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ABSTRACT The energy consumption of the routing protocol can affect the lifetime of a wireless sensor
network (WSN) because tiny sensor nodes are usually difficult to recharge after they are deployed. Generally,
to save energy, data aggregation is used to minimize and/or eliminate data redundancy at each node and
reduce the amount of the overall data transmitted in a WSN. Furthermore, energy-efficient routing is widely
used to determine the optimal path from the source to the destination, while avoiding the energy-short
nodes, to save energy for relaying the sensed data. In most conventional approaches, data aggregation and
routing path selection are considered separately. In this study, we consider the degrees of the possible
data aggregation of neighbor nodes when a node needs to determine the routing path. We propose a
novel Q-learning-based data-aggregation-aware energy-efficient routing algorithm. The proposed algorithm
uses reinforcement learning to maximize the rewards, defined in terms of the efficiency of the sensor-
type-dependent data aggregation, communication energy and node residual energy, at each sensor node
to obtain an optimal path. We used sensor-type-dependent aggregation rewards. Finally, we performed
simulations to evaluate the performance of the proposed routing method and compared it with that of
the conventional energy-aware routing algorithms. Our results indicate that the proposed protocol can
successfully reduce the amount of data and extend the lifetime of the WSN.

INDEX TERMS Wireless sensor networks, routing, data aggregation, Q-learning, network lifetime.

I. INTRODUCTION
A wireless sensor network (WSN) can be defined as a self-
configured and infrastructure-less wireless network used to
monitor and record the physical conditions of an environment
and store the collected data at a central location. WSNs have
received considerable attention for multiple types of applica-
tions because of their low cost, small size and applicability
in diverse fields such as healthcare, military and underwa-
ter monitoring [1]. Recently, the device, network and data
management technologies for WSNs have been extended to
other fields such as smart factories, where sensor nodes are
deployed to collect data on products and machines for smart
factory operations. In smart cities, WSNs can be deployed
to create an efficient service delivery platform for public
and municipal workers and to manage the city resources
efficiently [2], [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

In a WSN, many sensor nodes are deployed over a wide
area to collect observation data and send them to a sink
(or server). Therefore, multi-hop transmission is required to
deliver the collected data successfully to the sink located
beyond the transmission range of the source sensor node.
This requires a collecting sensor node to calculate the optimal
route to the sink. Energy efficiency is a primary challenge
to the successful application of WSNs because nodes have
limited energy and cannot be recharged easily after they have
been deployed. Furthermore, because energy is mostly con-
sumed by the radio device, an energy-efficient design of the
routing algorithm for communication is essential. Most of the
ongoing research on energy-aware routing has two objectives:
to minimize the overall energy consumption on the routing
path and maintain even residual energy levels. Because the
overall energy consumption depends on the distance between
nodes and the number of intermediate nodes, the minimum
hop count path or shortest distance path is generally used
for WSN routing. The residual energy level of each node or

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 10737

https://orcid.org/0000-0002-2760-5638


W.-K. Yun, S.-J. Yoo: Q-DAEER Protocol for WSNs

power drain rate is also considered to avoid path disconnec-
tion and network partition. These measures can prolong the
network lifetime because energy is dissipated more equally
among all nodes [4], [5].

Because the data being collected by multiple sensors in a
given area are based on common phenomena, there is likely
to be some redundancy in the source data. Data aggregation
as a form of ‘‘in-network-processing’’ in WSNs is widely
used to collect data in an energy-efficient manner by elimi-
nating redundancy and minimizing the number of transmis-
sions or data size. In many WSN applications, the actual
measured raw data at each sensor node may not need to be
delivered in the exact same form to the sink. The raw data
can be abstracted or compressed in networks. Depending on
the monitoring purposes of applications, various aggregation
techniques can be used, such as abstracting as {mean, vari-
ance}, maximum value, minimum value, lossy compression,
feature domain reduction and data prediction. The efficiency
of data aggregation increases when the correlation among the
data collected by various sensors is high [6], [7].

Various machine learning technologies have been used to
effectively capture the dynamic features such as node topol-
ogy changes, restricted energy conditions, event detection
and communication costs of WSNs for their energy-efficient
operation. Among them, reinforcement learning (RL) is par-
ticularly suitable for problems that include a long- versus
short-term reward trade-off. It provides a framework for a
system to learn from its previous interactions with its envi-
ronment and to select its actions efficiently in the future.
RL-based routing protocols can determine the optimal path
as an adaptive method for complex network conditions and
quality of service requirements [8]–[10].

Most previous studies on energy-efficient routing path
selection typically consider communication energy with hop
counts and the distance to the sink node to reduce the overall
network-wide energy consumption and/or residual energy
level at each sensor node to distribute the energy burden
equally. However, distributing the possible routes to reduce
the overhead of specific sensor nodes may conflict with the
objective of minimizing the network-wide energy consump-
tion. Notably, the optimization goals do not consider the
possibility of data aggregation through the path. Furthermore,
data aggregation and routing path selection are considered
separately in conventional approaches [11]–[14].

In this article, we propose an RL-based energy-aware rout-
ing algorithm for obtaining a global optimum path to mini-
mize the overall energy consumption and prolong the lifetime
of theWSN.We define the degrees of the possible data aggre-
gation of neighbor nodes when a node needs to determine
the routing path. Because data from various sensor types
(e.g., vibration measurement sensor and temperature sen-
sor) may not show strong correlation, they cannot be aggre-
gated together. Therefore, we define sensor-type-dependent
aggregation rewards. We propose a novel Q-learning-based
data-aggregation-aware energy-efficient routing (Q-DAEER)
algorithm, in which each sensor node reinforces to determine

the optimum path that can maximize the rewards by consid-
ering the sensor-type-dependent data aggregation level of the
neighbor node, the residual energy, communication cost with
distance and hop count to the sink. In this way, the sensor
nodes can determine the optimum next hop node using their
updated Q-values based on the rewards.

This article is organized as follows: In Section II, we review
the existing energy-aware routing protocols for the WSN.
In Section III, we present our proposed system model for
WSN routing. In Section IV, we discuss Q-DAEER algo-
rithm. We present the simulation results in Section V and
conclude this article in Section VI.

II. RELATED WORK
Routing is essential inWSNs to support reliable data transfer,
achieve low latency and provide energy-efficient operation.
Wireless communications consume significant amount of
power for transmitting sensed data from sensor nodes to
sink nodes. However, the power consumption has become
a limiting factor because most sensor nodes are powered
by batteries. Sensor nodes used in wireless networks have
limited computational capability and cannot have full infor-
mation about networks so that it is very difficult for nodes
to calculate the optimum route to the destination quickly.
Even when a node is able to obtain the optimum routing path,
the path may not remain optimum over time owing to various
types of changes in the sensing environment, for example,
the node movement, instable wireless channel condition and
dynamic energy status of sensor nodes. Conventional ad hoc
routing protocols can be classified into proactive and reactive
protocols [15]. In proactive routing, routes are computed even
when they are not needed and stored in a routing table at
every node. Therefore, the routing table maintenance over-
head is large and limits the scalability of this routing pro-
tocol. In reactive routing, routes are computed only when
they are needed, and sensor nodes store routes only for their
neighbors. However, this protocol may increase latency for
sensed data delivery. To overcome these problems, many
studies on finding the optimum routing path with low energy
consumption are underway.

Mohemed et al. [16] addressed the hole problem in WSNs
using two distributed, energy-efficient and connectivity-
aware routing protocols. They used two different proto-
cols in local and global environments. This technique can
decrease the overhead of topology reformation and pro-
long the network lifetime. Razaque et al. [17] presented the
combined protocol of low-energy adaptive-clustering hierar-
chy (LEACH) and power-efficient gathering in sensor infor-
mation systems (PEGASIS), named P-LEACH. This protocol
can improve the performance by considering the limitation
of cluster-based routing in LEACH and static routing in
PEGASIS. Khan et al. [18] addressed the problem of sensor
node movement in wireless body area sensor networks using
a dynamic routing algorithm. Owing to diverse activities of
humans, the positions of sensor nodes on the human body
change every second. Therefore, packet and energy losses
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occur during transmission when nodes use the static rout-
ing algorithm. The authors solved this problem using the
information of the residual energies of nodes, hop count to
sink distance and throughput when nodes select the next hop
node to forward data. Baker et al. [19] applied the GreeDi
routing protocol to the ad hoc on-demand distance vector
(AODV) in vehicular ad hoc networks (VANET), named
GreeAODV, to achieve an energy-efficient routing protocol
in the next hop selection. They modeled city map-based
VANET scenarios and demonstrated that the proposed algo-
rithm was better than the original AODV. Oubbati et al. [20]
proposed an energy-efficient routing protocol, named energy
connectivity-aware data delivery, in the flying ad hoc net-
work. They ensured the connectivity of the proposed routing
protocol by using the information on unmanned aerial vehi-
cles (UAVs), such as their speed and location, to minimize the
packet loss caused by the movement of UAVs.

There are some studies on maximizing data aggrega-
tion and network lifetime. Oubbati et al. [21] addressed
the trade-off between efficient data aggregation and total
link cost minimization. They used a comprehensive weight,
named weighted data aggregation routing strategy, for solv-
ing the trade-off. By overlapping the paths of the nodes
in a cluster-based WSN, they maximized the efficiency
of data aggregation and prolonged the network lifetime.
Ardakani et al. [22] presented a data-aggregation-aware
efficient-routing algorithm in which the mobile agent
received data from sensor nodes and aggregated and trans-
mitted the data to the sink. They solved the delay and packet
loss in routing protocols using the movement scheme of
the mobile agents. Haseeb et al. [23] addressed the secu-
rity issues in applying the conventional routing algorithm to
a large-area Internet of things. They proposed light-weight
structure-based data aggregation routing, which is a secure
protocol that uses in-route data aggregation for routing data
in the conventional routing protocols. Yazici et al. [24] pre-
sented a fusion-based framework to reduce the amount of
data to be transmitted over the wireless multimedia sensor
network by intra-node processing. They designed a sensor
node to detect objects using machine learning techniques
and proposed a method for increasing the accuracy while
reducing the data amount. For sensor network routing, a new
cluster-based routing algorithm that consume less power was
presented. Clustering is one of the important techniques
for topology control, effective data aggregation and energy-
efficient routing in WSN.

Many researchers have applied machine learning
techniques to obtain the optimal routing path with low
overhead and cost. Chang et al. [25] applied the k-means
algorithm and a genetic algorithm for multi-objective opti-
mization. The sensor nodes in the network were clustered
using the k-means algorithm. They constructed a fitness
function of the genetic algorithm to maximize the network
lifetime. Thangaramya et al. [26] presented a neuro-
fuzzy-based energy-efficient clustering algorithm. In neuro-
fuzzy, they used a membership function comprising the

communication distance and energy information of nodes
to use the energy-efficient clusters to minimize packet loss.
Guo et al. [27] proposed an energy-efficient routing protocol
based on a reinforcement learning algorithm. The nodes
were reinforced to calculate the optimal routing path using
a reward policy to maximize the energy efficiency and life-
time of the network. Wang et al. [28] used the ant colony
optimization (ACO) algorithm to address the mobile sink
wireless sensor network routing protocol. They proposed
an improved ACO algorithm that considered not only the
time and energy but also the distance between the selected
cluster head (CH) and a mobile sink to calculate the optimum
mobility trajectory.

El Alami and Najid [29] proposed the LEACH-based fuzzy
cluster head selection algorithm. They determine the chance
value using the membership function that consists of residual
energy, expected efficiency and the closeness to base station.
The nodes which have the higher chance value are selected
as CHs in a round. Lee and Teng [30] improve the LEACH
algorithm using fuzzy logic in mobile sensor network. The
change of location of the nodes in network causes packet
losses so they use the membership function that is made
of residual energy, the movement speed and pause time of
nodes. By the membership function, the chance values of all
nodes to elect the CH nodes are calculated. El Alami and
Najid [31] proposed an enhanced clustering hierarchy (ECH)
approach to achieve energy efficiency in WSNs by using
sleeping-wakingmechanism for overlapping and neighboring
nodes. Thus, the data redundancy is minimized and then net-
work lifetime is maximized. Sert andYazıcı [32] proposed the
modified clonal selection algorithm (CLONALG-M) applied
to determine the approximate form of the output membership
functions to improve the performance of rule-based fuzzy
routing. Fuzzy approach is superior to well-defined method-
ologies, especially where boundaries between clusters are
unclear. They derived the optimal solution by using the initial
membership function and iterative experiment.

Some studies have focused on data aggregation-based
energy efficient routing in WSNs. Sensing data routing in
network aggregation provides a better solution in terms of the
reduced number of messages, high aggregation rate and reli-
able transmission. Zhang et al. [33] proposed the data aggre-
gation mechanism supported by dynamic routing. Nodes in
network select the neighbor node as next hop, which has the
minimum value of function that is made of residual energy,
hop count and the size of remained buffer. Li et al. [13]
presented differentiated data aggregation routing (DDAR)
that makes different QoS (Quality of Service) routes to sink
node based on aggregation threshold and aggregation dead-
line. Most of conventional data aggregation-based routing
algorithms are generally utilizing tree structure or hierar-
chical clustering architecture to aggregate the data and to
find out the optimum route to the sink. However, they have
not considered network-wise data aggregation possibilities
and corresponding energy consumption for different sensor
types, in which they depend on type-dependent neighbor
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FIGURE 1. WSN model with multiple sensor types.

relationship and aggregation degrees of paths. To capture
network-wise dynamics, machine learning based adaptive
routing path evaluation mechanism is required. In this arti-
cle, we propose a Q-learning-based routing algorithm to
obtain the best next-hop node to maximize the efficiency of
in-network processing. In addition, the network-wise energy
consumption for communication and the residual energy of
every intermediate node are also considered.

III. PROPOSED MODEL
A. NETWORK MODEL
In this study, we assume that various types of sensors, such
as temperature sensors, humidity sensors and photosensors,
are deployed in a field, as depicted in Fig. 1. Each sensor
type has different sensing intervals based on various operating
requirements. A sensor node stores its observed data and any
received data from its one-hop neighbor nodes in its buffers.
Each node maintains multiple sensor-type-dependent buffers.
The same-sensor-type data among neighbor nodes have
strong correlation. Therefore, the data of the same-type sen-
sors can be aggregated at each node before being forwarded,
as depicted in Fig. 1 [34]. Each sensor node periodically
forwards its stored data to one of its one-hop neighbor nodes
based on the proposed reinforcement-learning-based routing
algorithm; eventually, the data are delivered to the sink node.

A sink node periodically broadcasts a Hello packet with an
incremental sequence number and an initial zero hop count
value. As in the publish/subscribe model in the WSN [35],
a sink node declares its interest in the Hello packet. When
a sensor node receives a Hello packet, it increases the hop
count by 1 and rebroadcasts it to its neighbors. When a sensor
node receives a Hello packet that has the same sequence
number but a larger hop count, it simply discards the packet.
With operation, all sensor nodes in the network always
know the minimum hop count to the sink node. The pro-
posed Q-DAEER is designed to apply to the flat network as
in Fig. 1. However, the concept of Q-DAEER can be extended
to the cluster-based hierarchical network architecture for
inter-cluster routing between cluster heads.

B. FUNCTIONAL MODEL
A schematic of the proposed method is depicted in Fig. 2.
To reduce the energy consumption for environment sensing,

FIGURE 2. Schematic of the proposed system.

sensors periodically sense the environment based on a prede-
fined sensing schedule for each sensor type.When the sensing
timer expires, the sensing module collects the data from the
environment and saves them in its sensor-type queue. Each
node can receive any sensor-type data from its neighbor nodes
through a transceiver and stores the data in the queue for
the corresponding sensor type. Data collection at each node
can be performed during a predefined waiting time for each
sensor type. Depending on the latency requirement for each
sensor type, the waiting time at the queue can be determined.
When the waiting timer expires, the stored data in the queue
are passed to the aggregation module. In the aggregation
module, all raw data of each sensor type measured by the
node itself and collected from neighbor nodes are aggregated
using the aggregation model described in Section III.D. The
aggregated data for each sensor type are forwarded to the
best neighbor node, which is determined using the proposed
Q-learning algorithm (see Section IV). After the neighbor
node receives the data, it responds with the ACK (acknowl-
edgement) packets, which have the status information of
the data aggregation degree, hop count to the sink node,
energy-related values and the location of a node. Based on the
response, the sending node calculates the reward to update the
Q-table for the corresponding sensor type.

C. SENSING AND DATA TRANSMISSION MODEL
In this section, we introduce the WSN sensing and data trans-
mission model of the proposed system. In WSN, the sensor
node is composed of a sensor part for monitoring the sur-
rounding environment and a transceiver part for transmitting
and receiving data. It is assumed that each sensor node does
not continuously sense the surrounding environment, and the
required sensing time and sensing interval for each sensor
type are predetermined. The sensing start time at each node
does not need to be synchronized with other nodes so that
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FIGURE 3. Data aggregation and transmission system model.

asynchronous sensing method is used. On the other hand,
WSN transceivers generally use multi-mode (e.g., active, idle
and sleep) operation for energy-efficiency, in which there
exists the transceiver wakeup time synchronization issue
with neighbor nodes. In the synchronous transceiver wakeup
method, complex clock synchronization implementation and
high control packet overhead exist. In the asynchronous
method, there is high overhead for obtaining the wakeup
schedules of neighboring nodes in advance and packet deliv-
ery latency can be higher than that of the synchronous
method.

In Fig. 3, it is assumed that each sensor node is equipped
with one sensor type. Notation sti represents sensor node i
with sensor type t . A sensor node can have multiple types of
sensors, as st1,··· ,tki . There are K different sensor types in the
WSN, and each node has K queues to separately store data
for various sensor types. Note that even if the sensor node
has only one sensor, it should have K queues because it can
be used as a relay node for any type of data. Fig. 3 shows the
process of performing data aggregation on the routing path to
the sink node. It was assumed that st1i node is determined as
the next node on the path to the sink node by the previous
nodes. As depicted in Fig. 3, at the nth time step, sensor
node st1i measures the environment and has the observed
data of sensor type t1, ODt1i (n). It also receives aggregated
data for each sensor type from its neighbor nodes. ADt1j (n)
indicates the aggregated data of type t1 at time step n from
neighbor node j. During time step n, node st1i stores all data
(the received aggregated data and its local observed data) in
sensor type queues Qti (n) , t = t1, · · · , tK . At the end of
time step n, the node aggregates the stored data as ADti (n) ,
t = t1, · · · , tK , and then it forwards the aggregated data of
each type to the selected neighbor nodes.

Fig. 4 illustrates the sensing and transmission of data in the
proposed system model. Generally, to save energy, instead
of continuous sensing, sensor nodes in the WSN sense the

FIGURE 4. Data aggregation models (a) Representative aggregation
(b) Lossy compressive aggregation (c) Lossless aggregation.

environment at a predefined sensing interval. In our model,
we defined the sensing time and sensing interval for each
sensor type t as ST t and SI t , respectively. For data aggre-
gation for in-network processing, each node must wait for
a certain amount of time to possibly receive the same type
of data from the neighbor nodes. A longer waiting time for
data aggregation results in larger latency for data delivery to
the sink node. Because the level of time delay required for
each sensor-type data may be different, the waiting time is
set differently for each type in this model. WT t represents
the waiting time for sensor type t data aggregation. Typically,
WT t is larger than ST t and, during sensing interval SI t ,
we have multipleWT t time steps. All nodes need not be time
synchronized; they can start their schedules independently at
any time. As depicted in Fig. 4, at the nth waiting time step,
if there is a scheduled sensing time, the sti node measures the
environment during ST t and obtains data ODti (n). The node
will wait until the waiting timer expires to receive aggregated
data from its neighbors. In Fig. 4, sti receives AD

t
a (n) and

ADtb (n) from nodes a and b, respectively. At the end of
WT t (n), sti aggregates all stored data of its type t queue
Qti (n) and sends them to the next neighbor. When sti receives
aggregated data from the neighbor before the next sensing
time, the node will wait for aggregated data from neighbors
until the waiting timer expires.

The queue state and aggregated data size of the sti sensor
node at time step n are computed as follows:

Qti (n) = ODti (n)+
∑
j∈Ni

ADtj (n) (1)

ADti (n) = DA
{
Qti (n)

}
(2)

where Ni is the set of neighbor nodes of node i, and DA{ }
is the data aggregation function (explained in Section III.D).
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FIGURE 5. Schematic of sensing and data forwarding procedures (type t data only).

In Eq. (1), if there is no scheduled sensing time for type t at
time step n, then ODti (n) = 0.
The required energy for data transmission is generally

proportional to the size of the aggregated data and the dis-
tance between the sender and receiver if the sensor nodes
can control the transmission power. The required reception
energy depends on the size and decoding of the data. The
required energy for data aggregation is proportional to the
queue state [36].

The total transmission energy required by node i at the nth
time step is

ETXi (n) =
∑
∀t

ADti (n)

B

{
PtxElec + Pamp

(
di−nt∗
dmax

)β}
(3)

where B is the nominal bit rate; PtxElec is the transmission
power; Pamp is the amplifier power; dmax is the maximum
distance for communication at each node;di−nt∗ is the distance
between node i and the selected next neighbor node for type
t using the proposed routing algorithm, and β is the path loss
exponent (β = 2 for free space).

The total reception energy required by node i at the nth time
step is

ERXi (n) =
∑
∀t

{
ADti (n)

B
PrxElec + ADti (n)EdecBit

}
(4)

where PrxElec is the reception power, and EdecBit is the decod-
ing energy per bit.

The total energy required for data aggregation by node i at
the nth time step is

EDAi (n) =
∑
∀t
Qti (n)EaggBit (5)

where EaggBit is data aggregation energy per bit.

D. DATA AGGREGATION MODEL
Owing to the high node density in sensor networks, similar
data are sensed by many nodes, which results in redundancy
in the sense data. Using data aggregation techniques, tem-
poral and spatial redundancies can be reduced while routing
packets from the source to the sink [37]–[39].

In this study, we consider three different types of data
aggregation models. The first is a representative aggregation
model, in which the sink node represents only a representative
value. The typical mathematical functions are sum, average,
maximum, minimum or median. In this model, regardless
of the cumulative queue state size, the aggregated data can
have a unit packet size, as depicted in Fig. 5(a). The second
model is the lossy compressive aggregation model. In this
model, the sensed data from multiple sensors can be rep-
resented by the limited size of the feature vector, in which
various types of dimension reduction techniques with infor-
mation loss can be applied. As depicted in Fig. 5(b), when
the queue state is less than the feature vector size of the
transformed domain, the data in the queue are transmit-
ted without further aggregation. The third model is loss-
less aggregation, in which the sink node can reconstruct
the raw data from the aggregated data without any loss.
In this study, we modeled this type of aggregation using a
log function, as depicted in Fig. 5(c). The three different
data aggregation models are represented mathematically as
follows:

DAmodel1
{
Qti (n)

}
=

{
U t
m1 if Qti (n) > 0

0 if Qti (n) = 0
(6)
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TABLE 1. System model parameters.

DAmodel2
{
Qti (n)

}
=


U t
m2 if U t

m2< Qti (n)
Qti (n) if 0 < Qti (n) < U t

m2

0ifQti (n) = 0

(7)

DAmodel3
{
Qti (n)

}
=

{
U t
m3 × log2 (DPi(n)+ 1) if 0 < DPi(n)

0 if DPi (n) = 0
(8)

where U t
m1, U

t
m2 and U t

m3 are the unit packet sizes for the
first, second and third models, respectively; DPi(n) is the
number of aggregated data packets in the queue of node i.
The data aggregation model is designed based on theWSN

application objectives and sensor data types. It means that the
actual shapes of models can be different depending on the real
applications and used aggregation methods. Table 1 lists the
system model parameters defined in this study.

IV. Q-LEARNING-BASED DATA-AGGREGATION-AWARE
ENERGY-EFFICIENT ROUTING PROTOCOL
Reinforcement learning methods are essential to solve
optimal control problems using on-line measurements by
interacting with an environment. The objective of RL is to
maximize the reward of an agent by taking a series of actions
in response to a dynamic environment. RL can be applied to
the WSN routing problem because it can capture the dynam-
ics of the network and environment conditions efficiently,
in which the action at each sensor node is the selection of
the next node for forwarding the sensing data to the sink
node. Q-learning is a model-free value-based RL algorithm
that is used to obtain the optimal action-selection policy using
a Q value function. The Q value (quality value) represents
how useful a given action is in gaining some future reward.
Q-learning uses temporal differences (TD) to estimate the
expected Q value through episodes with no prior knowledge
of the environment. Q-learning is defined using an agent, a

FIGURE 6. Q-learning model for the proposed system.

set of states S and a set of actionsA. By performing an action
a ∈ A, the agent transitions from one state to another. The
agent in state s interacts with the environment with action a
to learn the environment, while depending on the outcome,
to acquire reward r . The decision goal for selecting one of
the actions in the given state is to maximize the expected sum
of weighted rewards, which include the current immediate
reward and future discounted rewards [40].

In the proposed Q-learning system for WSN routing,
the agent is considered as a network-wide data flow. In the
conventional single-agent approach, a centralized network
controller acts as an agent that can observe the global condi-
tions of the entire network and control the packet transmission
at each sensor node. This central agent approach requires a
large overhead and makes it difficult to know the status of
the entire network in real time. In the proposed system, there
is no explicit central agent; instead, cooperative informa-
tion exchange among neighbor nodes ensures that each node
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knows the network-wide state transition behaviors. As shown
in Fig. 6, the flow of data in the WSN is an agent, and each
sensor node represents a state. When the type t waiting timer
of sensor node i expires, it must select the next neighbor
node to forward the aggregated data of type t . In this case,
the current state is si; the actions at the current state are the
list of neighbor nodes; the next state will be node sj, to which
the aggregated data of type t are forwarded. The states and
actions are defined as follows:

S = {s1, s2, · · · , sN }

A = {A1,A2, · · · ,AN } , Ai =
{
aj = sj|sj ∈ Nsi

}
(9)

where N is the number of sensor nodes and Nsi is the set of
neighbor nodes of node si.
In Q-learning, the Q-table helps in finding the best action

for each state, in which the action value function Q (s, a)
returns the expected sum of the current and future rewards
when action a is performed at state s. This function can be
estimated through iterative update using the Bellman equa-
tion.

Suppose that the agent selects action a in state s, observes
reward R and enters new state s′. Then the action value
function (Q-value), Q (s, a), is updated as follows:

Q (s, a) = (1− α)Q (s, a)+ α
{
R+ γ · Q

(
s′, a

)}
(10)

where α is the learning rate and γ is the discount factor for
the future reward.

To achieve balance between exploitation and exploration,
the epsilon-greedy strategy is generally used to select action
a∗ in state s, as in Eq. (11). The epsilon-greedy strategy,
in which epsilon refers to the probability of choosing to
explore, exploits most of the time with a small chance of
exploring:

a∗|s =

argmax
a

Q (s, a) with probablity 1− ε

any action a with probability ε
(11)

In Q-DAEER, we perform data-type-dependent action
selection and Q-table updating. Fig. 6 depicts a Q-learning
scenario for WSN routing. In state si (sensor node i), suppose
the waiting timer for type t1 expires so that the data inQt1i (n)
aggregate into ADt1i (n). In Fig. 6, the agent takes the best
action that has the maximum action value for type t1 of the
current Q-table. The best action for the given state can be
different for each data type t .
The action value of action a in state s is represented as a

vector, as in Eq. (12), to capture sensor-data-type-dependent
expected rewards for each action:

Q (s, a) =


Qt1 (s, a)
Qt2 (s, a)

...

QtK (s, a)

 (12)

where K is the number of sensor types. The best action for
type t data forwarding in the given state s is defined as

follows:

at∗|s = argmax
a

Qt (s, a) (13)

As depicted in Fig. 6, after taking the action (forwarding the
aggregated data of type t) in the current state s, the agent
state changes to the new state s′(the receiving sensor node
of the forwarded data); the rewards are given to the current
state s; the Q-table of the action taken for state s is updated.
Because our Q-learning process is not controlled centrally
and is performed in a distributed manner at each sensor node,
the current state node s does not have the Q-table of the
next state to update its Q-table using Eq. (10). In addition,
state s does not explicitly know the reward for the action
taken. In the data-aggregation-aware energy-efficient routing,
rewardR for the action in Eq. (10) represents the effectiveness
of data aggregation and energy efficiency at the next node
selection, and it is computed at the next state (next node).
Therefore, in this study, when the next node responds the
receipt of the aggregated data to the sender it also includes
its maximum Q-values and the computed reward R.

Because the agent acts based on the Q-value updated after
the reward, it is essential to set the reward policy to determine
an optimum solution for the Q-learning algorithm. We define
reward R for the proposed routing algorithm as a function of
rewards for the data aggregation degree, node energy status
and hop count to the sink node. The data aggregation reward
for type t , r tDA, is defined as in Eq. (14), and it is computed
by the next node s′ after it sends the received ADts(n) data to
its queue Qts′ (n) and aggregates the queued data of type t into
ADts′ (n).

r tDA =


Qts′ (n)

ADts′ (n)
− 1 if

Qts′ (n)

ADts′ (n)
− 1 < rmaxDA

rmaxDA else
Qts′ (n)

ADts′ (n)
− 1 ≥ rmaxDA

(14)

where rmaxDA is the maximum reward for data aggregation.
In s′, when the data aggregation degree (ratio between the
raw and aggregated data sizes) for type t is high, reward r tDA
is also high. The data aggregation reward is type dependent.
When node s forwards the type t data, r tDA can be computed
directly. However, the aggregation rewards for other t ′ types
cannot be computed directly because node s did not send
other types of data at this time step. In this study, we estimate
the expected rewards for other types. The estimation of the
expected reward for other t ′ types, r̂ t

′

DA, is simply defined as
the most recent r t

′

DA at node s′. The data aggregation reward
vector (RDA) for all data types is defined using (15).

RDA =


r tDA =

Qts′ (n)

ADts′ (n)
...

r̂ t
′

DA = r t
′

DA
(
n−
)
=
Qt
′

s′
(
n−
)

ADt
′

s′
(
n−
)

 (15)
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FIGURE 7. Example scenario for the proposed Q-DAEER learning process.

where t is the data-type node s sent and n− is the most recent
time step at which node s′ computed r t

′

DA.
We have defined the type-independent energy status

reward. The energy status reward (RE ) is defined as follows:

RE =
Ers′ (n)

Ers′ (0)
−

(
ds−s′

dmax

)β
(16) (16)

where Ers′ (n) and E
r
s′ (0) are the residual energies of the next

node s′ at the nth and 0th time steps, respectively; ds−s′ is
the estimated distance between nodes s and s′ ( estimated
at node s′ using any distance estimation techniques);dmax is
the maximum transmission range of the sensor nodes; and
β is the path loss exponent (in free space β = 2). When
the remaining energy of the next state node is relatively
large and the distance between the next and current state
nodes is short (which means that the energy requirement for
transmission is low), the action selection is efficient in terms
of energy. Consequently, the energy state reward increases.
This reward policy can reduce the energy consumption of the
entire network and increase the network lifetime by evenly
distributing the energy consumption at each node.

To forward data to the sink, the reward should be smaller
than the maximum Q-value of the parent hop count node.
However, the fixed reward for all nodes in the network has
a higher probability of backwarding the nodes that are away
from the sink. An additional discount factor for the reward of
the nodes is necessary to prevent backwarding. Reward R for
action a in state s is finally computed as follows:

R =

{
ηHs × (RDA+RE × E1) if s′is not a sink
Rs × E1 else

(17)

where Hs is the hop count of node s, E1 is the K -dimensional
vector with all 1s, Rs is the sink node reward and η is the
discount factor for the reward in range [0, 1].

When node s receives reward R, it needs to update its
Q-table. To update its action value function Q (s, a),
it requires Q

(
s′, a

)
of the next state node. As explained

previously, in our proposed mechanism, when the next node
s′ receives an aggregated data packet, it replies with the
ACK packet, in which the reward vector R of Eq. (17) and
maxQ

(
s′, a

)
vector are included. Therefore, node s can

update its Q-table based on the ACK packet information. The
maxQ

(
s′, a

)
vector includes the maximumQ-value for each

data type at the next node s′ as follows:

maxQ
(
s′, a

)
=


max
∀a

Qt1
(
s′, a

)
max
∀a

Qt2
(
s′, a

)
...

max
∀a

QtK
(
s′, a

)

 (18)

The general Q-table update rule of Eq. (10) can be represented
in vector form as follows:

Q (s, a) = (1− α)Q (s, a)+ α
{
R+ γ +maxQ

(
s′, a

)}
(19)

Fig. 7 illustrates a scenario for the proposed Q-DAEER learn-
ing procedure.

1) At node s, the waiting timer of type t1 expires at time
step n, and then node s aggregates data in queueQt1s (n)
to ADt1s (n).

2) Node s selects action a2 (node s′) that has the maximum
Q-value for type t1 of state s Q-table.
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3) Based on action a2, node s forwards the aggregated data
to node s′.

4) Node s′ calculates reward vector R.
5) Node s′ derives maxQ

(
s′, a

)
vector from its Q-table

in the form of Eq. (18).
6) Node s′ replies to ACK including

{
R,maxQ

(
s′, a

)}
.

7) Node s updates Q (s, a) vector using Eq. (19).

Table 2 shows the complexity and overhead analysis of the
proposed algorithm compared with two other WSN routing
methods. The first compared algorithm is the shortest path
routing using the proposed data aggregation model at each
node on the path. The second one is the shortest path routing
without data aggregation. The analysis has been conducted
in terms of complexity, queue management overhead, control
message overhead and time delay.

V. SIMULATION RESULTS AND PERFORMANCE
EVALUATION
In this section, we evaluate and analyze the performance
of the proposed Q-DAEER routing protocol in terms of its
energy consumption, network lifetime, average hop count and
decrease in data size. We implemented the simulation envi-
ronments using MATLAB R2019a to compare the proposed
routing algorithm with the conventional routing algorithms.
The simulation parameters and values used in this study are
listed in Table 3. We used the random-type grid topology
for the WSN, in which sensor nodes were deployed in the
form of a grid, as depicted in Fig. 8 (an example topology),
and each sensor node had only a single-type sensor module
that is randomly selected. The characteristics of the three
types of sensor modules are summarized in Table 4. 77 sensor
nodes were deployed in the sensing area. The initial energy
level of nodes followed a uniform distribution with [2J, 2.5J].
The maximum transmission range of nodes was assumed to
be 150 distance units (du). The unit packet sizes for data
aggregation model-1, −2 and −3 given by Eqs. (6)–(8) were
proportional to the observed data size by each sensor type.
The transmission, amplification and reception powers were
200 mW, 500 mW and 200 mW, respectively. The nominal
bit rate for nodes was 6 Mbps and the energy consumptions
for decoding and data aggregation were 40 nJ and 20 nJ per
bit, respectively. The observed packet sizes, sensing intervals
and waiting timers of all sensor types are listed in Table 4.

We implemented two conventional energy-aware WSN
routing algorithms shown in Table 2 for performance compar-
ison. In the shortest path routing (SPR) without data aggrega-
tion, to minimize energy consumption, a sensor node in the
network selects the next neighbor node that has a least hop
count to the sink. This results in a minimum distance between
the source node and the sink node. In the shortest path rout-
ing with data aggregation (SPRwDA), when a sensor node
receives the aggregated data from other nodes, the node waits
until the waiting timer expires to minimize the transmission
overhead. Then it aggregates all received and locally observed
data together using the proposed aggregation procedure, and

FIGURE 8. Energy consumption for nodes (a) Energy consumed per time
unit (tu) (b) Average energy consumed.

it forwards the aggregated data to the next node using the
shortest path routing.

We performed the simulation until half of the nodes of
the one-hop neighbors of the sink were dead or some nodes
in the network were isolated so that they could not transmit
data to the sink. We compared the performances in terms of
network-level energy consumption, number of dead nodes,
network lifetime, average hop count and decrease in data
size. Network-level energy consumption is the sum of ener-
gies consumed by all the sensor nodes. The number of dead
nodes represents the number of sensor nodes with depleted
energies. Network lifetime indicates the elapsed time until
half of the nodes of the one-hop neighbors of the sink are
dead or some nodes in the network are isolated so that they
cannot transmit data to the sink. Average hop count is the
average of the hop counts required to reach the sink node,
which also approximately represents the delay from the data
source to the sink node. Decrease in data size represents the
amount of the reduced data size owing to data aggregation
through the routing path. It represents the efficiency of data
aggregation of a routing algorithm. In the simulation study,
model-1, model-2 andmodel-3 represent the data aggregation
models given by Eqs (6), (7) and (8), respectively.
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TABLE 2. Complexity and overhead analysis.

TABLE 3. Simulation parameters.

The comparative results of network-level energy consump-
tion are depicted in Fig. 9. Fig. 9(a) shows the results at
each time step tu (time unit). In the SPR and SPRwDA,
the energy consumption at every time step is almost constant
because they use the shortest routing path and it is only
determined by the current network topology. Since SPRwDA
uses the proposed data aggregationmethod before forwarding
data at each node, it can be seen that the energy used is
lower than that of SPR. In the proposed Q-DAEER method,
the energy consumption of each sensor node in the WSN
using the proposed routing algorithm is dynamic owing to the
policy-based dynamic reward update rule. Initially, the energy
consumption of the proposed method is higher than that of
the conventional algorithms because each node needs to learn
the optimal path. However, after learning, the nodes spent the
least energy for all three data aggregation models. Fig. 9(b)
shows the total average energy consumptions for all time
steps. We can see that the proposed algorithm consumed the
least energy compared with two other algorithms. In data
aggregation model-1, the efficiency of data aggregation is the
highest so that its average energy consumption was the lowest
among all the models. For three data aggregation models,

FIGURE 9. Wireless sensor network simulation environment.

TABLE 4. Sensor type dependent parameters for simulation.

the propose Q-DAEER can reduce energy consumption by
67%∼32% compared with SPR and by 25%∼5% compared
with SPRwDA.

The comparisons of the numbers of dead sensor nodes over
time and the average network lifetime are shown in Fig. 10.
In the case of SPR, it can be seen that the number of dead
nodes increases faster than other methods due to high energy
consumption. The data aggregation model-3 exhibits a faster
node dead time when compared with the other two models
because, as in Fig. 9(b), model-3 consumes more energy
when compared with the other models. Fig. 10(b) depicts the
network lifetimes when half of the nodes near the sink are
dead or some of the nodes are isolated. In data aggregation
model-1, the network lifetime using the proposed method
is approximately 6.8∼2.5 and 1.55∼1.29 times longer than
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FIGURE 10. Numbers of dead sensor nodes and network lifetimes
(a) Number of dead sensors per time unit (tu) (b) Network lifetimes.

those of SPR and SPRwDA, respectively for three data aggre-
gation models.

Fig. 11 shows the average hop count of data packets from
the data source node to the sink node. The average hop
count at each time unit is depicted in Fig. 11(a). In SPR
and SPRwDA, because each sensor node forwards data to
the neighbor that is closest to the sink node, the average hop
count is almost constant and lower than that of the proposed
Q-DAEER regardless data aggregation models. However,
near the end of the simulation, the average hop counts of SPR
and SPRwDA increase slightly because some nodes become
dead owing to the depletion of their energies. In contrast,
the proposed Q-DAEERmethod demonstrates a higher initial
average hop count for reinforcement learning. In Q-learning,
before the Q-table is stabilized and used, the agent needs
to explore more paths. The average hop count in the pro-
posed method decreases significantly after the initial learning
period. Each sensor node dynamically learns the optimal
routing path in terms of not only the hop count but also the
energy consumption and data aggregation degree on the path.
The Q-DAEER algorithm may choose longer paths to obtain
higher expected rewards by achieving more data aggregation
and energy saving. Therefore, for three data aggregation

FIGURE 11. Comparison of hop count averages (a) Average hop count per
time unit (tu) (b) Average hop count.

models, the average hop count of Q-DAEER is approximately
25%∼35% higher than those of SPR and SPRwDA.

A comparison of the decrease in data sizes in the network
is presented in Fig. 12. Fig. 12(a) shows the decrease in the
data size at each time unit. Because SPR does not perform
data aggregation, the reduced data size is zero. In SPRwDA,
the reduction in the data size is almost similar at each time
step for roughly the first half of the network lifetime; after-
ward, it increases suddenly. Because SPRwDA utilizes the
shortest path, the energy of some nodes close to the sink
node depletes, eventually causing these nodes to stop func-
tioning. This causes data from sensor nodes to concentrate
in the remaining nodes, which can significantly reduce the
data size. Therefore, the decrease in the data size increases
in the second half of the simulation. However, as shown
in Fig 9, this accelerates the energy shortage among the
overloaded nodes and shortens the network lifetime. In the
proposed Q-DAEER algorithm, the rewards that are given by
the neighbor nodes consider the energy level and degree of
data aggregation so that nodes always dynamically determine
the best path. The results indicate that the proposed algo-
rithm can obtain a more optimal path to improve energy and
data aggregation efficiency compared with the conventional
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TABLE 5. The results of grid and random topologies for 100 and 400 sensor node cases.

FIGURE 12. Comparison of data size reduction due to data aggregation
(a) Per time unit (tu) decrease in data size due to aggregation (b) Average
decrease in data size.

method. As depicted in Fig. 12(b), the proposed algorithm
achieved approximately 20%∼10% higher data reduction
ratio compared with SPRwDA for three aggregation models.

We applied a random topology in addition to the grid
topology in the previous experiments in the sensor deploy-
ment topology, and also verified the scalability of the pro-
posed algorithm by increasing the number of nodes to
100 and 400. Table 5 shows the experimental results with the

compared methods. As we can see, the proposed Q-DAEER
method consumed less energy and achieved longer network
lifetime for both of random and grid topology at even dense
node conditions.

VI. CONCLUSION
In this article, we proposed a Q-learning-based data-
aggregation-aware energy-efficient routing (Q-DAEER)
algorithm. To calculate the best path to maximize the lifetime
andminimize energy consumption of the network, we defined
a reward policy that considered the energy level, distance,
hop count and the degree of data aggregation at each node.
For efficient data aggregation at each node with different
sensor types, we presented a data aggregation and system
model in which sensor-type-dependent queue management
and transmission schedule control were used. The reward
functions defined in this study captured the changes in
the energy node, neighbor relationship and type-dependent
data aggregation dynamics of each node. In the proposed
Q-DAEER algorithm, we incorporated a data-type-dependent
action selection and Q-table updating algorithm. To demon-
strate the applicability of the proposed algorithm to various
data aggregation scenarios, we defined three different data
aggregation models. We compared the performance of the
proposed algorithm with that of the conventional routing
protocol in terms of its energy consumption, network lifetime,
average hop count and degree of data aggregation. The
results indicate that the proposed algorithm can obtain a
more optimal path to improve energy and data aggregation
efficiencies when compared with the conventional method.
We demonstrated that the proposed Q-DAEER protocol can
successfully reduce the overall data transmission load and
extend the lifetime of the wireless sensor network.
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