring the
interdependencies in sequences of features.

Our contributions can be summarized as follows:
1) Explored static and dynamic speech features relating

to PD detection. A comparative analysis of the articulation
transition characteristics shows that the number of articula-
tion transitions and the trend of the fundamental frequency
curve are significantly different between HC speakers and PD
patients. We applied a paired t-test to evaluate the difference
on the number of articulation transitions between HC speaker
and PD patient groups and got a p-value of 0.042 (<0.05),
which indicates the difference did not occur by chance.

2) Proposed to apply Bidirectional long short term mem-
ory (LSTM) model to capture time-series dynamic features
of speech signals for detecting PD. The dynamic speech
features are measured based on computing the energy content
in the transition from unvoiced to voiced segments (onset),
and in the transition from voiced to unvoiced segments (off-
set). To the best of our knowledge, combining Bidirectional
LSTM model and dynamic articulation transition features of
speech has not yet been used for PD detection. Under the
two evaluation methods of 10-fold cross validation (CV) and
splitting the dataset without samples overlap of one indi-
vidual, the experimental results showed that the proposed
method remarkably improves the accuracy of PD detection
over traditional ML models using static features.

The outline of the paper is as follows: Section 2 discusses
related work. The features of speech for PD detection are
introduced in Section 3. The framework of the model is
shown in Section 4. The experimental study is introduced
in Section 5. Section 6 is discussion and Section 7 is the
conclusions.

II. RELATED WORK
Recent research is now increasingly focused on the use of
DL architectures and algorithms to solve difficult speech

signal processing (SSP) tasks. This section reviews signifi-
cant speech features and DL related models and methods that
have been employed for PD detection from speech.

PD detection from speech can be regarded as a two-step
task. The first step is to transfer the input speech signal to
speech feature vectors or tensors that can be analyzed by
DL models. Regarding the speech features of PD patients,
several dimensions of speech are included, such as articu-
lation, phonation, prosody, etc. [23]–[25]. Previous studies
have explored articulation analysis with different acous-
tic measures including the triangular Vowel Space Area
(tVSA), Vowel Articulation Index (VAI), Formant Central-
ization Ratio (FCR), etc. Skodda and Visser found that VAI
is reduced in PD speakers compared with respect to the
healthy controls (HC) group based on vowel articulation
analyses [26]. After comparing sustained phonations of the
Czech vowel /i/, repetition of short sentences, reading of
a text with 80 words, and a monologue of approximately
90-second duration, Rusz et al. found that the monologue
was the most suitable task to differentiate speech of early
PD patients and HC speakers, giving classification accuracies
of up to 80% [27]. Phonation is evaluated through a set of
measures that include jitter, shimmer, the correlation dimen-
sion (D2), etc. In [28], phonation and articulation analyses
are performed using recordings of sustained vowels; and an
accuracy of 81%was reported. Arias-Vergara et al. found that
the inclusion of features extracted from continuous speech,
e.g., prosody, intelligibility, and articulation, could obtain
satisfactory results to discriminate between PD patients and
HC speakers [29]. Additionally, several features typically
used in speech processing such as MFCC, energy content,
pitch and others were also employed in PD detection.

With the extracted speech features, the second step of
DL based methods is designing a classification framework
based on the properties of the Neural Networks. In [30],
the Multiple Artificial Neural Networks (ANNs) are used
with 26 speech features for PD detection. Principal Com-
ponent Analysis (PCA) and Self-Organizing Map (SOM)
are applied for feature selection. The ANN architecture is
configured with few neurons (5 and 10) and hidden layers
(from 1 to 3). In [31], the deep neural networks (DNNs)
is used for PD detection based on the Audio-Visual Emo-
tion recognition Challenge (AVEC) feature set [32] and the
Geneva Minimalistic Acoustic Parameter Set (GeMaps) [33].
Using 16 biomedical voice measures, DNN is also applied for
PD severity prediction [34].

CNNs were originally developed for image recognition
tasks [35] and they are been successfully applied to SSP
domain. CNNs are essentially formed of multiple hidden
layers where the convolution and pooling operations are per-
formed on. In [19], two 9-layered CNNs on feature-level
combination and on model-level combination are separately
employed for PD detection, and feature correlations are com-
puted for extracting the relationships between the features.

Recent studies have explored end-to-end DL approaches
using CNN for audio classification. First audio signals are
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converted into time-frequency representations, and then rec-
ognized by a CNN model like the task of image recognition.
In [20] it was introduced a method to model the transitions
between voiced and unvoiced segments for PD detection
in three different languages (Spanish, German, and Czech).
The CNNs model is applied to extract speech features from
two time–frequency representations: the short time Fourier
transform and the continuous wavelet transform. In [21] the
authors studied the spectrogram-based CNN model for PD
detection in Lithuanian language.

CNNs have exhibited some degree of invariance to small
shifts of speech features along the frequency axis and the effi-
ciency for Automatic Speech Recognition (ASR) [36]. How-
ever, a main issue with CNNs is the limitation for modeling
long-distance contextual information evenwhen using dilated
convolutions [37]. Comparatively, RNNs (Recurrent Neural
Networks) [38] are able to model long-distance contextual
information by memorizing over previous computations and
utilize this information in current processing. However, sim-
ple RNN based methods suffer from the vanishing gradient
problem, whichmakes it hard to learn and tune the parameters
of the earlier layers in the network. This limitation was over-
come by various networks such as LSTM [39]. Particularly,
Bidirectional LSTMs train two LSTMs on the input sequence.
The first on the input sequence as-is and the second on a
reversed copy of the input sequence, which provide additional
context to the network and result in faster and even fuller
learning on the problem. The effectiveness of Bidirectional
LSTMs for PD detection from speech has not been referred
in previous studies. In this study, we focus on exploring the
Bidirectional LSTMs model to capture time-series dynamic
features of speech for detecting PD.

III. SPEECH FEATURES FOR PD DETECTION
There are several dimensions of speech features relating
to PD detection, including phonation, articulation, prosody,
Intelligibility, etc. [40].

Phonation features are characterized by bowing and inad-
equate closure of vocal folds [23]. Phonation features are
mainly related to perturbation measures such as jitter (tem-
poral perturbation of the fundamental frequency), shimmer
(temporal perturbation of the amplitude of the signal), Ampli-
tude Perturbation Quotient (APQ), and Pitch Perturbation
Quotient (PPQ) [41].

Fig. 1 and Fig. 2 show the contour of the fundamental fre-
quency computed over monophonic /a/ and a short sentence
(Both subjects pronounced exactly the same short sentence.)
separately uttered by a HC speaker (a) and a PD patient (b).
Both of them are mandarin native speakers. NeuroSpeech
software [42] is utilized for phonation analysis.

From Fig. 1 and Fig. 2, phonation analysis shows that the
contour of the HC sample is more stable than the contour
obtained from the PD patient for both inputs of monophonic
/a/ and a short sentence.

Articulation features are mainly related to reduced ampli-
tude and velocity of lip, tongue, and jaw movements [43].

FIGURE 1. Speech signal, fundamental frequency, and energy of a
sustained phonation of monophonic /a/ uttered by a HC speaker (a), and
a PD patient (b).

FIGURE 2. Speech signal, fundamental frequency, and energy of a
sustained phonation of a short sentence uttered by a HC speaker (a) and
a PD patient (b). Both subjects pronounced exactly the same short
sentence.

Articulation analysis can be performed with sustained vowels
or with continuous speech signals [41]. With NeuroSpeech
software [42], articulation feature ismainly based on the com-
putation of the first two vocal formants F1 and F2, including
the measures of the Vowel Space Area (VSA), Vocal Pen-
tagon Area (VPA), and Formant Centralization Ratio (FCR).
Fig. 3 shows the speech signals and fundamental frequency
of a sustained articulation of monophonic /a/ uttered by a HC
speaker (a) and a PD patient (b).

From Fig. 3, the sustained articulation analysis of mono-
phonic /a/ shows that the contour of the HC speaker is more
stable than the contour obtained from the PD patient.

With regard to continuous speech signals, the articulation
feature is measured based on computing the energy content
in the transition from unvoiced to voiced segments (onset),
and in the transition from voiced to unvoiced segments
(offset) [44], [45]. The main hypothesis is: PD patients pro-
duce abnormal unvoiced sounds and have difficulty to begin
and/or to stop the vocal fold vibration [46]. It can be observed
on speech signals by modeling the frequency content of
the unvoiced frames and the transitions between voiced and
unvoiced sounds.
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FIGURE 3. Speech signal, fundamental frequency, and energy of a sustained articulation of monophonic /a/ uttered by a HC speaker (a)
and a PD patient (b).

FIGURE 4. Comparison of articulation transitions on the speech signal and fundamental frequency of a short sentence uttered by a HC speaker (a) and a
PD patient (b). Both subjects pronounced exactly the same short sentence.

Fig. 4 shows the comparison of articulation transitions
on the continuous speech signal and fundamental frequency
of a short sentence uttered by a HC speaker (a) and a PD
patient (b). Both subjects pronounced exactly the same short
sentence. The duration of the continuous speech is about 3.9s.
There are 17 articulation transitions for the HC speaker, and
39 articulation transitions for the PD patient.

A comparative analysis of the articulation transition char-
acteristics shows that the number of articulation transitions
and the trend of the fundamental frequency curve are sig-
nificantly different between HC speakers and PD patients.
We applied a paired t-test to evaluate the difference on the
number of articulation transitions between HC speaker and
PD patient groups (44 speech samples for each group, all

subjects pronounced exactly the same short sentence).We got
a p-value of 0.042 (<0.05), which indicates the difference did
not occur by chance. This observation motivates us to model
the articulation transition dynamic features for PD detection.

IV. THE MODEL DESCRIPTION
The architecture of the proposed Bidirectional LSTMs model
using dynamic speech features for PD detection is shown
in Fig. 5.

We applied Bidirectional LSTMs model to capture time-
series characteristics of speech signals for detecting PD. The
Bidirectional LSTMs model takes the dynamic time-series
Articulation Features (AFs) of the speech signal as inputs.
The AFs for each articulation transition contain 58 measures,
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FIGURE 5. Architecture of the Bidirectional LSTMs model using dynamic speech features for PD detection. The input of the model is the
dynamic features of a speech signal. The output of the model is the category of PD or HC for the input speech signal.

including 22 BBEs (Bark band energies), 12 MFCCs (Mel-
Frequency Cepstral Coefficients), 12 DMFCCs (the first
derivative of the MFCCs), and 12 DDMFCCs (the second
derivative of the MFCCs) [42]. All sequences of the dynamic
features will be zero-padded to the same length before they
are fed into the Bidirectional LSTMs model.

The Bidirectional LSTMs network is a combination of
Bidirectional recurrent neural networks (RNNs) with LSTM
cells. As illustrated in Fig. 5, Bidirectional LSTMs com-
pute the forward hidden sequence Eh, the backward hidden
sequence

←

h , and the output sequence y by iterating the for-
ward layer from t = (1, . . . ,N ), and the backward layer from
t = (N , . . . , 1) (N denotes themax length of input sequences)
and then updating the output layer as follows:

Eht = S(WAFEhAF t +WEhEhEht−1AF t + bEh) (1)
←

h t = S(W
AF
←

h
AF t +W←

h
←

h

←

h t+1AF t + b←
h
) (2)

yt = WEhyEht +W←h y
←

h t + by (3)

whereW denotes weight matrices, b denotes bias vectors, and
S is the hidden layer function on each element of a vector.

In the Bidirectional LSTM network, each neural network
unit is an LSTM cell (Fig. 6):

ft = σ (WAFf AF t +Whf ht−1 +Wcf ct−1 + bf ) (4)

it = σ (WAFiAF t +Whiht−1 +Wcict−1 + bi) (5)

ot = σ (WAFoAF t +Whoht−1 +Wcoct + bo) (6)

ct = ftct−1 + it tanh(WAFcAF t +Whcht−1 + bc) (7)

ht = ot tanh(ct ) (8)

FIGURE 6. Illustration of the long short-term memory (LSTM) cell.

where σ is the logistic sigmoid function, and ft , it , ot , ct
are the forget gate, input gate, output gate, and cell state,
respectively at the time step t .
The Bidirectional LSTM network outputs are fed to a fully

connected layer to get the category output of PD or HC.

V. DATASETS AND EXPERIMENTAL SETUP
A. DATASETS AND PREPROCESSING
A mixed gender (25 female, 20 male) database collected
contains 45 subjects (15 HC and 30 PD cases) who are
hired as volunteers at the GYENNO SCIENCE Parkinson

VOLUME 9, 2021 10243



C. Quan et al.: DL Based Method for PD Detection Using Dynamic Features of Speech

Disease Research Center.1 PD cases consist of patients who
are suffering from PD with HY (Hoehn and Yahr) stage
1-5. Individual ages vary between 37 and 75. For all sub-
jects, 5-6 voice samples including sustained monophonic /a/
of approximately 5-second duration and a short sentence
of approximately 5-second duration are recorded, including
268 samples totally.

The voice signals are acquired by a smartphone and saved
as ‘‘.wav’’ files with a frequency 96kHZ. NeuroSpeech soft-
ware [42] is utilized to extract the speech features.

Several traditionalML andDLmodels are performed using
different speech features and their combinations for com-
parison. For traditional ML models, Principal Component
Analysis (PCA) is applied to compress the dataset onto a
lower-dimensional feature subspace.

The experiments are employed under two evaluation meth-
ods: 1) 10-fold cross validation (CV); 2) Splitting the dataset
into training and testing sets without samples overlap of one
individual to ensure unbiased results.

Scikit-learn 0.22.1 is applied to implement the tradi-
tional ML models, and Keras 2.2.4 (https://keras.io/) is
applied to implement the DL models. The configurations
of machine is as follows. GPU: Quadro M1200/PCIe/SSE2;
CPU: Intel R© CoreTM i7-7820HQ CPU @ 2.90GHz × 8;
System: Ubuntu 18.04.2 LTS 64-bit Memory, 16 GiB.

B. THE EXPERIMENTS
1) TRADITIONAL ML MODELS FOR PD DETECTION
The parameter settings for traditional ML models are sum-
marized in Table 1. Scikit-Learn [47]’s default settings are
applied for the parameters that are not listed in Table 1.

TABLE 1. Parameter settings for ML algorithms.

Using different static speech features, we compare several
traditional ML models. Table 2 lists the dimensions of the
speech features and the related component dimensions after
PCA.

The evaluation metrics include Accuracy, F-score, Speci-
fity, Sensitivity, Matthews Correlation Coefficient (MCC),
Fit_time, and Score_time. The formulations of these metrics
are given as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(9)

1Ethical Approval: All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institutional
and/or national research committee and the ‘‘Law of the People’s Republic of
China onMedical Practitioners’’ (1998) declaration and its later amendments
or comparable ethical standards.

TABLE 2. The dimensions of speech features and the related component
dimensions after PCA.

F − score =
2× Specifity× Sensitivity
Specifity+ Sensitivity

(10)

Specifity =
TN

TN + FP
(11)

Sensitivity =
TP

TP+ FN
(12)

MCC =
TP×TN−FP×FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(13)

where TP, TN, FP, FN are the numbers of true positives,
true negatives, false positives, and false negatives. Sensitivity
and specificity are statistical measures of correctly classified
positive and negative instances. F-score is the harmonic mean
of precision and recall.MCC is a metric used for quantifying
the quality of binary classifications with a value between
−1 and +1. While a value of +1 indicates a perfect predic-
tion, −1 when there is the disagreement between prediction
and actual labels, and 0 when the classification is no better
than a random prediction.
Fit_time is the time for fitting the estimator on the training

set for each CV split. Score_time is the time for scoring the
estimator on the testing set for each CV split.

With the input speech signals of monophonic /a/ and a
short sentence, Table 3 and Table 4 respectively show the
best results achieved by the traditional ML models using
different parameter settings (Table 1) and speech features
(Articulation, Phonation, and Articulation+ Phonation). The
results are evaluated by 10-fold CV. The best results are
mainly based on the results of Accuracy, F-score, andMCC.

With the input speech signal of monophonic /a/, as shown
in Table 3, the best classification Accuracy (73.35%), F-score
(79.67%), and MCC (0.3773) are obtained by SVM with
linear kernel and using the static articulation features. But the
Fit_time and Score_time of SVM aremore than DT andGNB.

Using the static articulation features, Table 3 also shows
that MLP, KNN, and SVM obtained better results than using
the static phonation features, while DT and GNB obtained
better results using the static phonation features.

With the input speech signal of a short sentence,
Table 4 shows that the best classification Accuracy (73.46%)
andMCC (0.3909) are achieved by DT using the static phona-
tion features. The best F-score (80.96%) is obtained by SVM
with RBF kernel and using the static phonation features. But
the Fit_time of SVM is more than DT.

Additionally, with the input either the speech signal of
monophonic /a/ or a short sentence, the combination of the
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TABLE 3. Experimental results on traditional ML models using static features on the input speech signal of monophonic /a/ (10-fold CV).

TABLE 4. Experimental results of traditional ML models using static features on the input speech signal of a short sentence (10-fold CV).

static phonation and articulation features does not contribute
much to PD detection.

2) DL MODELS FOR PD DETECTION
Previous studies have explored CNN model based methods
using static speech features [19], [22] and end-to-end DL
architecture [20], [21] for the task of PD detection. In this
study, using the input speech signals of monophonic /a/ and a
short sentence, we investigate the performance of PD detec-
tion by using dynamic speech features under two basic DL
models (CNNs and RNNs).

For comparison purposes, the performance of an end-to-
end DL architecture using CNN model is evaluated. The
audio pre-processing is carried out using librosa [48]. Three
main time-frequency representations are extracted: a) linear-
scaled short-time Fourier transform (STFT) spectrogram
b) Mel-scaled STFT spectrogram, and c) Constant-Q trans-
form (CQT) spectrogram. Fig. 7 shows the STFT spectro-
grams of the speech signal of monophonic /a/ uttered by a
HC speaker (a) and a PD patient (b).

Unlike [20] and [21], onset and offset transitions detection,
speech signal rolling and filtering are not included in the
pre-processing of the raw data. The input speech signals
are transformed to time-frequency representation matrices to
feed to a 3-layer CNN model.

Table 5 summarizes the parameter settings of the CNN
model and the RNNmodel. As themain objective of this work
is to investigate the role of using dynamic speech features for
PD detection, the network structure and the parameters are
pre-defined. For the CNN model, three activation functions

FIGURE 7. STFT spectrograms of the speech signal of monophonic /a/
uttered by a HC speaker (a) and a PD patient (b).

(Relu, Tanh, and Sigmoid) in convolution layer are tested.
The convolutions are performed only in the temporal axis.
For the RNN model, three network structures (LSTM, Bidi-
rectional LSTM, and Bidirectional GRU) are tested.

Under different parameter settings (Table 5), Table 6 shows
the best results of DL models (CNNs and RNNs) using
dynamic speech features and end-to-end DL using CNN
model. The results are evaluated on 10-fold cross validation
(CV). The best results are mainly based on the results of
Accuracy, F-score, andMCC.
It is can be found from Table 6, the best results of Accu-

racy, F-score, and MCC are achieved by the Bidirectional
LSTM model using dynamic articulation features on a short
sentence. But it took more computation time for a single
epoch than CNNs. In comparison with traditional MLmodels
using static features (Table 3 and Table 4), the basic DL
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TABLE 5. Parameter settings of DL models.

models using dynamic features significantly improve the per-
formance.

In Table 6, the results of the DL models using dynamic
speech features are higher on a short sentence than on Mono-
phonic /a/, but different results are obtained by the end-to-end
DL using CNN model, i.e. the results on Monophonic /a/ are
much higher than the results on a short sentence.

It is also observed that with the input of sustained mono-
phonic /a/, the end-to-end DL using CNN model obtained
slightly better results than the DL models using dynamic
speech features. However, the results of the end-to-end DL
using CNN model obtained on a short sentence are much
lower than the DL models using dynamic speech features.

As leave-one-out cross validation may result in biased
results in performance evaluation in case of having multiple
recordings per individual [49]. In the following experiments,
we split the dataset into two parts: training set (89 samples)
and testing set (45 samples) with ratios 6:4. And all the voice

samples of one individual is used only for training or only for
testing without overlap.

Based on the results of Table 6, we further explore the
performance of DL models by hyperparameter tuning. As a
reference, Table 7 shows the experimental results of tradi-
tional ML models using static articulation features.

With the same architecture of the networks (Table 5) of
the CNNs and Bidirectional LSTM, Talos [50] is utilized to
perform hyperparameter tuning for DLmodels on the training
set. Table 8 lists the hyperparameter search space for DL
models.

Table 9 presents the best experimental results based
on hyperparameter tuning for DL models. In comparison
with traditional ML models using static articulation features
(Table 7), the basic DLmodels using dynamic speech features
showed significant improvement, especially the Bidirectional
LSTMmodel using dynamic speech features, giving an accu-
racy of 75.56%. The results also showed that the end-to-
end DL using CNN model obtained an accuracy of 71.11%
with the input of monophonic /a/, giving a much better result
than the CNN model using dynamic speech features. This
indicates that time-frequency representations are useful as
learning features for PD detection. Concerning the time com-
plexity, more fitting time is required for Bidirectional LSTM
model than the CNNs model.

Under the two evaluation methods of 10-fold CV (Table 6)
and splitting the dataset without samples overlap of one
individual (Table 9), the experimental results showed that the
proposed method improves the accuracy of PD detection over
traditional ML models using static features and the end-to-
end DL using CNN model.

Fig. 8 illustrates the accuracy increasing trends of the
Bidirectional LSTM model as the number of epochs increase
for training and validation.

FIGURE 8. Illustration of the accuracy increasing trends of Bidirectional
LSTM model as the number of epochs increase for training and validation.

VI. DISCUSSION
Detection of voice changes in PD patients through ML meth-
ods has been shown to be a promising way for Parkinson’s
early detection. In the task of PD detection from speech,
the performance of a ML based method is mainly affected
by the speech features and the architecture of ML models.
In this study, we explored static and dynamic speech fea-
tures relating to PD detection. A comparative analysis of the
articulation transition characteristics shows that the number
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TABLE 6. Experimental results of DL models using dynamic speech features and end-to-end DL using CNN model (10-fold CV).

TABLE 7. Experimental results of traditional ML models using static
articulation features with the input speech signal of a short sentence
(training: testing = 6:4, without overlap of the voice samples of one
individual).

of articulation transitions and the trend of the fundamental
frequency curve between HC speakers and PD patients are
significantly different. We applied a paired t-test to evalu-
ate the difference on the number of articulation transitions
between HC speaker and PD patient groups and got a p-value
of 0.042 (<0.05), which indicates the difference did not
occur by chance. This observation motivated us to model the
dynamic speech features for PD detection.

In the experiments of using static speech features, we com-
pared traditionalMLmodels including DT,MLP, KNN, GNB
and SVM for PD detection. The experimental results based
on 10-fold CV showed that, with the input speech signal of
monophonic /a/, the best classification accuracy (73.35%) is
obtained by SVM with linear kernel and using static articula-
tion features. With the input speech signal of a short sentence,
DT obtained the highest classification accuracy (73.46%) by
using static phonation features.

In the experiments of using dynamic speech features,
we experiment the basic DL models including CNNs and

TABLE 8. Hyperparameter search space for DL models.

Bidirectional LSTM. With the input speech signal of a short
sentence, both CNNs and Bidirectional LSTM achieved sig-
nificant improvement in classification accuracy (83.52% for
CNNs and 84.29% for Bidirectional LSTM).

In addition, we implemented the performance compari-
son between DL models (CNNs and Bidirectional LSTM)
using dynamic speech features and the end-to-end DL using
CNN model. With the input of sustained monophonic /a/,
the end-to-end DL obtained better results than the DLmodels
using dynamic speech features, but the Accuracy showed a
decrease when using the input of a short sentence. A Multi-
scale CNN [51] that can catch the time-frequency feature
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TABLE 9. Experimental results of DL models using dynamic speech features and end-to-end DL using CNN model (training: testing = 6:4, without overlap
of the voice samples of one individual).

representations at different time scales, or adding the pro-
cess of onset and offset transitions detection [20], or adding
speech signal rolling and filtering [21] may improve the
performance. However, a heavy audio pre-processing stage
is required before the DL model training.

As leave-one-out cross validation may result in biased
results in performance evaluation. By splitting the dataset
into training and testing sets without samples overlap of one
individual, we further explore the performance of DL models
by hyperparameter tuning. In comparisonwith traditionalML
models using static articulation features, the basic DLmodels
showed great improvement using dynamic speech features,
especially the Bidirectional LSTM model. In addition, with
the input of monophonic /a/, the end-to-end DL using CNN
model showed a much better result than the CNN model

using dynamic speech features. The results suggest that a
PD detection system would benefit from combining the two
methods (Bidirectional LSTM model using dynamic speech
features and the end-to-end DL using CNN model) to make
robust predictors and improve the system flexibility on the
input content.

As more complex network architectures (e.g. a deep hybrid
model with more layers, or a deep reinforcement learning
model) have not been experiment in this study, it is can
see still space for further improvement of the DL model
architecture.

In addition to the DL model architecture, the speech fea-
tures also have an effect on the classification performance.
Previous studies have experiment several different static
speech features (such as MFCCs, energy content, pitch).
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TABLE 10. Summary of the recent studies of PD detection using ML models.

In this study, the articulation transition dynamic features are
extracted such that the DL models can capture time-series
characteristics of a continuous speech signal. With more
speech features and their combinations, the performance
improvement can be expected.

The difference on the experiment subjects, the languages,
the content of the input speech, and the preprocessing

strategies make it difficult to compare the performance
directly. This study did not compare the results with other
related studies directly. Instead, under the same experimen-
tal environment, our experiments covered most ML models
that have been applied in the previous studies. It would be
more objective to compare the performance of different ML
models.
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Table 10 summarizes the recent studies of PD detec-
tion using ML models for referring to. Several studies
[12]–[14], [19] used the same dataset [52] to conduct
comparative performance analysis of different ML models
and feature selection approaches in distinguishing between
HC and PD patients. Based on dysphonia symptoms,
Lahmiri et al. [12]’s study showed that the SVM classifier
achieved higher average performance than other traditional
ML models by means of 10-fold CV evaluation. This result
is in consistent with our results even though the raw speech
signals are from two different languages. DL based methods
are not discussed in this study.

Shahbakhi et al. [14] proposed a feature selection method
using genetic algorithm (GA) for PD detection. Similarly,
Saloni and Gupta [13] proposed a feature combination
method for finding superior feature subsets. Both studies
reported high classification accuracies based on the evalua-
tion of splitting the dataset into two parts (training: testing =
3:1). However, the overlap of the voice samples of one indi-
vidual between the training and testing subsets may result in
biased results in performance evaluation.

Using Sakar et al.’s dataset [53], in Li and Wang [16],
a single classifier with Classification and Regression
Tree (CART) based sample selection algorithm and an
ensemble learning algorithm were proposed for PD clas-
sification. Under the evaluation of leave-one-subject-out
(LOSO), the best accuracy reported in this study was 90%,
but when using Leave-one-out evaluation method (LOO),
the average accuracy dropped to 74.50%.

Gunduz [19] proposed two frameworks (feature-level com-
bination and model-level combination) based on deep CNNs
(9-layered) to classify PD using sets of speech features. The
best accuracy (86.9%) was reported by using the model-level
combination method. But there are only 1.2% improvement
in terms of accuracy when comparing with the accuracy
(85.7%) obtained by the baseline SVM model. By contrast,
our method outperformed the SVM model more than 11% in
terms of accuracy.

Vásquez-Correa et al. [20] andWodzinski et al. (2019) [21]
explored end-to-end deep learning approaches using CNN
for audio classification. Traditional feature engineering is not
required in the end-to-end DL framework; instead, an audio
signal pre-processing (the detection of the onset and offset
transitions [20], signal rolling and filtering [21]) stage is
required before theDLmodel training in order to achieve high
performance.

Vaiciukynas et al. [22] proposed to use spectrograms and
short-term features for PD detection in Lithuanian based on
a 4-layered CNN model. This study focused on the per-
formance comparison of various sentence segments in PD
detection.

Nilashi et al. [54] and Grover et al. [34] respec-
tively focused on predicting Parkinson’s disease pro-
gression and severity of PD using DL methods. The
multi-label PD classification will be included in our future
work.

VII. CONCLUSION
In this paper, using speech signals, a deep learning based
method is proposed for PD detection. The proposed method
innovatively combines the dynamic articulation transi-
tion features with Bidirectional LSTM model to capture
time-series characteristics of continuous speech signals.

Under the two evaluation methods of 10-fold cross valida-
tion (CV) and splitting the dataset without samples overlap
of one individual, the experimental results showed that the
proposed method remarkably improves the accuracy of PD
detection over traditional machine learning models using
static features.

For future work, we will apply the proposed method for
stage classification of PD to explore its applicability in the
multi-label classification task, and consider a more complex
DL network architectures (e.g. a deep hybrid model with
more layers, or a deep reinforcement learning model) to
improve the performance.
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