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ABSTRACT Although various studies based on thermal images have been conducted, few studies have
focused on the simultaneous extraction of joints and skeleton information of an object from a thermal
image, and performed human action recognition using this information. Unlike in the case of visible light
images, performing joint detection and skeleton generation on thermal images often leads to the complete
disappearance of spatial information such as joints. In this case, it is extremely difficult to extract joints
information from the object. Moreover, the accuracy of action recognition is significantly reduced owing
to this issue. Therefore, a new method to extract joints and skeleton information is proposed in this study
to address these issues. In the proposed method, an original 1-channel thermal image was converted into
a 3-channel thermal image and then the images were combined to improve the extraction performance.
A generative adversarial network (GAN) was used in the proposed method for extracting joints and skeleton
information. In addition, research to recognize various human actions was conducted using the joints and
skeleton information extracted by this method. The proposed human action recognition is performed by
combining a convolutional neural network (CNN) and long short-term memory (LSTM). As a result of the
experiments using self-collected and open data, it was found that the method proposed in this study shows
good performance compared to other state-of-the-art methods.

INDEX TERMS Thermal image, skeleton generation, joint detection, action recognition, deep learning.

I. INTRODUCTION
Human action recognition using a camera-based surveillance
system is a challenging task. In particular, performing action
recognition using images captured in dark environments
is especially difficult. To address this issue, near-infrared
(NIR) cameras and thermal cameras (long-wavelength
infrared (LWIR) camera) are used to visualize objects at
near and far distances, respectively. NIR cameras cannot
visualize objects at far distances without an additional illu-
minator whereas thermal cameras can visualize objects at
near and far distances without any additional illuminator.
However, thermal cameras have two major issues when per-
forming object detection: thermal reflection and temperature

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

similarity. Thermal reflection is caused by reflection of the
heat radiated from a high temperature object on surrounding
surfaces such as walls or the floor [2]. For example, a shadow-
like figure is commonly detected below the body region of
humans (red dashed region of Figure 1(a)) in thermal images.
Temperature similarity means that the background and the
object are indistinguishable from each other because they
both have very similar temperatures (Figures 1 (e) and (f)).
In addition, it is very difficult to perform human recognition,
human identification, and joint detection when the temper-
ature difference between the background and the object is
extremely significant (Figures 1 (g) and (h)), because texture
information such as patterns disappears from the body region
of the object. In other words, the pixel value of the entire
body region of a distant object is often 0 (black) or 255
(white) depending on the temperature of the environment in
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FIGURE 1. Examples of thermal images. (a)–(d) images with good quality;
(e), (f) images where discrimination between object and background is
difficult; (g) and (h) image where texture information inside object is not
visible.

a thermal image. In this case, it is difficult to detect body
joint features such as ankles, knees, hips, wrists, elbows, and
shoulders easily. To address these issues, joints and skeleton
information were extracted from thermal images acquired in
various environments using a deep learning method in this
study.

Furthermore, only a few studies have previously performed
action recognition using thermal images, and studies that con-
sidered all these issues and used deep learning-basedmethods
to recognize the action of distant objects in thermal images
do not exist. Therefore, a human action recognition method
that combines a generative adversarial network (GAN), a con-
volutional neural network (CNN), and long short-term mem-
ory (LSTM) is proposed in this paper to extract spatial and
temporal features. This research is novel in the following four
ways compared to the previous works:

- This is the first study that employs body skeleton and
joint detection based on 1-channel and 3-channel ther-
mal images. 1-channel thermal images have been used in
previous studies. However, the 1-channel thermal images
in the proposed method are converted into 3-channel
thermal images, and then these images are combined to
improve the accuracy of skeleton generation and joint
detection.

- A joint-GAN is proposed in this study to simultaneously
extract skeleton and joint information from the 1-channel
and 3-channel thermal images.

- A new CNN-LSTM that uses the extracted skeleton and
joint information as input is proposed, and the number
of trainable parameters of the CNN-LSTM is reduced by
decreasing the number of input features of the LSTM.

- The trained Joint-GAN and CNN-LSTM models proposed
in this study are disclosed in [3] for fair performance eval-
uation by other researchers.

The rest of the paper is organized as follows. Previous stud-
ies related to skeletal generation, joint detection, and action
recognition are described in Section II. A detailed descrip-
tion of the method proposed in this study is described in
Section III. The experimental results and analysis are pre-
sented in Section IV, and lastly, the conclusion of the paper is
presented in Section V.

II. RELATED WORKS
Conventional human action recognition methods can be
mainly divided into two types: methods performed using
thermal images and methods that do not use a thermal image.

A. PREVIOUS RESEARCH ACCORDING TO IMAGE
ACQUISITION SENSORS
Most of the previous studies have used visible light images as
input. In [4], authors proposed the method of human action
recognition by using CNN and an optimized deep autoen-
coder (DAE) for a real-time challenge. The method showed
the promising performance by usingDAE and quadratic SVM
on action recognition task. In [5], authors introduced the
methods of action and activity recognition by using LSTM.
In addition, they discussed the drawbacks of existing action
and activity recognition methods based on RNN compared to
LSTM. In [6], authors proposed multi-view action recogni-
tion (MVAR) method by using a CNN and a conflux long
short-term memory (LSTMs) network. In the study, their
proposed method achieved high action recognition accuracy
by using parallel LSTMs. In [7], behavior classification was
performed by extracting enhanced gait energy image (EGEI)
handcrafted features. In [8], human action recognition was
performed based on the convexity defect feature point; how-
ever, many inaccurate feature points were detected owing to
noise in the environment, resulting in poor action recognition
accuracy. In [9], [10], a method for simultaneous end-to-end
training was proposed by connecting CNN and LSTM.

In addition, some studies have performed action recogni-
tion using features previously extracted from data acquired
with a Kinect sensor or motion capture system, or with
red, green, blue, and depth (RGB+D) data. In [11], [12],
human action recognition was performed using CNN and
joint maps information. In [13], action recognition was per-
formed using skeleton information as input to a recurrent
neural network (RNN). RNNs have two disadvantages: van-
ishing and exploding. That is, important information may
disappear, or unimportant information may accumulate as the
continuous input feature is lengthened. In [14]–[17], LSTM
network-based action recognition methods using skeleton
information are proposed to address this issue. LSTM-based
methods used input, output, and forget gait functions to
address vanishing and exploding issues. In [18], a method of
performing action recognition was proposed by combining
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the scores obtained using skeleton joint information as input
to LSTM networks and using joint distance maps as CNN
inputs to extract both spatial and temporal information.

Although the above-described visible light image-based
methods provide extensive texture information in an image,
their performance is affected by low light or changes in ambi-
ent lighting, which is a disadvantage. In addition, a special
device for obtaining depth information needs to be used and
distance data is difficult to acquire at long distances when
using a Kinect sensor or motion capture system, or features
extracted in advance from RGB+D data. Because of these
drawbacks, various studies have performed action recog-
nition using thermal images. In [19], optical flow-based
methods for accurately extracting motion features were pro-
posed. However, feature extraction in optical flow-based
methods is time-consuming and these features are sensitive
to noise and illumination. In [20], human action recogni-
tion was performed by extracting gait energy image (GEI)
handcrafted features. In [21], human action recognition was
performed based on the projection-based distance (PbD)
method. In [22], human action recognition was performed by
extracting various features such as ratio of foreground and
background and using fuzzy rules. In [23], human action
recognition was performed by generating skeleton binary
images from thermal images and using these images contin-
uously as inputs to CNN-LSTM.

B. PREVIOUS RESEARCH ON EXTRACTION OF SKELETON
AND JOINT INFORMATION
Previous studies that have extracted skeleton information can
be divided into studies that did and did not use deep learning
methods. In the latter studies, methods for extracting skele-
ton information from a binary image, grayscale image, and
visible light image were proposed in [24]–[26], [27]–[30],
and [31], respectively. In [26], a method for extracting
skeleton information was proposed by performing a thin-
ning algorithm based on mathematical morphology. In [27],
the skeleton of the body parts was separately extracted from
grayscale images using the Dijkstra’s algorithm. In [28],
the skeleton was extracted from grayscale images using a
pseudo distance map (PDM). In [29], a grayscale image
thinning method using PDM was proposed, and skeleton
detection was performed using a binary-like thinning algo-
rithm. In [30], skeleton extraction was performed directly
from grayscale images based on anisotropic vector dif-
fusion without using a segmentation algorithm. In [31],
a co-skeletonization method was proposed to extract skeleton
information from visible light images. Regarding skeleton
detection based on deep learning algorithms, the following
methods have been proposed. Methods to extract skeleton
information from a binary image, a visible light image, and
the thermal image were proposed in [32], [33], [34]–[37],
and [23], respectively. In [32], a U-Net-based method was
proposed. In [33], a skeleton was generated using CNN, and
the generated skeleton image was partitioned into skeleton
branches using Gaussianmixture models. In [34], a DeepFlux

method was proposed to extract skeleton information from
visible light images using CNN. In [35], a method based on
a fully convolutional network (FCN) that extracts skeleton
information from visible light images was proposed. In [36],
a DeepSkeleton method was proposed to extract skeleton
information from visible light images. In [37], a side-output
residual network (SRN) was employed to extract skeleton
information from visible light images, and in [23], a binary
skeleton image was generated using a 1-channel thermal
image.

Moreover, previous studies that extract joint information
can be divided into studies that used and those that did not
use deep learning methods. In the latter studies [38], [39],
joints were detected by generating binary images from X-ray
images. In [38], a method for extracting binary images from
X-ray images using Otsu’s binarization method and detect-
ing joints from these binary images was proposed. In [39],
a method to detect joint location and joint margin in X-ray
images was proposed. In [40], a method to extract both skele-
ton and joint information from depth images was proposed
using a thinning algorithm. In [41], skeleton and joint infor-
mation was extracted from visible light images based on body
parts dependent joint regressors. In this study, a more accu-
rate method employed body part templates using two-layered
random forests as joint regressors. In [42], although a study
was conducted to extract skeleton and joint information using
thermal images, this information was extracted from clothes
with additional sensors installed, instead of generating a
skeleton image directly from the thermal image.

In addition, the following joint detection methods are
based on deep learning algorithms. In [43], a method using
a hybrid architecture including deep CNN and a Markov
random field was proposed. In this method, skeleton and
joint information were extracted simultaneously from vis-
ible light images. In [44], a method to extract skeleton
and joint information from visible light images was pro-
posed using part affinity fields (PAF) and a two-branch
multi-stage CNN. In [45], skeleton and joint information was
extracted from visible light images using the convolutional
pose machines (CPM) method. In [46], skeleton and joint
information was extracted from visible light images using the
CNN-based part detectors-based DeepCut method. In [47],
skeleton and joint information was extracted from visible
light images based on CPM. In this study, the cases of
overlapped or truncated persons are also considered while
extracting the skeleton and joint information of multiple
persons. Although binary images and visible light images
were used to extract skeleton and joint information in all
of the above studies, only a few methods employ thermal
images. This is because there is not enough texture infor-
mation in the thermal images to detect skeleton and joint
information. In addition, there is no existing research that
extracts both skeleton and joint information from a thermal
image using a GAN-based deep learning method. To address
this issue, a method to detect skeleton and joints from ther-
mal images using Joint-GAN and perform human action
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TABLE 1. Summary of comparisons between the proposed and previous research on action recognition.

TABLE 2. Summary of comparisons between the proposed and previous research on skeleton and joint detection.

recognition using outputs of Joint-GAN as inputs of
CNN-LSTM is proposed in this study. The comparison of the
advantages and disadvantages of themethods proposed in this
study and the aforementioned previous studies is as shown
in Tables 1 and 2.

III. PROPOSED METHOD
A. OVERALL PROCEDURE OF THE PROPOSED METHOD
In this section, the methods proposed in this study are
described in detail. The overall flowchart of the proposed
methods is shown in Figure 2. In the proposed methods,
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FIGURE 2. Overall flowchart of the proposed method.

FIGURE 3. Example of thermal images. (a)–(c) images with high spatial texture information;
(d), (f) images with low spatial texture information; (e) images of similar pixel values
between object and background.

skeleton and joint extraction is performed based on
1-channel and 3-channel thermal images by using preprocess-
ing, Joint-GAN, and postprocessing, and action recognition
is performed based on joint and skeleton information using
CNN-LSTM. In Section III.B, the preprocessing, Joint-GAN,
and postprocessing for joint and skeleton extraction are
explained in detail. In Section III.C , the action recognition
method using the CNN-LSTM that uses the extracted joint
and skeleton information as input is described.

B. SKELETON AND JOINT EXTRACTION
1) PREPROCESSING
In this section, the proposed skeleton and joint extraction
method, together with its Joint-GAN, is described in detail.
There are three common cases when extracting skeleton
and joint information from images acquired with a ther-
mal camera. The first case corresponds to thermal images
with clear spatial texture information, such as that shown
in Figure 3(a–c). It is easy to extract joint information from
these images. In the second case, the body region of the
object does not appear to have spatial texture information
owing to the extreme difference in temperature between the
body and the environment, such as the binary images shown
in Figures 3(d) and 3(e). Although skeleton information can
be obtained from these images, it is difficult to extract joint
information. In the third case, pixel values corresponding to
the object and the background may appear similar to each
other owing to temperature similarity, as shown in Figure 3(f).
In this case, it is difficult to extract the skeleton and joint

FIGURE 4. Example of preprocessing. The color conversion from a
1-channel grayscale image to a 3-channel RGB image.

information since the human body is hardly distinguishable
from the background. When the temperature of the sur-
rounding background is lower, higher, and similar to that
of a person, images are acquired as shown in Figure 3(d),
Figure 3(e), and Figure 3(f), respectively. Considering these
issues, a GAN-based method that simultaneously extracts
joint and skeleton information is proposed for the first time
in this study.

The preprocessing of the image that is used as an input to
the Joint-GAN method is as follows. A 1-channel thermal
image was converted into a 3-channel thermal image using
a colormap function. The jet colormap array [48] was used
to perform color conversion. Jet colormap array was selected
as the most appropriate mapping function for the present
study. Jet colormap array maps 256 pixel values from 0 to
255 from 1-channel image to 3-channel image. For example,
the pixel value of the region with the highest temperature is
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FIGURE 5. Architecture of the proposed Joint-GAN method.

TABLE 3. Description of the generator network of the proposed
Joint-GAN.

255 (white color), and the pixel value of the region with the
lowest temperature is 0 (black color) in a 1-channel image.
In contrast, the pixel value of the region with the highest
temperature is [255,0,0] (red color), and the pixel value of the
area with the lowest temperature is [0,0,255] (blue color) in
the 3-channel ([Red, Green, Blue]) image. A color conversion
example is shown in figure 4. In the proposed method, the 1-
channel thermal image was changed to a 3-channel thermal
image. The reason is that, in various previous studies, object
detection, recognition, and classification using a color vis-
ible light image showed higher performance than using a
grayscale visible light image [49].

TABLE 4. Description of the convolution block of the generator network.

2) JOINT-GAN
The 3-channel image obtained through preprocessing, such
as that shown in Figure 4, was used as the input for
the Joint-GAN. The structure of the Joint-GAN is shown
in Figure 5. L5–L21 and L1–L10 represent the layer num-
bers and layer numbers of convolution blocks, respectively.
In addition, the specific contents of the structure are shown
in Table 3–7. In Table 3–7, the filter size, stride, and padding
are (3 × 3), (1 × 1), and (1 × 1), respectively. Prelu, lrelu,
tanh, res_block, conv2d, add, conv_block, up2d, dense, and
sigmoid represent parametric rectified linear unit (relu), leaky
relu, hyperbolic tangent activation function, residual block,
2-dimensional convolution layer, addition operation, convo-
lution block, upsampling, fully connected layer, and sigmoid
activation function, respectively. Two images of a 3-channel
thermal image (224 × 224 × 3) and a 1-channel thermal
image (224 × 224 × 1) are used as inputs and the output
image size is (224× 224× 3), as shown in Table 3. As shown
in Table 6, the strides of conv_block_1, conv_block_3, and
conv_block_6 were 1, and the padding of conv_block_1 was
(1 × 1). The stride and padding of the other convolution
blocks were 2 and (0 × 0), respectively. The filter size of all
convolution blocks, input image size, and output size were
(3 × 3), (224 × 224 × 3), and (1 × 1), respectively.

3) POSTPROCESSING
In postprocessing, skeleton and joint information are
extracted from the RGB output image obtained by the
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FIGURE 6. Example images of human actions in this study. (a) one hand waving; (b) two hands waving; (c) punching;
(d) kicking; (e) sitting; (f) standing; (g) walking; (h) running; (i) lying down; (j) leaving; (k) approaching.

TABLE 5. Description of the residual block.

TABLE 6. Description of the discriminator network of the Joint-GAN.

TABLE 7. Description of the convolution block of the discriminator
network.

Joint-GAN using the following algorithm. As shown
in Table 8, in and out represent the input grayscale image
(converted to 3-channel grayscale image) and the output
color image of the generator, respectively. Moreover, in(i,j,0),
in(i,j,1), and in(i,j,2) represent the red, green, and blue pixels
corresponding to the (i,j) coordinates of the in image, respec-
tively. The skeleton and joint information extracted from the
out image are then converted into a joint_img image. The

TABLE 8. Algorithm for extracting skeleton and joint information.

obtained joint_img is used as the input for the CNN-LSTM
described in Section III.C to obtain the action recognition
results.

C. ACTION RECOGNITION
The action recognition method is described in detail in this
section. The purpose of this study is to recognize 11 actions:
‘‘one hand waving’’, ‘‘two hands waving’’, ‘‘punching’’,
‘‘kicking’’, ‘‘sitting’’, ‘‘standing’’, ‘‘walking’’, ‘‘running’’,
‘‘lying down’’, ‘‘leaving,’’ and ‘‘approaching.’’ The dura-
tion of each action was assumed to be different, as shown
in Figure 6. In addition, the length of the input image
sequence was set to 30 since the number of consecutive
images of each action was different. A new CNN-LSTM
is proposed in this study to extract spatial and temporal
features from the skeleton and joint images described in
Section III.B.3. CNN and LSTM are suitable networks to
extract spatial and temporal information, respectively. The
LSTM-based method addresses the vanishing and exploding
issues that occur in the conventional RNN-based method.
As shown in Figure 7, the proposed CNN-LSTM is inter-
connected and continuously trained using the input image.
Various layer configurations of the proposed CNN-LSTM
were constructed prior to the experiments to choose the
most suitable network. The selected network is described in
detail in Table 9. In Table 9, conv2d and pool represent the
2D convolutional layer and max pooling layer, respectively.
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FIGURE 7. Example of our CNN-LSTM architecture.

TABLE 9. Detailed description of CNN-LSTM.

In addition, relu and fc represent rectified linear unit and
fully connected layers, respectively. As shown in Table 9,
the output feature with the size of 100 × 1 extracted from
layer #28 is used as an input to the LSTM layer (layer #29).
Then, the output of the LSTM layer is passed through the
layers #30 and #31 to get the final result. Moreover, this
concept is presented in Figure 7.

The input to the CNN-LSTM model is a 3-channel color
image (skeleton and joint image obtained by our Joint-
GAN) with the size of 224 × 224 × 3. The model is
fed by 30 sequential images, iteratively. In addition, we do
not use 3D CNN but 2D CNN in this method. As shown
in Table 9, temporal patterns are captured by iterating layers
#0 ∼ #29 by 30 times using 30 sequential images. The
number of classes in the selected configuration was nine.
In addition, the number of trainable parameters was decreased

by reducing the number of input features of the LSTM,
as shown in Table 9. The ‘‘approaching’’ and ‘‘leaving’’
actions were recognized in this study based on the coordi-
nates obtained by a region of interest (ROI) detection method
instead of using the CNN-LSTM [50]. In other words, the dis-
tance between two objects was measured using coordinates,
and it was recognized as ‘‘leaving’’ when the distance value
increased and as ‘‘approaching’’ when the distance value
decreased.

IV. EXPERIMENTAL RESULTS
A. DESCRIPTION OF EXPERIMENTAL SETUP AND
DATABASES
Experiments were performed using the self-collected data
DTh-DB and DI&V-DB [51]. These databases consist of
thermal images of near-field objects acquired in dark or bright
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FIGURE 8. Example images from the databases. (a–h) images were taken from the self-collected DTh-DB and DI&V-DB (thermal images on the left and
corresponding visible light images on the right); (i–l) images were taken from the CASIA C dataset. (a–d) images were captured in daytime;
(e–h) images were captured in nighttime.

indoor environments (including dawn, daytime, and night)
and distant objects acquired in dark or bright outdoor envi-
ronments. Images including distant objects acquired outdoors
were used in this study. Databases were built using differ-
ent camera settings in various weathers and seasons at nine

locations. Although the database contains visible light images
and thermal images, only thermal images were used in this
study. The frame rate of the thermal camera was 30 frames
per second (fps) [52]. The depth of the image was 14 bits
and the size was 640 × 480 pixels. [21], [22] can be referred
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FIGURE 9. Training loss curves of Joint-GAN.

to for more information on the camera settings used when
building the database. In addition, comparative experiments
were performed using the CASIA C open dataset [53]. Exam-
ple images of all databases used in this study are shown
in Figure 8. The experiment was conducted in two-fold cross
validation. In other words, half of the total data were used for
training, the other half for testing, and the average value of the
two testing accuracies obtained by repeating the same process
after swapping the training and testing data was set as the final
accuracy. The training and testing of the algorithm proposed
in this study were performed using a desktop computer. The
desktop computer ran under an Intel core i7-6700 CPU @
3.40 GHz, an Nvidia GeForce GTX TITAN X graphic pro-
cessing unit (GPU) card [54], and a random-access mem-
ory (RAM) of 32 GB. The model and algorithm proposed
in this study were implemented using the OpenCV library
(version 4.3.0) [55], Python (version 3.5.4), and the Keras
application programming interface (API) (version 2.1.6-tf)
with Tensorflow backend engine (version 1.9.0) [56].

B. TRAINING AND TESTING PROCEDURES OF THE
MODELS
The Joint-GAN and CNN-LSTM models used in this study
were trained as follows. In the CNN-LSTM, the length of the
input series, training epoch, learning rate, momentum, batch-
size, optimizer, and loss functions were 30, 65, 0.0001, 0.9,
1, adaptive moment estimation (Adam) [57], and categori-
cal cross-entropy loss [58], respectively. In the Joint-GAN,
the batch-size, training epoch, generator loss, discriminator
loss, learning rate, and optimizer were set to 1, 100, a loss cal-
culated on features by visual geometry group (VGG)-19 [59]
with binary cross-entropy loss, binary cross-entropy loss,
0.0001, and Adam, respectively. Images of 224 × 224 pixels
were used for training and testing. The training loss curves
of the Joint-GAN method are shown in Figure 9. Moreover,
the loss and accuracy curves obtained in the training stage of
the CNN-LSTM method for each epoch are shown in Fig-
ure 10. Furthermore, the accuracy and loss curves of action
recognition methods using the original 1-channel grayscale
thermal image (Method 1), converted 3-channel color thermal
image (Method 2), and the skeleton and joint image obtained
from both the 1-channel and 3-channel images by our method

FIGURE 10. Training loss and accuracy curves of CNN-LSTM. (a) Loss
curves of the three methods; (b) accuracy curves of the three methods.

(Proposed method) are shown in Figure 10. Although the
classification was performed using the softmax function in
CNN-LSTM during the training stage, it was performed by
extracting the 100 × 1 feature from layer number 29 in
Table 9 during the testing stage. In other words, similarity
between the extracted feature and the reference features cor-
responding to each action class is calculated by using the
Euclidean distance, and the class with the lowest distance
value is determined as the final result.

C. TESTING RESULTS
1) ABLATION STUDY ON JOINT-GAN
In this section, comparative experiments were performed in
order to compare the accuracies of joint and skeleton genera-
tion by using the original 1-channel grayscale thermal image
(Method 1), the converted 3-channel color image (Method
2), and the skeleton and joint image obtained from both
the 1-channel and 3-channel images by our method (Pro-
posed Method). The same Joint-GAN and 5 sub-datasets of
DTh-DB and DI&V-DB were used for all methods. For the
accuracy measurement, the resulting image was compared
with the ground-truth joint and skeleton image based on
similarity. Accuracy was measured using three metrics as in
Equations (1)–(3).

MSE =

(√∑H
y=1

∑W
x=1 (T (x, y)− O (x, y))

2
)2

MN
(1)
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FIGURE 11. Results obtained in the ablation study. (a) Original images; (b) ground-truth images; (c) results by the Method 1; (d) results by the Method 2;
(e) results by the proposed method.

TABLE 10. Accuracies obtained in the ablation study using five databases.

PSNR = 10log10

(
2552

MSE

)
(2)

SSIM =
(2µOµT + R1)(2σOT + R2)

(µ2
O + µ

2
T + R1)(σ

2
O + σ

2
T + R2)

(3)

In Equation (1), W and H represent image width and height,
respectively. In Equations (1) and (3),O and T denote the out-
put image and the target image respectively. In Equation (2),
PSNR is the peak signal-to-noise ratio [60]. In the structural
similarity index measure (SSIM) [61] equation, µT and σT
represent the mean and standard deviation of the pixel values
of a target image, respectively;µO and σO represent the mean
and standard deviation of the pixel values of the output image,
respectively. σOT is the covariance of the two images. R1 and
R2 are positive constants that prevent the denominator from
being zero. The higher values of PSNR and SSIM represent

that two images are similar whereas the lower values rep-
resent that two images are less similar. The accuracy of the
3-channel thermal image-based method was higher than that
of the 1-channel thermal image-based method. In addition,
the proposed method, which combines both images, had the
highest accuracy, as shown in Table 10 and Figure 11.

2) ABLATION STUDY ON CNN-LSTM
In this section, the accuracy of action recognition was com-
pared by using the original 1-channel grayscale thermal
image (Method 1), the converted 3-channel color image
(Method 2), and the skeleton and joint image obtained from
both the 1-channel and 3-channel images by our Joint-GAN
(Proposed Method). The same CNN-LSTM network and five
sub-datasets of DTh-DB and DI&V-DB were used for all
methods, and the results are shown in Tables 11–14. In this
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TABLE 11. Confusion matrix of the human action recognition experiment results by Method 1 (unit: %).

TABLE 12. Confusion matrix of the human action recognition experiment results by Method 2 (unit: %).

experiment, the resulting image obtained by the Joint-GAN
was not used in Method 1 and Method 2 but the original
1-channel grayscale image and converted 3-channel color
image were used as inputs to the CNN-LSTM in Method
1 and Method 2, respectively. Metrics for comparing action
recognition accuracy are true positive rate (TPR), positive
predictive value (PPV), accuracy (ACC), and F1 score, which
are shown in Equations (4) ∼ (7). In these equations, #TP,
#FN, #FP, and #TN mean the numbers of true positive, false
negative, false positive, and true negative, respectively.

TPR =
#TP

#TP+ #FN
(4)

PPV =
#TP

#TP+ #FP
(5)

ACC =
#TP+ #TN

#TP+ #TN+ #FP+ #FN
(6)

F1 = 2 ·
PPV · TPR
PPV+ TPR

(7)

It was found that the accuracy of the action recognition of the
proposed method was higher than that of Methods 1 and 2,
as shown in Tables 11–14.

As a result of the experiment, higher classification results
were shown when extracting features from the LSTM layer

and classifying them by Euclidean distance than when using
the softmax function during the testing stage as shown
in Table 15.

3) ABLATION STUDY USING OPEN DATABASES
Additional experiments were performed using the CASIA C
open dataset [53] to examine the applicability of the proposed
methods in other environments. Methods 1 and 2 are the
results of skeleton and joint extraction performed by using
1-channel thermal images and 3-channel thermal images,
respectively, as shown in Table 16. In addition,Methods 1 and
2 are the results of action recognition performed by using
1-channel thermal images and 3-channel thermal images,
as shown in Table 17. Moreover, the comparison of results
of the skeleton and joint extraction methods is shown in Fig-
ure 12. It was found that the method proposed in this study
showed the highest results of skeleton and joint extraction and
action recognition, as shown in Tables 16, 17, and Figure 12.

4) COMPARISONS BETWEEN THE PROPOSED METHOD
AND OTHER STATE-OF-THE-ART METHODS
The results of comparing the proposed method with other
state-of-the-art methods are shown in this section. Conven-
tional skeleton generation methods were compared with the

VOLUME 9, 2021 11727



G. Batchuluun et al.: Action Recognition From Thermal Videos Using Joint and Skeleton Information

TABLE 13. Confusion matrix of the human action recognition experiment results by the proposed method (unit: %).

TABLE 14. Accuracies of the human action recognition experiment for the three methods (unit: %).

TABLE 15. Comparison of accuracies obtained by using Euclidean
distance and Softmax function using 3-channel (color) images.

TABLE 16. Comparison of the skeleton and joint extraction methods
(unit: %).

Joint-GAN-based skeleton and joint extraction method pro-
posed in this study, as shown in Table 18. The Perceptual loss

TABLE 17. Comparison of the human action recognition methods
(unit: %).

function-based network (PLN) method [62], the cycle con-
sistent adversarial network (CycleGAN)-based method [63],
and the fully convolutional network (FCN) method [64] were
selected as the conventional methods for comparative exper-
iments. In the additional experiments, we compared the pro-
posed method with the joint detection methods [65], [66] by
measuring TPR, PPV and average precision (AP) between
ground truth joint points and detected ones. Additionally,
conventional action recognition methods were compared
with the CNN-LSTM-based method proposed in this study,
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FIGURE 12. Results obtained in the ablation study using the CASIA C dataset. (a) Original images; (b) ground-truth images; (c) results by the
Method 1; (d) results by the Method 2; (e) results by the proposed method.

TABLE 18. Comparison of the skeleton generation methods (unit: %).

TABLE 19. Comparison of the skeleton generation methods (unit: %).

as shown in Table 20. The AP [1] represents the area under
the precision-recall curve as shown in Equation (8).

AP =
∫ 1

0
p(r)dr (8)

where p(r) represents the graph of positive predictive value
(PPV) according to true positive rate (TPR) (r), where both
PPV and TPR are shown between 0 and 1.

TABLE 20. Comparison of the human action recognition methods
(unit: %).

For human action recognition, comparison experiments
were performed using traditional algorithm-based methods
such as Fourier descriptor-based method [67], the gait energy
image (GEI)-based method [7], and the convexity defect-
based method [8], and deep learning algorithm-based meth-
ods such as Jaouedi et al. [65], Pham et al. [66].

In addition, the features used in the traditional algorithm-
based methods were used as inputs to the CNN-LSTM
proposed in this study to perform additional comparative
experiments, as shown in Table 21. Moreover, the results
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FIGURE 13. Comparison of results between the Joint-GAN and the previous methods. (a) Original images; (b) ground-truth images; (c) results using the
PLN method [62]; (d) results using the CycleGAN method [63]; (e) results using the FCN method [64]; (f) results using the proposed Joint-GAN method.

TABLE 21. Comparison of the human action recognition methods. The
results were obtained using the features extracted by previous methods
and the proposed CNN-LSTM (unit: %).

obtained by the conventional skeleton generation methods
were compared with the results from the images obtained by
the Joint-GAN method of this study, as shown in Figure 13.
The method proposed in this study showed better results than
the state-of-the-art methods, as shown in Tables 17∼19 and
Figure 13.

5) PROCESSING TIME
In Table 22, the processing time of each sub-part of the pro-
posed method (Figure 2) is presented. As shown in Table 22,
the processing time of the CNN-LSTM is higher than other
sub-parts because the CNN-LSTM is iterated by 30 times
to produce final result as shown in Table 9. The total
frame rate of the proposed method is 9.38 frames per sec-
ond (1000/106.64). Thus, we can confirm that the proposed

TABLE 22. Processing time of the proposed method (unit: ms).

method can run fast enough to perform both skeleton gener-
ation and action recognition.

V. CONCLUSION
In this study, a method to extract joints and skeleton infor-
mation was proposed by converting the original 1-channel
thermal image into a 3-channel thermal image, combining
these images, and using them as an input for the proposed
Joint-GAN. In addition, a method for recognizing various
human actions based on CNN-LSTM was proposed using
the extracted joints and skeleton information. Comparative
experiments were performed using original 1-channel ther-
mal images and converted 3-channel thermal images to eval-
uate the performance of the proposed method. According
to the experimental results using the self-collected DTh-DB
and DI&V-DB databases, together with the CASIA C open
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database, the Joint-GAN and CNN-LSTMmethods proposed
in this study showed higher accuracy than other state-of-
the-art methods. In the proposed Joint-GAN, we assigned
different colors to skeleton parts to distinguish human body
parts. By doing so, we can provide more information for
action recognition. However, we encountered the error cases
caused by the assigned colors. For example, as shown in Fig-
ures 11 (e) and 12 (e), both light and dark green colors show
lower detection accuracies whereas blue, pink, and yellow
colors show higher accuracies compared to other colors. This
reveals that the different colors play different roles in the
image-to-image translation method. Furthermore, this error
affects the performance of the proposed action recognition
method.

In future work, enhanced image-to-image translation
method would be researched irrespective of the colors of
skeleton. In addition, the performance of the Joint-GAN pro-
posed in this study would be evaluated by applying it to the
visible and near-infrared light images.
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