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ABSTRACT Existing works on the interdependent system have come to fruition based on the percolation
theory and revealed that it possesses the great vulnerability due to the essential interdependency. However,
how to effectively recover the performance of the interdependent system after cascading failures is still under
research. In this article, we define an interdependent mechatronic system as an interdependent machine-
electricity-communication network. By considering the behavior of the real-world system, we put forward
an extended cascading failure model in which the non-giant component is also functional when its size
proportion is not smaller than the proportion threshold δ and it has the interdependent links from the other two
subnetworks. Then, according to the measures of a node (i.e., single measures), the interdependent measures
are proposed and the repair strategies are obtained by thesemeasures to determine the order of repaired nodes.
In order to accurately reflect the resilience in the interdependent mechatronic system, we adopt three metrics
to quantify it, i.e., the change of the robustness, the recovery ability, and the critical number of repaired nodes.
Finally, we study the relationship between δ and the robustness, and apply different repair strategies to the
analysis of the resilience in a real mechatronic system. The experiments show that the non-giant component
plays a key role in the robustness and the resilience is affected by δ when a few nodes fail to work. In addition,
we obtain the optimal repair strategy from different aspects of the resilience. A striking finding is that in most
instances, the repair strategies concerning the interdependentmeasures lead to the higher resilience compared
with the ones concerning the single measures. Our work may provide insights to make a plan for repairing
equipment so as to enhance the resilience of the interdependent mechatronic system.

INDEX TERMS Resilience, robustness, interdependent network, interdependent measure, mechatronic
system, cascading failure.

I. INTRODUCTION
With the development of engineering, infrastructure systems
increasingly rely on each other to satisfy the demand for
a certain function, which results in an increased interaction
between these systems. For this reason, failures of one or
more nodes may cause an extremely negative effect on the
operations of the subsystem and the entire system. A classic
example is the large-scale blackout that took place in Italy
in 2003 [1]. This event was triggered by a malfunction of
one power station so that several servers shut off, which
further made other servers inactive. In the end, a cascade of
events happened. Due to the serious impact, the cascading
failure in the interdependent network has received a lot of
attention.
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According to the work [1], analytical frameworks to inves-
tigate the percolation process for networks of networks were
put forward [2], [3]. Owing to the key role of the interde-
pendency links, the impact of the coupling strength on the
robustness was analyzed and it was found that a first order
percolation phase transition changes to a second order perco-
lation phase transition as the coupling strength decreases [4].
Similarly, for different coupling strengths, the cascading fail-
ures induced by the overload [5] and the effect of clustering
on the robustness [6], [7] were studied, respectively. In addi-
tion to the coupling strength, Parshani et al. investigated how
to couple the nodes between two networks and found that the
inter-similarity can improve the robustness against cascading
failures triggered by the random attack. In the same way,
the robustness of the interdependent networks under different
coupling preferences [8]–[11] was investigated. Taking into
account that it is likely to intentionally remove the node
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in reality, Huang et al. developed a general framework to
investigate the cascading failure triggered by attacks on the
nodes with either high or low degrees [12]. Due to the fact that
the interdependent network is vulnerable to random attacks,
the targeted attack in networks of networks [13] and the edge
attack strategy in interdependent networks [14] have also
been explored.

It is well-known that the operation of the infrastructure
system is crucial for a normal life. Therefore, how to
assess its robustness and design the optimal structure has
been an attractive research topic. By characterizing the
features of the cyber-physical system, the failure propa-
gation process between networks was analyzed and the
corresponding strategies to enhance its robustness were
given [15]–[18]. Because the removal of a part of criti-
cal nodes or edges is prone to greatly impair the ability
to normally operate in real-world systems, especially for
the interdependent infrastructure network, the approaches
regarding the identification of key nodes and edges for
the interdependent power-communication network were pro-
posed [19], [20], respectively. In order to understand the
response of the interdependent system composed of the power
grid, the corresponding cascading failure models were built
for interdependent power-transportation networks [21]–[23],
interdependent power-telecom-water networks [24], and
interdependent energy-power networks [25], [26], respec-
tively. Additionally, Marzuoli et al. gave a case report with
respect to the Asiana crash in San Francisco International
Airport, finding that cancelations and delays in the aerospace
lead to the occurrence of a traffic jam in the road near the
airport, and the increased transit passenger demand [27]. This
is an appropriate instance to illustrate the propagation of
disturbances between different real-world systems.

Shekhtman et al. have reviewed the recent works on the
robustness and the resilience, and pointed out that these
two aspects in interdependent networks may obtain more
interesting discoveries [28]. In contrast to the robustness,
the resilience is used to assess the recovery of the system
performance under extreme perturbations, which is a more
comprehensive concept. In the realm of complex networks,
because some systems are able to spontaneously recover
their functions, such as brain seizures in neuroscience or
market crashes in finance, Majdandzic et al. proposed a
framework for understanding the resilience of networks in
which the failed node spontaneously recovered from the fail-
ure to the operation [29]. However, the node without the
external repair hardly bounces back in infrastructure sys-
tems (e.g., the power grid, communication networks, and
transportation systems). To this end, the recovery processes
considering the reconstruction of the inactive node were
analyzed [30]–[32]. Di Muro et al. introduced an analytic
framework to understand the recovery of interdependent
networks where the broken node that connected with the
giant component was recovered under a certain probability
[33]. In addition, Gao et al. developed a set of analytical
tools for assessing the resilience of the network, which can

describe the network state by coupled nonlinear equations
[34]. In the field of engineering, by adopting the classic mea-
sures for nodes, based on different orders of repaired nodes,
the researches on the resilience of Railways Network and
National Airspace System Airport Network were conducted
[35], [36], respectively. Moreover, it is worth mentioning that
Bruneau et al. first gave a conceptual framework to quantify
the resilience [37], which provides insights on the research
on the resilience in real-life systems. Motivated by this work,
a three-stage framework including the disaster prevention,
the damage propagation and the recovery process for the
resilience analysis was proposed [38]. The studies on the
resilience in infrastructure systems have been performed,
e.g., the evaluation [39]–[44] and the optimization [23], [45],
[46]. By reviewing the previous studies, Ouyang divided them
into six types, i.e., empirical methods, agent based methods,
system dynamics based methods, economic theory based
methods, network based methods, and others [47].

As discussed above, it can be seen that most of the existing
works based on the percolation theory neglect the role of the
non-giant component. However, the small size component is
likely also to be active for a certain condition in real-world
systems. Thus, exploring the effect of the small size com-
ponent on the robustness and the resilience is meaningful.
In addition, it is natural that the quicker the repair strat-
egy makes the recovery of the performance, the higher the
resilience of the system is. Although there exist researches
[31], [33], [35], [36] that adopt the simple measures for nodes
to determine the order of repaired nodes, the existing measure
for a node can only reflect its importance within a network,
rather than that within an interdependent network, which
means that the resilience of the interdependent network is
not the highest according to the order obtained by these mea-
sures. Therefore, it is necessary to develop a more effective
approach in the consideration of the characteristic of inter-
dependent networks to obtain the order of repaired nodes.
Besides, subjects in these studies are mainly interdependent
power-communication systems, but some mechatronic sys-
tems containing themechanical equipment (e.g., a high-speed
train, an airplane, and so on) do not receive enough attention.

With consideration of the improved cascading failure
mechanism, our aim is to analyze the resilience (i.e., the
recovery of the robustness after attacks) in the interdependent
mechatronic system under repair strategies defined by the
single and interdependent measures. In order to address the
existing issues and achieve the goal, we model the mecha-
tronic system as an interdependent machine-electricity-
communication network. Then, by considering the feature
in real-world systems, we put forward a cascading failure
model where the non-giant component is likely to be func-
tional. By means of the measure of a node (i.e., the degree,
the betweenness centrality, the harmonic closeness centrality,
the PageRank, the eigenvector centrality and the subgraph
centrality), called the single measures, the interdependent
measures are defined by these corresponding single mea-
sures in this article so that the repair strategies are obtained
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by the single measures and the interdependent measures.
The methodology is applied to a case study in a real-world
mechatronic system. Experiments show that the small size
component is related to the robustness and the resilience, and
the repair strategies concerning the interdependent measures
make the network resilience stronger.

II. MODEL
A. INTERDEPENDENT
MACHINE-ELECTRICITY-COMMUNICATION NETWORKS
A complex network is an efficient analysis tool to
explore the performance of the real-life complex system.
Recently, the studies on interdependent networks have
attracted a lot of attention for exploring the cascading failure,
which majorly focuses on the robustness of interdepen-
dent power-communication networks, interdependent power-
transportation networks, and so on. However, in reality,
different from the existing interdependent networks, many
real systems (e.g., interdependent mechatronic systems) are
comprised of mechanical and electronic equipment, and
communication devices for the specific function. For this
purpose, in this article, we build an interdependent machine-
electricity-communication network (IMECN) with three sub-
networks which are a machine network (MN), an electricity
network (EN), and a communication network (CN) and
denoted as Gm = (Vm,Em), Ge = (Ve,Ee), and Gc =
(Vc,Ec), respectively. In a subnetwork, a node represents
the minimum maintenance equipment. If fasteners (e.g., bolt,
screw, welding and so on) connect equipment p (correspond-
ing node i) with equipment q (corresponding node j), there
exists an edge between nodes i and j within the machine
network. In this same way, if the equipment needs the power
supply (the control signal) to work, the corresponding node is
also in the electricity network (the communication network).
When there exists an electric current (a packet) between two
components, corresponding nodes have an edge with each
other within the electricity network (the communication net-
work).When nodes i and j from different subnetworks refer to
the same equipment, node i has an interdependency link with
node j, and node i is the dependent node of node j and vice
versa. Namely, a one-to-one correspondence between any two
subnetworks is established.

B. CASCADING FAILURE MODEL IN IMECN
Most of the previous works with regard to the cascading
failure in the interdependent network utilize the percolation
theory to decide whether the failure propagation is triggered
[1]–[4], [6], [7], [10], [12]–[14], [17], [18]. In terms of the
percolation theory, it is assumed that the component contain-
ing the most nodes, namely the giant component, can keep
the normal function, which means that the nodes belonging to
the component with the fewer nodes fail to work. Obviously,
it is not reasonable for real-world systems because the nodes
in the non-giant component are able to work normally under
specific conditions. For example, a communication network
may break into some clusters if a node malfunctions in it,

but the nodes in these clusters still have the ability to receive
and send data. The phenomenon shows that the small size
cluster cannot be ignored in the cascading failure model for
real systems.

Considering the above reason, in the interdependent
machine-electricity-communication network, we propose a
more reasonable cascading failure model where for the active
non-giant component ci in a subnetwork, two conditions need
to be satisfied: (1) it has at least an interdependency link
with the other two subnetworks, respectively, and (2) its size
proportion pci is not smaller than the proportion threshold
δ, where the size proportion pci of the component ci equals
the proportion of its size in the subnetwork size. Note that
the giant component having interdependency links with dif-
ferent subnetworks is considered to be active regardless of
the proportion threshold δ. The assumption is more reason-
able because it takes into account the role of the small size
component and the fact that a mechatronic system needs
the power supply and the control sign to conduct a certain
function. Once a component fails to work, all nodes within
the component malfunction, which causes all edges of these
nodes (including the intra-link within the subnetwork and the
interdependency link between subnetworks) and their depen-
dent nodes to be removed. This may break the subnetwork
into some small components and trigger the cascading failure.
The dynamical process of cascading failures in the IMECN is
described in Fig.1.

As shown in Fig.1, when node M1 is attacked at stage1, all
its edges and the dependent node (E1) are removed at stage2.
Due to the failure of E1, this causes its intra-link, interdepen-
dency link, and dependent node (C1) to be deleted. Therefore,
there are two components in every subnetwork at stage 2.
Because the size proportion of the component (E2 and E3) is
smaller than the proportion threshold δ, it also breaks down
and the nodes within it are also removed at stage 3, which
leads to the malfunctions of M3 and C4. Then, M3, C4, and
the single node (M2) are removed at stage4. Owing to the
absence of the interdependency link in the component (C2,
C3, and C5), this component also malfunctions, which results
in the failure of E4. In the end, cascading failures stop and the
component (M4, M5, and M6), the component (E5, E6, and
E7), and the component (C6, C7, and C8) are functional.

C. RECOVERY MODEL IN IMECN
In order to investigate the resilience of IMECN, we also give
the recovery model by repairing the failed node. It is assumed
that when node i is repaired, according to the topology struc-
ture of interdependent networks without attacks, the edge
ij linking up the active node j is restored. On the contrary,
if the repaired node i has an edge with node k before attacks,
the edge ik between these two nodes cannot be recovered
temporarily in the case of the failure of node k . Until the
failed node k is repaired, the edge ik also recovers. It is worth
mentioning that after the repair of the node, in consideration
of the above assumption of the active component, there may
exist some single repaired nodes or inactive components
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FIGURE 1. The dynamical process of cascading failures under δ = 0.3 in
the IMECN. The blue nodes (M1, M2, M3, M4, M5, and M6), the purple
nodes (E1, E2, E3, E4, E5, E6, and E7), and the orange nodes (C1, C2, C3,
C4, C5, C6, C7, and C8) represent the nodes in the machine, electricity, and
communication networks, respectively. The black and blue lines represent
the intra-link within subnetworks and the interdependency link between
subnetworks.

that lack interdependency links from the other two subnet-
works or have the size proportion smaller than the proportion
threshold. For simplicity, the node belonging to this inactive
component during the recovery process is called the limited
functional node. In this case, these single repaired nodes,
limited functional nodes, and their repaired edges cannot be
removed. However, we do not count these two kinds of nodes
in active nodes. As long as the single repaired node connects
with the active component, this node is considered to be
functional again and counted in functional nodes. In a similar
manner, when the inactive component satisfies the demands
for the interdependency links from two subnetworks and the
larger size proportion, the limited functional node also has the
ability to operate.

Generally speaking, after cascading failures caused by
attacking nodes, repairing the important broken node is prone
to greatly recover the robustness, indicating that the impor-
tance of the node is closely related to the resilience of
IMECN. There are a lot of measures for nodes, such as the

degree, the betweenness centrality, the harmonic closeness
centrality, the PageRank, the eigenvector centrality, and the
subgraph centrality. The degree ki of node i can reflect its
local information, which is defined as,

ki =
n∑
i=1

aij (1)

where aij represents the element of adjacent matrix A, which
equals 1 when node i connects with node j, and 0 otherwise.
n is the number of nodes in a subnetwork.
The betweenness centrality bci of node i can reflect its

importance in the subnetwork, which is expressed as,

bci =
∑
s6=i 6=t

σst (i)
σst

(2)

where σst (i) is the number of shortest paths from node s to
node t through node i and σst is the total number of shortest
paths between node s and node t .

The harmonic closeness centrality hcci of node i quantifies
the distance between it and the centre of the network, which
is defined as,

hcci =
1

n− 1

∑
i 6=j

1
dij

(3)

where dij stands for the shortest distance between node i and
node j.
The PageRank of a node is dependent on not only the one

of the adjacent node but also the degree of the adjacent node,
which is similar to the definition of the eigenvector centrality.
The PageRank pri of node i is defined as,

pri = (1− d)+ d
n∑
i=1

aij
prj
kj

(4)

where d is a damping factor and equals 0.85 usually.
The eigenvector centrality takes into account the impor-

tance of the adjacent nodes. The eigenvector centrality eci of
node i is defined as,

eci =
1
λ

n∑
j=1

aijecj (5)

where λ is the largest eigenvalue of the adjacency matrix A.
The subgraph centrality of a node characterizes its partic-

ipation in structural subgraphs and gives higher weights to
the smaller subgraph. The subgraph centrality sci of node i is
defined as,

sci =
∞∑
k=0

µk (i)
k!

(6)

where µk (i) = (Ak )ii.
Due to the fact that the active component needs at least

two interdependency links from different subnetworks, it is
natural to preferentially restore the node with the interde-
pendency link. In general, repairing a node whose dependent
node has the large measure is likely to quickly recover the
robustness in the interdependent network even though this
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node is not a hub node. This is because the operation of
a node is decided by its dependent node. On the contrary,
the restoration of a critical node with the high measure may
not lead to a significant recovery of the robustness when
its dependent node has the small measure. Therefore, it is
necessary to take into account the measures of the single node
and its dependent node so that the importance of the node can
be accurately quantified. It should be noted that we normalize
these single measures due to their differences in three sub-
networks. To this end, we propose interdependent measures
that equal the sum of the normalized single measures of the
node and its dependent node, i.e., the interdependent degree,
the interdependent betweenness centrality, the interdependent
harmonic closeness centrality, the interdependent PageRank,
the interdependent eigenvector centrality and the interdepen-
dent subgraph centrality in the light of the feature of the
interdependent network. The interdependent degree idAi of
node Ai in subnetwork A is defined as:

idAi =
dAi − dAmin

dAmax−dAmax
+

∑
Bj∈8Ai

dBj − dBmin

dBmax−dBmin
(7)

where dAi represents the degree of node Ai in subnetwork A.
dAmin and dAmax represent the minimum and maximum
degrees in subnetwork A, respectively. 8Ai denotes the set
of the dependent node from different subnetworks for node
Ai. Bj denotes the dependent node of node Ai in subnet-
work B. Similarly, the interdependent betweenness central-
ity ibcAi , the interdependent harmonic closeness centrality
ihccAi , the interdependent PageRank iprAi , the interdependent
eigenvector centrality iecAi , and the interdependent subgraph
centrality iscAi in subnetwork A are respectively defined as,

ibcAi =
bcAi−bcAmin

bcAmax−bcAmin
+

∑
Bj∈8Ai

bcBj−bcBmin

bcBmax−bcBmin

(8)

ihccAi =
hccAi−hccAmin

hccAmax−hccAmin
+

∑
Bj∈8Ai

hccBj−hccBmin

hccBmax−hccBmin

(9)

iprAi =
prAi−prAmin

prAmax−prAmin
+

∑
Bj∈8Ai

prBj−prBmin

prBmax−prBmin

(10)

iecAi =
ecAi−ecAmin

ecAmax−ecAmin
+

∑
Bj∈8Ai

ecBj−ecBmin

ecBmax−ecBmin

(11)

iscAi =
scAi−scAmin

scAmax−scAmin
+

∑
Bj∈8Ai

scBj−scBmin

scBmax−scBmin

(12)

where bcAi , hccAi , prAi , ecAi , and scAi represent the
betweenness centrality, the harmonic closeness centrality,
the PageRank, the eigenvector centrality and the subgraph
centrality of node Ai in subnetwork A, respectively. bcAmin,

hccAmin, prAmin, ecAmin, and scAmin represent the min-
imum values of the betweenness centrality, the harmonic
closeness centrality, the PageRank, the eigenvector centrality,
and the subgraph centrality in subnetwork A, respectively.
bcAmax, hccAmax, prAmax, ecAmax, and scAmax represent
the maximum values of these five measures in subnetwork A,
respectively.

According to the difference of the definitions, repair strate-
gies could be divided into two cases, i.e., the repair strategies
regarding the single measures and the ones regarding the
interdependent measures. By means of these single measures
(i.e., the degree, the betweenness centrality, the harmonic
closeness centrality, the PageRank, the eigenvector centrality,
and the subgraph centrality), we propose six repair strategies
to obtain the effective order of the repaired node.Without loss
of generality, we also take into account the random repair.
Repair strategies concerning single measures are defined as
follows:

1) Random repair strategy (RRS). The failed node in the
IMECN is sorted randomly.

2) Degree repair strategy (DRS). The failed node in the
IMECN is sorted in the descending order of its degree.

3) Betweenness centrality repair strategy (BCRS). The
failed node in the IMECN is sorted in the descending
order of its betweenness centrality.

4) Harmonic closeness centrality repair strategy
(HCCRS). The failed node in the IMECN is sorted
in the descending order of its harmonic closeness
centrality.

5) PageRank repair strategy (PRRS). The failed node in
the IMECN is sorted in the descending order of its
PageRank.

6) Eigenvector centrality repair strategy (ECRS). The
failed node in the IMECN is sorted in the descending
order of its eigenvector centrality.

7) Subgraph centrality repair strategy (SCRS). The failed
node in the IMECN is sorted in the descending order of
its subgraph centrality.

Additionally, on the basis of the interdependent measures,
the corresponding repair strategies are defined as follows:

1) Interdependent degree repair strategy (IDRS). The
failed node in the IMECN is sorted in the descending
order of its interdependent degree.

2) Interdependent betweenness centrality repair strategy
(IBCRS). The failed node in the IMECN is sorted in
the descending order of its interdependent betweenness
centrality.

3) Interdependent harmonic closeness centrality repair
strategy (IHCCRS). The failed node in the IMECN is
sorted in the descending order of its interdependent
harmonic closeness centrality.

4) Interdependent PageRank repair strategy (IPRRS). The
failed node in the IMECN is sorted in the descending
order of its interdependent PageRank.

5) Interdependent eigenvector centrality repair strategy
(IECRS). The failed node in the IMECN is sorted in
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the descending order of its interdependent eigenvector
centrality.

6) Interdependent subgraph centrality repair strategy
(ISCRS). The failed node in the IMECN is sorted in
the descending order of its interdependent subgraph
centrality.

According to the orders obtained by these repair strategies,
the failed node is repaired one by one. Note that if the
measures of some nodes are the same, they will be randomly
recovered.

D. QUANTIFICATION OF ROBUSTNESS AND RESILIENCE
To quantify the impact of cascading failures by attacks,
we use the relative size of active nodes R(t) to assess the
robustness of IMECN at simulation step t , which is defined
as follows:

R(t) = (
nm(t)
Nm
+
ne(t)
Ne
+
nc(t)
Nc

)/3 (13)

where nm(t), ne(t), and nc(t) are the numbers of remain-
ing functional nodes belonging to the active components in
machine, electricity, and communication networks at simu-
lation step t , respectively. Nm, Ne, and Nc are the numbers
of nodes in these subnetworks, respectively. It is clear that
the larger R(t), the stronger the robustness of IMECN against
cascading failures.

Although some studies on the resilience have been con-
ducted, their focus is to assess the ability to resist the pertur-
bations, which is similar to the evaluation of the robustness.
In this article, the resilience of IMECN is defined as the
ability to recover the performance of IMECN to a certain
level after extreme perturbations. In view of the framework
[37] and the relative size of active nodes R(t), we utilize
the recovery ability RA to quantify the resilience, which is
expressed as,

RA=
2

∫ tf
ts
(R(t)−R(ts))dt

[1−R(ts)][Nm+Ne+Nc−nm(ts)−ne(ts)−nc(ts)]
(14)

where ts represents the time when the attacks stop and the
repair processes start, and tf represents the time when the
repair of all broken nodes finishes. That is to say, IMECN is
in the disruptive process by attacking the active node one by
one in the range of t ≤ ts, while the one is in the recovery
process by repairing the failed node one by one in the range
of ts < t ≤ tf . Note that theoretically, there exists an
optimal repair strategy that can change a failed node into an
active node at each simulation step in the case of meeting the
conditions of the active component, therefore R(t) linearly
restores and RA = 1 when Nm = Ne = Nc. On the contrary,
there also exists a worst repair strategy, under which the
active component occurs until the last failed node is repaired,
so RA = 0. In general, the recovery of R(t) is slow at the
start of the recovery process since the repaired node hardly
forms an active component, while the robustness recovers
quickly at the end of the recovery process. Thus, 0 < RA < 1.

Obviously, the larger RA, the higher the resilience
of IMECN.

Additionally, it is worth emphasizing a specific condition
that during the recovery process, the component may not
satisfy the demand for the operation when most of the nodes
malfunction, and thus the value of R(t) keeps unchanged after
a few nodes are repaired. To this end, we also define the
critical number of repaired nodes rc, above which the value
of R(t) increases from 0 to a certain value but below which no
active component occurs. Apparently, for the smaller value of
rc, the paralyzed IMECN is able to faster return to the partial
function.

These three indexes emphasize different aspects of the
resilience. R(t) reflects the change of the performance dur-
ing the recovery process in IMECN, while RA indicates the
resilience level during the whole recovery process. In order
to enable the collapsing IMECN to have the partial func-
tion again, rc focuses on the minimal cost in the worst-case
scenario.

III. RESULTS
As a typical mechatronic system, a high-speed train is com-
posed of a traction system, a braking system, a train control
system, and so on, where a lot of machine, electricity, and
communication components (e.g., a traction motor, a gear
box, a sensor, etc) operate together. Consequently, we take
the high-speed train as an example to perform a case study.
The topology of the interdependent machine-electricity-
communication network, including MN with 144 nodes and
180 edges, EN with 75 nodes and 125 edges, and CN with
62 nodes and 71 edges, respectively, is obtained by CRHX
high-speed train in China. Additionally, there are 55, 38,
and 38 interdependency links among MN-EN, MN-CN, and
EN-CN, respectively.

The malfunction of equipment randomly occurs in most
cases, hence we quantify the robustness of IMECN by ran-
domly removing a node and all its edges at each simulation
step when t ≤ ts. In order to have a better statistic, all
simulation processes in this article are repeated 1000 times.
According to the cascading failure model, we first carry out
the simulations on the robustness at δ = 0, δ = 0.1, and
δ = 0.6. It is worth mentioning that when the component has
two kinds of interdependent links from different subnetworks,
δ = 0 corresponds to the case that the component is active no
matter what its size is, while δ = 0.6 corresponds to the case
that it having the largest size is active.

As shown in Fig.2(a), it is clear that the smaller δ, the larger
the mean value of R(t) because the node belonging to
the component with the small size can continue to operate
for the smaller value of δ. This indicates that the component
with the small size is closely correlated with the robustness.
Similarly, the minimum value of R(t) also decreases with
the increase of δ. On the contrary, there is a slight differ-
ence among the maximum values of R(t) for different δ.
The main reason is that the value of R(t) can be maximized
only if the low degree nodes are attacked preferentially.
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FIGURE 2. The relative size of active nodes R(t) is shown as a function of
the simulation step t in the cases of δ = 0, δ = 0.1, and δ = 0.6
(a). The number of components is shown as a function of the
simulation step t in the cases of δ = 0, δ = 0.1, and δ = 0.6 (b).

During this process, the network does not split into several
clusters and there exists only one component in a subnetwork
usually, therefore the maximum values of R(t) are similar for
different values of δ. Owing to the importance of the small
size component, we also provide an analysis of the number
of components. Fig.2(b) illustrates that there is a negative
correlation between δ and the number of components for a
given simulation step. Moreover, because of the existence
of the small size component, the number of components
increases first and then decreases for the range of δ < 0.6
as the simulation step increases. When the values of t at
δ = 0 and δ = 0.1 increase to near 40 and 17, respectively,
the number of components reaches a maximum. These results
show that δ is closely related to the robustness, and the small
value of δ makes IMECN more robust against cascading
failures.

Since the attack has a serious impact on the robustness of
IMECN, our aim is to adopt a reasonable order to effectively
repair failed nodes in the remaining part, where the resilience
is reflected by the recovery of R(t), rc, and RA. Taking into
account that cascading failures may not lead to the failures
of all nodes, we start to repair the broken nodes when the
proportion of total failed nodes rises to a given value pfail at
simulation step ts. Based on the repair strategies concerning

FIGURE 3. Comparison of R(t) under repair strategies concerning the
single measures in the cases of (a) δ = 0, (b) δ = 0.1, and (c) δ = 0.6 when
pfail = 25%. That under repair strategies concerning the single measures
in the cases of (d) δ = 0, (e) δ = 0.1, and (f) δ = 0.6 when pfail = 50%.
That under repair strategies concerning the single measures in the cases
of (g) δ = 0, (h) δ = 0.1, and (i) δ = 0.6 when pfail = 75%. That under
repair strategies concerning the single measures in the cases of (j) δ = 0,
(k) δ = 0.1, and (l) δ = 0.6 when pfail = 100%.

the single measures, simulation results are presented under
different values of δ and pfail in Fig.3.
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From Figs.3(a)-(c), it can be found that during the recovery
process at pfail = 25% for different δ, the robustness exhibits
a slow recovery process with the increase of δ under repair
strategies except for ECRS and SCRS. Moreover, the curves
of ECRS and SCRS are higher than the ones of other repair
strategies on the whole, indicating that according to the eigen-
vector centrality and the subgraph centrality to restore the
failed nodes, IMECN is more resilient in the case of a small
number of failed nodes. This is due to the fact that the node
with the high eigenvector centrality either connects with the
hub node or has the high degree, which means that repairing
this node enables it to reconnect with the large size compo-
nent in consideration of its degree and the importance of its
adjacent node. In terms of the subgraph centrality, it reflects
the information on the local and whole network. Therefore,
restoring the node with the high subgraph centrality can make
IMECN more resilient. Besides, when t is large, the value of
R(t) obtained by HCCRS is larger than others for δ = 0.6
while there is little difference among repair strategies for
δ = 0 and δ = 0.1, which implies that δ affects the recovery
of R(t) when pfail = 25% .

In Figs.3(d)-(l), during the early period of the recovery
(i.e., the small value of t), it can be seen that as the values
of pfail increase to 50%, 75% and 100%, respectively, there
is a common ground that ECRS and SCRS still yield better
performance regardless of δ. In the latter period of the recov-
ery (i.e., the large value of t), the values of R(t) obtained by
HCCRS, ECRS, and SCRS are high in the cases of pfail =
50%, pfail = 75%, and pfail = 100%. Therefore, it is efficient
to restore a lot of broken nodes by HCCRS, ECRS and SCRS.
When t increases to a large enough value (i.e., the recovery
of almost all failed nodes), the results of different repair
strategies are similar. For all repair strategies, IMECN with
RRS shows a low resilience, while PRRS is an ineffective
repair strategy in most cases in terms of repair strategies
regarding the single measure. In addition, the change of δ
has little impact on R(t) during the recovery processes under
different repair strategies when pfail = 50%, pfail = 75% and
pfail = 100%.
Although the results of R(t) at pfail = 50% and pfail =

75% are similar to the ones at pfail = 100%, it is worth
emphasizing a specific detail that the value of R(t) keeps
unchanged after a few broken nodes are restored at t > ts
in the case of pfail = 100%. This is because even though
several failed nodes are repaired when all nodes malfunction,
no active components occur in three subnetworks. Thus, it is
meaningful to investigate how many failed nodes need to be
repaired so that IMECN no longer collapses. The values of rc
under different repair strategies are shown in Fig.4.

In Fig.4, it is evident that for different values of δ, the val-
ues of rc under RRS are larger than others. Interestingly,
although the value of R(t) under PRRS slowly increases,
the value of rc under the one is the smallest, i.e., rc = 63,
which implies that IMECN starts to have the partial function
after we give priority to restoring at least 63 nodes with the
high PageRank. The second-best repair strategy is ECRS in

FIGURE 4. Comparison of rc under repair strategies concerning the single
measures when pfail = 100%.

FIGURE 5. Comparison of RA under repair strategies concerning the
single measures in the cases of (a) pfail = 25%, (b) pfail = 50%,
(c) pfail = 75%, and (d) pfail = 100%.

terms of rc. Additionally, when the simulation step t increases
from ts to a certain value, there may exist a component in
every subnetwork usually. If these three components have
two kinds of interdependent links, they must be functional
according to the assumption about the active component no
matter what δ is. This is because a single component in
every subnetwork is the giant component regardless of δ.
Consequently, it can be found that varying the value of δ has
little effect on rc for different repair strategies. Especially for
BCRS, HCCRS, PRRS, ECRS and SCRS, the values of rc
under them are the same for different δ.

What can be clearly seen in Fig.5(a) is a great impact of
δ on RA in the case of pfail = 25%. However, in Fig.5(d),
when pfail increases to 100%, the values of RA are similar to
each other for different δ under any repair strategy. Especially
for ECRS, the values of RA equal 0.63 for the arbitrary value
of δ. These results imply that increasing the number of failed
nodes weakens the impact of δ onRA. Moreover, Fig.5 reveals
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that the values of RA obtained by ECRS and SCRS are much
higher than the ones obtained by other repair strategies no
matter what δ and pfail are. This finding suggests that for
enhancing the resilience, it is more efficient to repair failed
nodes by their eigenvector centralities in the matter of repair
strategies concerning single measures, which also agrees with
the analysis of Fig.3.

In the above section, the repair strategies concerning the
single measures have been discussed in detail. It can be
concluded that, in terms of the recovery of R(t) and RA,
ECRS and SCRS are effective repair strategies for different
pfail and δ, while PRRS makes rc small. Additionally, δ has
an impact on R(t) and RA in the case of a small number of
failed nodes. In order to study the resilience of IMECN under
the repair strategies concerning the interdependent measures,
we complete the comparison of R(t), rc, and RA among these
repair strategies for different values of δ and pfail .
As shown in Figs.6(a)-(i), it is apparent that the repair

strategies with the interdependent measures except for
IHCCRS yield better performance, indicating that compared
with single measures, interdependent measures can clearly
identify the important node that needs to be repaired with
a higher priority. In particular, under IPRRS, IECRS, and
ISCRS, the corresponding values of R(t) exhibit a nearly
linear increase with the increase of t for different values of
δ and pfail , which indicates that IMECN possesses the higher
resilience to restore the failed node with high interdependent
PageRank, interdependent eigvector centrality, or interdepen-
dent subgraph centrality. Moreover, we observe that the curve
of IDRS is similar to the one of IBCRS regardless of δ
and pfail . The values of R(t) obtained by these two repair
strategies significantly increase in the range of small t , but
the curves show a slow rise near the end of the recovery
process. Additionally, a remarkable phenomenon is that the
recovery speed of the robustness in IMECN under IHCCRS
becomes slow as δ increases from 0 to 0.6 when pfail is small
(e.g., pfail = 25% and pfail = 50%). However, the curve of
IHCCRS is insensitive to the change of δ when pfail = 75%
and pfail = 100%. The above result suggests that in the
case of using the interdependent measure to restore failed
nodes, δ has a great impact on the resilience for the small
pfail , which is similar to the case of using the single measure.
In Fig.6(j)-(l), it is worth noting that the collapsed IMECN
under most of repair strategies starts to possess functions
once the recovery process begins. To this end, we also pay
attention to the critical number of repaired nodes rc under
repair strategies with the interdependent measures, whose
results are presented in Fig.7.

Fig.7 demonstrates that the values of rc obtained by
IDRS, IBCRS, IPRRS, IECRS and ISCRS are significantly
smaller than the ones obtained by IHCCRS. In particular,
rc = 13 under IPRRS indicates that after 13 broken nodes
with the high interdependent PageRank are restored at least,
IMECN restores its partial function, which is much fewer
than 63 repaired nodes under PRRS (see Fig.4). This is
because, considering that the functional component needs the

FIGURE 6. Comparison of R(t) under repair strategies concerning
the interdependent measures in the cases of (a) δ = 0, (b) δ = 0.1, and
(c) δ = 0.6 when pfail = 25%. That under repair strategies concerning the
interdependent measures in the cases of (d) δ = 0, (e) δ = 0.1, and
(f) δ = 0.6 when pfail = 50%. That under repair strategies concerning the
interdependent measures in the cases of (g) δ = 0, (h) δ = 0.1, and
(i) δ = 0.6 when pfail = 75%. That under repair strategies concerning
the interdependent measures in the cases of (j) δ = 0, (k) δ = 0.1, and
(l) δ = 0.6 when pfail = 100%.
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FIGURE 7. Comparison of rc under repair strategies concerning the
interdependent measures when pfail = 100%.

FIGURE 8. Comparison of RA under repair strategies concerning the
interdependent measures in the cases of (a) pfail = 25%, (b) pfail = 50%,
(c) pfail = 75%, and (d) pfail = 100%.

interdependency link, the repair strategies with regard to the
interdependent measures give priority to the repair of the
failed node with one or two interdependency links. Under
this condition, the functional component occurs more quickly
after a few failed nodes are restored. Additionally, we find no
significant difference of rc under these repair strategies for
different δ.
As we can see in Fig.8, under repair strategies with the

interdependentmeasures, especially for IHCCRS, there exists
a great difference in the values of RA at different δ when
pfail = 25% and pfail = 50% while the values of RA
slightly change by varying the value of δ when pfail = 75%
and pfail = 100%. The phenomenon shows that δ has an
effect on the resilience under repair strategies with interde-
pendent measures for a small number of failed nodes, which
is similar to the case of repair strategies with single measures
(see Fig.5). In addition, it can be found that the values of
RA obtained by IPRRS, IECRS, and ISCRS are large no
matter what δ and pfail are. This can be interpreted that the
interdependent PageRank, interdependent eigvector central-
ity, and the interdependent subgraph centrality proposed in

FIGURE 9. Comparison between repair strategies with the single
measures and the ones with the interdependent measures in the case of
δ = 0.1 and pfail = 25%.

FIGURE 10. Comparison between repair strategies with the single
measures and the ones with the interdependent measures in the case of
δ = 0.1 and pfail = 50%.

this article can reflect the importance of its adjacent node
and dependent node so restoring the node with these high
interdependent measures tends to form the functional com-
ponents with the interdependency link in three subnetworks.
Besides, we can see that in terms of IHHCRS, the recovery
of R(t) is slow in Fig.8 (c) and R(t) almost keeps unchanged
at the start of the recovery process in Fig.8 (d), therefore the
values ofRA obtained by repair strategies with interdependent
measures except for IHHCRS are high at pfail = 75% and
pfail = 100%.
The above simulation results indicate that the resilience

of IMECN under IECRS and ISCRS is strong on the whole
in the matter of R(t) and RA, while IMECN under IHCCRS
has small rc. Furthermore, δ has a negative effect on the
resilience for small pfail . In order to carefully compare two
kinds of repair strategies with the single and interdependent
measures, R(t), rc, and 1RA are shown under these repair
strategies, where 1RA equals the value of RA obtained by
a repair strategy with an interdependent measure minus the
one obtained by a repair strategywith its corresponding single
measure.
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FIGURE 11. Comparison between repair strategies with the single
measures and the ones with the interdependent measures in the case of
δ = 0.1 and pfail = 75%.

FIGURE 12. Comparison between repair strategies with the single
measures and the ones with the interdependent measures in the case of
δ = 0.1 and pfail = 100%.

From Figs.9-12, we can observe the differences of R(t)
and rc among repair strategies concerning single measures
and interdependent measures and the gray area represents
the difference of RA. Because the interdependent measure
gives consideration to the role of the dependent node, their
repair strategies yield better performance in most instances.
An obvious phenomenon is that in contrast to the repair strate-
gies concerning the single measures, the ones concerning the
interdependent measures result in the higher value of R(t)
regardless of pfail during the recovery process except for the
case concerning the harmonic closeness centrality at pfail =
75% and pfail = 100%, which indicates that the recovery
of the robustness is quicker according to repair strategies
with interdependent measures. In Fig.12, it is apparent that
the small values of rc under IDRS, IBCRS, IPRRS, IECRS
and ISCRS indicate that IMECN no longer paralyses and has
the partial function by restoring a few broken nodes selected
by their interdependent measures. In addition, 1RA > 0
in most cases illustrates that the repair strategies with the
interdependent measures can make IMECN more resilient
compared with the ones with the single measures. On the

basis of these discussions, it is found that the repair strate-
gies concerning the interdependent measures proposed in this
article significantly enhance the resilience of IMECN.

IV. CONCLUSION
The resilience of interdependent networks has drawn increas-
ing attention. In this study, we propose a cascading
failure model for the interdependent machine-electricity-
communication network (IMECN), in which the non-giant
component is also active when its size proportion is not
smaller than the proportion threshold δ and it has two kinds of
interdependency links. In order to restore the performance of
IMECN subjected to attacks, by defining the interdependent
measure, we obtain the repair strategies concerning the single
and interdependent measures. Then, the simulations on the
impact of δ on the robustness and the resilience are carried
out. In addition, in the light of the quantification of the
resilience by the values of R(t), rc, and RA, we vary δ and the
proportion pfail of failed nodes to compare repair strategies.
Based on these experiments, the advantages of the repair
strategies with the interdependent measures are analyzed.

The simulation results illustrate that there is a negative
correlation between δ and the robustness in IMECN. In addi-
tion, the impact of δ on the resilience is more significant in
the range of small pfail under repair strategies with single
and interdependent measures. In terms of repair strategies
concerning the single measures, the recovery of R(t) is quick
and the recovery ability RA is strong under ECRS and SCRS
no matter what δ and pfail are, while the critical number of
repaired nodes rc under PRRS is small for the recovery of the
partial function in IMECN. In terms of R(t) and RA among
the repair strategies concerning the interdependent measures,
IPRRS, IECRS, and ISCRS outperform other repair strategies
regardless of δ and pfail . Except for IHCCRS, repair strategies
concerning the interdependent measures give rise to the small
critical number of repaired nodes. Furthermore, we find that
IMECN under repair strategies with interdependent measures
has the strong resilience in contrast to the one under repair
strategies with single measures. In the future work, we intend
to optimize the resilience of IMECN based on heuristic
algorithms, and compare the advantages and disadvantages
between the optimized strategy and the repair strategy pro-
posed in this article. In addition, by considering the physi-
cal properties of different kinds of equipment, we will also
attempt to develop a framework of the failure propagation for
the interdependent mechatronic system, which canmore fully
capture the behavior of the cascading failures. To sum up,
our work may contribute to effectively recovering the perfor-
mance in the real-life mechatronic system after disturbance
events.
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