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ABSTRACT Generally, for healthy adults, the entropy of electroencephalogram (EEG) signals gradually
decreases from wake to sleep stages N1, N2, to N3, and increases during REM. However, some researchers
found that multiscale entropy curves of sleep andwakefulness intercept, a cross-over phenomenonwhose ori-
gin remains unexplored. The objective of the present work is to trace the origin of the cross-over phenomenon
and to propose a workaround strategy. We simulated EEG by generating 1/f broadband signal and chirp
signals with continuously varying frequencies. We then retrieved the rhythmic component from simulated
EEG and real-world EEG and conducted MSE analysis of the instantaneous frequency variation (IFV) of
the rhythmic component. The simulation revealed that this interception was ubiquitous in the MSE analysis
of simulated EEG with rhythmic components of different frequencies. The cross-over point moved toward
larger scale factors with the increasing sampling rate. We found that the MSE curve of IFV from real-world
EEG for the wakefulness group was higher than that for sleep, showing no interception. These results
suggest that (1) for a rhythmic signal like EEG, MSE analysis of the raw signal is highly affected by the
rhythmic component, presenting artificial cross-over curves in sleep EEG study, (2) frequency variation of
rhythmic components are complex signal which differs between wakefulness and sleep, in accordance with
the complexity loss theory.

INDEX TERMS Multiscale entropy analysis, complexity, sleep, brain wave.

I. INTRODUCTION
It has attracted considerable attentions to quantify the
‘‘complexity’’ of physiologic time series in the attempt to
distinguish different conditions, e.g., between wakefulness
and sleep [1], the elderly and the young [2]. Sleep is a sophis-
ticated non-linear and non-stationary process that involves the
interaction between the brain and the rest of the body [1]. Var-
ious entropy-based methods, e.g., approximate entropy [3],
sample entropy [4], permutation entropy [5], have been used
to compare the complexity of wakefulness and sleep elec-
troencephalographic (EEG) signals. It is widely accepted
that the entropy of EEG signals for healthy adults gradually
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decreases from wake to sleep stages N1, N2, to N3, and then
increases during REM [4].

However, the entropy-based measure quantifies the irregu-
larity of time series, assigning the highest complexity values
to white noise, therefore are not satisfactory in describing
physiologic complexity [6], [7]. To avoid this problem, mul-
tiscale entropy (MSE) and its variants have been widely used
in a variety of research fields [6]–[9] by calculating sample
entropy at multiple scales of the coarse-grained versions of
the original signal.

Complexity indices decrease as sleep gets deeper,
and reach their lowest level when slow wave sleep
occurs [1], [10]. Abásolo et al. [11] have found that activated
brain states – wakefulness and REM sleep – are characterized
by higher complexity compared with NREM sleep.
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However, in sleep studies, some researchers have found
what we would call cross-over phenomenon, the MSE curve
of wakefulness is higher than that of sleep at small scale
factors, and lower at large scale factors. For healthy sub-
jects, MSE curves of wakefulness and sleep present inter-
ception, although not explicitly compared [7]. Multi-scale
fuzzy entropy analysis and multi-scale permutation analysis
also reveal similar cross-over phenomenon while the authors
intend to classify the sleep stages [12]. Shi et al. studied the
cross-over phenomenon and have found the entropymeasures
are higher in the awake stage and lower in deep sleep (N3)
at small scales; while the measures are lower in the awake
stage and higher in deep sleep stages at large scales [8].
Miskovic et al. have confirmed the cross-over phe-
nomenon with multiscale dispersion entropy analysis on
wakefulness/sleep data [13].

Although some researchers interpret the cross-over phe-
nomenon as an outcome of physiological origin [8],
the underlying cause remains unclear. In this paper, we inves-
tigate the cross-over phenomenon by simulated and real data.
We reveal by simulation that this interception can be caused
by imperfection of MSE algorithm in dealing with time series
with rhythmic components. We then retrieve rhythmic com-
ponent, from which we compute the instantaneous frequency
variation (IFV), and conduct MSE analysis. We find that the
MSE curve of IFV for wakefulness group is higher than that
for sleep, showing no interception.

II. MULTISCALE ENTROPY (MSE)
MSE has been proposed to quantify the complexity of
biomedical time series [14], and is briefly summarized
here. Suppose there is a finite length discrete time series
Xi : {x1, x2, x3, . . . , xn}, the length is n. Its MSE calculation
has the following two steps:

1) Coarse-grain the original sequence to obtain the new
sequence with different time scales:

yτj =
1
τ

∑ jτ
i=(j−1)τ+1xi (1 ≤ j ≤ n/τ) (1)

τ is the time scale, also known as scale factor. The length
of each time series after coarse-grained is n/τ . When τ = 1,
it is the original time series. The generation process of the
coarse-grained sequence of scale 2 and scale 3 is shown
in Fig.1 [6].

FIGURE 1. The generation process of coarse-grained sequence of
scales 2 and scale 3.

2) Calculate the Sample Entropy (SE) value of the corre-
sponding sequence of each scale to obtain MSE:

MSE (τ ) = SampEn (τ,m, r, n) (2)

where, m, r and n are the embedding dimension, similarity
tolerance and data length respectively as in SE. r is calculated
by r = c ∗ σ , σ is the standard deviation of the original
sequence Xi. c is the tolerance factor as a percentage of σ
with typical value in the range of 0.1-0.3.

III. PROPOSED STRATEGY
Biological signals are often non-stationary and nonlinear.
Their instantaneous variations in amplitude and frequency
may include rich dynamic characteristics and can be extracted
from its analytic form [15]. We propose an analysis pro-
cess, MSE analysis on instantaneous frequency variation
(MSE-IFV) of rhythmic brain activity as follows:
• Step 1. A 4th order Butterworth bandpass filter is
adopted to extract the rhythmic component from
the original signal. A zero-phased filter process is
used to ensure the performance of Hilbert transform
in Step 2. The main rhythmic component of sleep
EEG stages is shown in Table 1. When the EEG
stage is awake in silence, the rhythmic component of
EEG dominates in 8∼13Hz (α wave). EEG’s ampli-
tude of S1 stage decreases and its rhythmic compo-
nent concentrates in 4∼7Hz (θ wave), with a minor
of α wave. EEG of S3 stage focus on 0.5∼3Hz (δ wave),
with high amplitude [16].

TABLE 1. The main feature frequency of sleep EEG stages.

• Step 2. Hilbert transform is used to compute the instan-
taneous frequency of the rhythmic component extracted
in Step 1.

• Step 3.MSE analysis for the instantaneous frequency of
the rhythmic component extracted in Step 2.

Schematic diagram of MSE-IFV for sleep EEG signal is
shown in Fig. 2.

IV. EXPERIMENTS AND RESULTS
A. SIMULATION SIGNAL GENERATION
We generated three types of signals.

1) 1/f signal. The 1/f signal (data length 20000 points) was
generated using the Matlab toolbox powernoise.m provided
by [17].

2) Pure rhythmic signal. We chose 10 Hz and 2 Hz sinu-
soidal signals as pure rhythm signals. The length of each
signal was 20000 points.

3) A signal with frequency variation. The signal whose
frequency changed from 30 Hz to 1 Hz were generated with
theMatlab toolbox chirp.m. The time series had 20000 points.
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FIGURE 2. Schematic diagram of MSE-IFV method of EEG signal.

B. REAL-WORLD SLEEP DATASET
The sleep EEG data files were extracted from the Sleep-EDF
Expanded Database (SC*) of the public repository phys-
ionet [18]. The dataset included 153 recordings that were

obtained in a 1987-1991 study of age effects on sleep in
healthy Caucasians aged 25-101 [19]. All subjects showed
no somatic, neurologic, or psychiatric disorders. But some
persons from the senior age group were found to have
visual or hearing loss. The 153 PSG recordings for almost
24 hours, approximately 8-hour overnight recordings were
sampled at 100 Hz. The PSG recordings include dual-channel
EEG from Fpz-Cz and Pz-Oz, horizontal electromyogram,
submental EMG, and an event marker. Its associated hypno-
gram files contain sleep stages corresponding to each sub-
ject according to the R&K classification with an epoch
size of 30 seconds. These stages consist of sleep stages
‘1’, ‘2’, ‘3’, ‘4’, ‘W’, ‘R’, ‘M’, and ‘?’, which represent
S1, S2, S3, S4, Wake, REM, movement, and not scored
respectively.

For the accuracy of the MSE algorithm, the record-
ing would be discarded if the data length was less than
10000 samples. Therefore the S4 stage was discarded.
S2 stage presents multiple rhythmic components (K-complex
wave and spindle wave), therefore was also discarded in
this study. In summary, the EEG (Fpz-Cz) of 3 stages
(Wake, S1 and S3) of 10 subjects (26-35 years) were used
in this work. In order to ensure the validity of this study,
the segments of datasets for different stages were selected
randomly.

FIGURE 3. MSE results for 4 healthy subjects sleep EEG between the Wake stage and the S3 stage. (a), (b), (c) and
(d) denotes that MSE analysis of subject SC4081E0, SC4011E0, SC4121E0 and SC4051E0. Wake: wakefulness. S3: sleep
stage 3.
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FIGURE 4. MSE analysis for simulated signals (Sampling rate: 100Hz).
(a): MSE analysis for simulated broadband 1/f signal, 10Hz and 2Hz
sinusoidal signal separately. (b): MSE analysis for simulated mixed signal
of broadband 1/f, 10Hz and 2Hz sinusoidal signals. When analyzed
separately, entropy values are small for sinusoidal signals (a), while
mixed with broadband 1/f, entropy values are largely affected (b). The
cross-over phenomenon is evident: Comparing with mixed signal of 2Hz
sinusoidal wave, mixed signal of 10Hz sinusoidal wave is higher at small
scale factors and lower at large scale factors.

C. STATISTICAL ANALYSIS
The distribution of datasets was tested using Shapiro–Wilk
Normality test. If the dataset followed a normal distribu-
tion, independent sample t-test was used to test the signif-
icant differences between the 2 stages (Wake, S3); if not,
non-parametric Mann-Whitney test was employed. One-way
ANOVA was performed to examine if the significant differ-
ences existed between the 3 stages (Wake, S1 and S3) at each
scale factor. For analysis that yielded significant group dif-
ferences, post hoc tests were performed (Bonferroni p value)
to determine the specific nature of the stage differences. All
statistical analyses were carried out using SPSS (version 20),
and a significant level of 0.05 was applied for all analyses.

D. CROSS-OVER PHENOMENON IN MSE OF
REAL-WORLD SLEEP EEG
MSE method was applied to estimate the sleep EEG signals
from the Sleep-EDF Expanded Database (10 subjects). Fig.3
only shows MSE curves of 2 stages (Wake, S3) for subject

FIGURE 5. The mixed signal of broadband 1/f and chirp signal whose
frequency change from 30Hz to 1Hz, the power spectrum density, and the
MSE estimation over the changed frequency. Sampling rate for the mixed
signal is 100 Hz. (a): Time series of simulated mixed signal of broadband
1/f and rhythm. (b): Power spectrum of simulated mixed signal of
broadband 1/f and rhythm over frequency. (c): MSE of simulated mixed
signal of broadband 1/f and rhythm over frequency using sliding window
method. (d): MSE values corresponding to 3Hz, 15Hz and 27Hz mixed
signals are extracted from (c).

SC4081E0, SC4011E0, SC4121E0 and SC4051E0, repre-
senting the experimental results of all subjects. Comparing
the S3 stage, the MSE values of the Wake stage is larger at
small scales, and is smaller at large scales. The cross-over
phenomenon exists between the Wake stage and the
S3 stage.

E. CROSS-OVER PHENOMENON IN MSE OF THE
SIMULATED RHYTHMIC SIGNALS
Fig.4 shows MSE estimation for simulated signals.
Fig.4 (a) shows MSE values of 10Hz and 2Hz pure rhythm
signals are closer to 0, and the broadband 1/f signal is
assigned higher complexity. Then the mixed signal of the
broadband component and the rhythmic component for
MSE estimation. The mixed signal is considered as
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FIGURE 6. MSE analysis of mixed signal of broadband 1/f and sinusoidal signals (10Hz vs. 2Hz) at different sampling
rates. The length of dataset is 10000. The cross-over point moves towards larger scale factors as the sampling rate
increases.

simulated EEG signals. Comparing with the mixed signal
of 2Hz sinusoidal wave, mixed signal of 10Hz sinusoidal
wave is higher at small scale factors and lower at large
scale factors. The cross-over phenomenon of the 2-mixed
signals appears inMSE curves (Fig.4 (b)).When the rhythmic
signal is analyzed separately, such as sinusoidal signals,
entropy values are assigned small. While the rhythmic signal
is mixed with broadband signal, entropy values are largely
affected.

F. EFFECT OF RHYTHMIC BRAIN ACTIVITY ON MSE
Fig.5 shows that a mixed signal of broadband 1/f and chirp
signal whose frequency changes from 30Hz to 1Hz, the power
spectrum density, and the MSE estimation over the changing
frequency. With the frequency of signal changing from 30Hz
to 1Hz, MSE values of the mixed signal of 1/f and rhythm
change. At smaller scale factors, MSE values are higher.
At larger scale factors, MSE values decrease gradually. In the
process of the signal’s frequency changing from 30Hz to 1Hz,
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FIGURE 7. MSE-IFV of sleep EEG signals for the same subjects as Fig. 3 between the Wake Stage and the S3 Stage.
(a), (b), (c) and (d) denote that MSE analysis of subject SC4081E0, SC4011E0, SC4121E0 and SC4051E0. Wake:
wakefulness. S3: sleep stage 3.

TABLE 2. Statistical test results for subject SC4081E0, SC4011E0, SC4121E0 and SC4051E0.

the MSE values can be affected by changing frequency in
Fig.5 (c). Fig.5 (d) shows that MSE values corresponding
to 3Hz, 15Hz and 27Hz mixed signals are extracted from
Fig.5 (c) respectively. TheMSE values corresponding to 3Hz,
15Hz and 27Hz respectively appear cross-over phenomenon
in curves. It is clear that the cross-over is not an isolated case,
but a universal phenomenon.

G. EFFECT OF SAMPLING FREQUENCY ON MSE
Fig.6 shows that the MSE curves of mixed signal of broad-
band 1/f and sinusoidal signals (10Hz vs. 2Hz) at different
sampling rates. The result shows that the increasing sampling
frequency (from 100Hz to 600Hz) is related to the scale
factor at which the cross-over point moves towards the larger

scale factor. While the sampling rate reaches a certain value,
the cross-over point is located at a scale factor that is larger
than 20.

H. MSE-IFV OF SLEEP EEG
We proposed MSE-IFV (details in Methods part) to solve
the cross-over phenomenon. Fig.7 shows that MSE-IFV ana-
lyzing result of the Wake stage and the S3 stage. Fig.7
only shows MSE curves of 2 stages (Wake, S3) for subject
SC4081E0, SC4011E0, SC4121E0 and SC4051E0, repre-
senting the experimental results of all subjects. The MSE val-
ues of the Wake stage is higher than the S3 stage at all scales.
It’s clear that the 2 stages are separate without cross-over
phenomenon for the four subjects (Mann-Whitney test, p <
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FIGURE 8. MSE-IFV for the 10 subjects (aged 26-35 years) among Wake,
S1 and S3 stages. † Comparison of the Wake stage versus the S1 stage. ∗

Comparison of the Wake stage versus the S3 stage. • Comparison of the
S1 stage versus the S3 stage. Wake: wakefulness. S1: sleep stage 1. S3:
sleep stage 3.

0.001, p = 0.001, p = 0.001 and p = 0.001); the statistical
test output is shown in Table 2.
Subsequently, we randomly choose 10 subjects for

MSE-IFV analysis. The instantaneous frequency of the main
rhythmic component from the Wake, S1, and S3 of 10 sub-
jects is analyzed. The one-way ANOVA is used to examine
the significant differences of the 3 stages (Wake, S1, and
S3) from scale 1 to scale 20, except scale 14 and scale 16.
The 3 stages do not all follow normal distribution at scale
14 and scale 16. Therefore the Mann-Whitney test is used
to examine the significant differences for the 3 stages. The
corresponding statistical test results are shown in Table 3 and
Table 4. The significant differences among the 3 stages at
different scale factors are displayed in Fig.8. From scale 1 to
scale 10, the 3 stages have significant differences (one-way
ANOVA, p < 0.001), and the Post Hoc tests show the rela-
tionship of the means among the 3 stages: Wake > S1 > S3
(p < 0.01, p < 0.001, p < 0.001).

At the next 10 scales, for scale 11, scale 12, scale 15,
scale 17, scale 18 and scale 20, the data of 3 stages follow
normal distribution, and there are significant differences in
the 3 stages (one-way ANOVA, p < 0.001). The Post Hoc
Tests show that there is no significant difference between the
Wake stage and the S3 stage (p > 0.05), but the relationship
of the mean for the 3 stages is: Wake> S3 (p< 0.001); S1>
S3 (P < 0.001). For scale 13, scale 14, scale 16 and scale 19,
the data of 3 stages do not follow normal distribution, and
there are significant differences in the 3 stages (Kruskal-
Wallis test, p < 0.001). The Mann-Whitney test shows that
there are no significant differences between the Wake stage
and the S3 stage (p > 0.05), and the relationship of the
medium among the 3 stages is: Wake > S3 (p < 0.001);
S1 > S3 (P < 0.001).

In summary, Fig.8 shows that there are significant differ-
ences between theWake stage and the S1 stage from scale 1 to
scale 10; there are significant differences between the Wake
stage and the S3 stage at all scale factors (1-20); and there are

TABLE 3. Summary of post Hoc tests of stage differences at 20 scale
factors.

significant differences between the S1 stage and the S3 stage
at all scale factors (1-20).

V. DISCUSSION
Some researchers have found what we would call cross-over
phenomenon, i.e., the MSE curve of wakefulness is higher
than that of sleep at small scale factors, and lower at large
scale factors, presenting curve interception [7], [8], [12],
[13], [20]. Most of the authors did not discuss the cross-over
phenomenon. Consistent with previous studies, we confirmed
the cross-over phenomenon inmost cases after conducting the
MSE analysis for real-world wakefulness/sleep EEG. Fig. 3
shows 4 examples.
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TABLE 4. Mann-Whitney test for 3 stages in scale 13, scale 14, scale 16 and scale 19.

Although some researchers attribute the cross-over phe-
nomenon to physiological mechanism [8], the mechanism
underlying this phenomenon remains unrevealed.

To investigate the mechanism of the cross-over phe-
nomenon, we conducted a simulation study. Real EEG signals
contain both the narrow band rhythmic component and the
broadband 1/f-like component. Therefore, we used the mixed
signal of rhythmic and broadband components to simulate
the EEG. In conventional MSE analysis, the single broad-
band 1/f signal was assigned high MSE values and remained
steady; MSE values of the single sinusoidal component
(10Hz or 2Hz) were close to 0 (Fig. 4a). Therefore, the mixed
signal of 1/f component and a sinusoidal component with
different frequency should in theory remain the same com-
plexity. However, when broadband 1/f signal adds to the fixed
frequency signal, the cross-over phenomenon appears in the
MSE curves of mixed signal - the MSE curve of mixed signal
with 10Hz is higher than that of mixed signal with 2Hz at
small scale factors, and lower at large scale factors (Fig. 4b).
The result indicated that the cross-over phenomenon in MSE
might be artificially caused by rhythmic activities with dif-
ferent frequencies.

To systematically study the effect of the frequency on
the cross-over artifact in MSE, we further simulated a chirp
signal with continuous changing frequency from 30 Hz to
1 Hz, mixed with 1/f component. According to complexity
theory [1], [11], sinusoidal time series (despite its frequency)
should present near-zero complexity. However, it’s obvious
that as frequency decreases, MSE values span wider (Fig. 5c),
resulting in ubiquitous cross-over artifact (Fig. 5d). The result
suggests that the cross-over phenomenon in MSE can be
caused by a non-physiological mechanism: it can be artifi-
cially caused by the algorithm for its imperfection in dealing
with rhythmic component.

We have also found that the increasing sampling fre-
quency (from 100 Hz to 600 Hz) is related to the posi-
tion of cross-over point, which moves towards larger scale
factors (Fig. 6). In Shi et al.’s research [8], the cross-
over phenomenon occurs at large scales (0.25 s-2 s)
beyond regular scale factor range (1-20). Our finding is in

accordance with their study for they have used a high sam-
pling rate (512 Hz).

Heart rate and heart rate variation are the common indica-
tors of electrocardiogram. Heart rate focuses on the number
of heartbeat per minute [21]. Heart rate variation refers to
the beat-to-beat alterations in heart rate, and reflects the vari-
ation in autonomic nervous system, such as blood glucose,
blood pressure, sweat, digestion, etc. [22], [23]. Similarly,
EEG signals contain rhythmic and non-rhythmic compo-
nents, and the instantaneous frequency of rhythmic com-
ponent may have rich dynamic characteristics. Therefore
we proposed a so-called MSE-IFV method, in which,
we retrieved rhythmic component from EEG and computed
the instantaneous frequency of the rhythmic component, and
conducted MSE analysis of IFV.

We conducted MSE-IFV of the real-world sleep EEG to
resolve the cross-over artifact. We extracted the characteris-
tic frequency of the Wake stage (8-13Hz) and the S3 stage
(0.5-3Hz) for MSE analysis of IFV. The result showed that
the cross-over phenomenon disappeared (Fig. 7), and the
curves for the two stages separated completely from subject
SC4081E0, SC4011E0, SC4121E0 and SC4051E0 (Mann-
Whitney test, p < 0.001, p = 0.001, p = 0.001, p = 0.001).
We randomly chose the 3 stages (Wake, S1and S3) of 10 sub-
jects (aged 25-101) for MSE-IFV analysis (Table 2). Fig. 8
shows that the relationship of the mean or medium for the
3 stages (Wake, S1 and S3) is: Wake > S1 > S3 (one-way
ANOVA, p < 0.05) from scale 1 to scale 10, but from the
scale 11 to scale 20, only the mean or medium of the Wake
stage is higher than that of the S3 stage (Mann-Whitney
test/Independent sample t-test, p< 0.05). Comparedwith pre-
vious studies [8, 12], the MSE-IFV can effectively separate
the 3 stages at most scales, therefore avoid the cross-over
artifact. The result suggests that the new idea may be a
potential solution to the cross-over artifact found in the MSE
analysis of wakefulness/sleep studies.

The theory of complexity loss in aging and disease pos-
tulates that the healthy systems reveal a high complexity,
which breaks downwith aging and disease, due to the reduced
adapting capacity of organisms to the stresses of everyday
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life [24]. We argue that, in case of sleep, organisms shut
down or reduce some activities, which should lead to a sim-
ilar complexity loss in sleep than that in wakefulness. The
complexity loss should present a lower MSE curve for sleep
than wakefulness. However, we have shown in this paper
that due to the imperfection of MSE algorithm, the cross-
over phenomenon occurs. There are two ways to deal with
it. First, one can improve the MSE algorithm that has robust
performance without vulnerability to the strong rhythmic
component. Second, one can also conduct the MSE on rhyth-
mic variation itself, which has been shown complex in nature.

VI. CONCLUSION
In this paper, we have revealed by simulation that cross-over
artifact in wakefulness/sleep studies is caused by imperfec-
tion in MSE algorithm in dealing with a mixed signal of
prominent rhythmic component and 1/f-type broadband com-
ponent. We have proposed a new analysis strategy, MSE-IFV,
namely MSE analysis for instantaneous frequency variation
in the original EEG, to work around the algorithm’s imperfec-
tion. MSE-IFV successfully separates the wakefulness/sleep
stages in accordance with the complexity loss theory and
may provide an alternative tactic in MSE analysis of a broad
range of physiological time series with dominant rhythmic
component.
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