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ABSTRACT Devices used to set and control the environmental temperature are critical to the performance
of gas-sensitive material analyzers, which use silicon microcantilevers to characterize the gas-sensitive
materials. This paper describes a novel microtemperature-control device that uses a double Peltier structure
to replace the traditional refrigerant temperature control system. A proportional-integral-derivative (PID)
algorithm is used to achieve accurate and fast temperature control, with a long short-term memory (LSTM)
network trained to identify the nonlinear dynamics of the Peltier system. A neighbor hybrid mean center
opposition-based learning particle swarm optimization (NHCOPSO) algorithm is proposed to optimize the
PID controller. The LSTM network identification is obviously better than that of previous Peltier system
identification methods, and the NHCOPSO algorithm is found to be superior to other improved PSO
and evolutionary algorithms on benchmark functions and in PID parameter optimization. Experimental
results show that the proposed temperature control device greatly improves the accuracy and efficiency
of gas-sensitive material analysis with a temperature control range of −40 to 180◦C, a temperature
control tolerance within ±0.05◦C, a maximum heating rate of 20◦C/min, and a maximum cooling rate
of −10◦C/min.

INDEX TERMS Gas-sensing material analysis, intelligent system identification, long short-term memory,
particle swarm optimization, Peltier temperature control system.

I. INTRODUCTION
Asmicroelectromechanical system (MEMS) technology con-
tinues to be improved, the applications of silicon micro-
cantilevers in gas-sensing material performance analysis are
expanding [1], [2]. In such systems, temperature control of
the cantilever directly affects the accuracy of the analysis.
Traditional temperature control uses a mechanical refrig-
erant device to control the cantilever. Reference [3] used
resistance wire heating and water bath cooling to control
the environmental temperature in an experiment to eval-
uate the sensitivity of an SnO2/rgo-4 composite to NO2.
However, in this system, the resistance wire heating had
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poor accuracy (±1◦C), and the water bath had a low cool-
ing speed (3◦C/min). In reference [4], a cantilever-based
gas sensor was placed in a water bath temperature-control
device to perform experiments to quantitatively calculate
material thermodynamic parameters. Although the volume
of the whole system was reduced, the temperature of the
test environment changed slowly within a small range.
In references [5]–[7], a silicon microcantilever-based gas-
sensitive material with a temperature range of −50 to 150◦C
and uniformity of 2◦C was developed using liquid nitrogen
refrigeration and blast heating. However, the instrument had
a large volume (1100× 850× 1740 mm), a low tempera-
ture change speed (3◦C/min), and poor temperature control
accuracy (±2.5◦C); furthermore, maintenance of the liquid
nitrogen refrigeration system was both difficult and costly.
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In short, according to the abovementioned literature, current
temperature control systems suffer from large volumes, low
temperature change speeds, and poor temperature control
sensitivity.

With the development of semiconductor refrigeration tech-
nology, temperature control devices based on thermoelectric
Peltier coolers have been increasingly used in applications
such as MEMS devices [8], medical instruments [9], optical
experiments [10], and microscope-sample temperature con-
trol [11]. This paper describes the development of a Peltier
temperature control device for a microcantilever-based ana-
lyzer that can characterize gas-sensitive materials. The pro-
posed device greatly improves the accuracy and efficiency
of gas-sensing material evaluation over existing devices.
However, due to the nonlinear characteristics of Peltier tem-
perature control devices, it is difficult to accurately construct
a mathematical model to analyze and control the system [12].
For example, tuning the parameters of proportional-integral-
derivative (PID) controllers based on trial and error [13],
[14] results in poor control performance and is very time-
consuming. Therefore, to obtain the optimum temperature
control effect, it is necessary to optimize the control method
and parameters through theoretical analysis or an intelligent
algorithm developed based on an accurate Peltier system
model. In reference [15], a battery temperature control system
based on the Peltier model was regarded as a first-order lin-
ear time-invariant system, and the parameters were analyzed
experimentally. Reference [16] analyzed the thermal model
of a heating and cooling system composed of a Peltier device,
a water container, and a fan radiator. The system models
presented in references [15], [16], however, do not have
adequate accuracy because they neglect the characteristics of
the Peltier model parameters, which vary with temperature.
Based on the nonlinear characteristics of Peltier systems,
an aluminum box microreactor system model has been the-
oretically analyzed [17]. Reference [18] derived a mathe-
matical model for Peltier heat conduction and examined the
relationship between the system parameters and temperature
through theoretical derivations and experimental analysis.
In reference [19], an analytical method for a thermoelectric
refrigeration system that includes the Peltier effect and the
Seebeck effect was proposed. Although the three references
mentioned above proposed nonlinear Peltier model analysis
methods, it is still difficult to quickly and accurately establish
the complex structure of a semiconductor temperature control
system model [16].

With the development of neural networks, various net-
work structures have been employed for nonlinear system
identification. This is because neural networks can perform
excellent nonlinear function approximation [20] through the
Hopfield [21], radial basis function (RBF) [22], back propa-
gation (BP) [23], nonlinear autoregression with external input
(NARX) [24], and broad learning system (BLS) [25] meth-
ods. In particular, long short-term memory (LSTM) networks
can expertly solve complex nonlinear engineering problems
through their powerful learning ability with regard to time

series, [26]–[28]. However, LSTM has rarely been applied
to Peltier temperature control system model construction.
Therefore, this study develops an intelligent and accurate
identificationmethod for a Peltier temperature control system
based on an LSTM network, thus eliminating the requirement
of knowing the thermodynamic and physical states of the sys-
tem. After establishing the ‘‘black box’’ model of the system
through an LSTM network, evolutionary algorithms are used
to search for the optimal PID control parameters of the sys-
tem. Here, we consider the artificial sheep algorithm (ASA)
[29], particle swarm optimization (PSO) [30], [31], genetic
algorithm (GA) [32], and fruit-fly optimization algorithm
(FOA) [33]. Comparedwith other evolutionarymethods, PSO
can generate high-quality solutions quickly and has more sta-
ble convergence characteristics [34]. However, in most PID
parameter optimization problems, the search range can be
reduced experimentally or through experience, so the optimal
solution may be missed. Moreover, a large-scale parameter
search can lead to the algorithm becoming trapped around a
local optimum, so the PSO method must have strong global
convergence. By analyzing some PSO improvement strate-
gies, neighbor hybrid mean center opposition-based learn-
ing particle swarm optimization (NHCOPSO) is developed.
This technique improves the temperature control precision
and speed of a silicon microcantilever-based gas-sensitive
material analyzer by identifying the optimum PID control
parameters quickly and accurately over a large range.

The remainder of this paper is organized as follows.
Section II introduces some theoretical foundations, including
the relationship between the performance characterization
of gas-sensing materials and the cantilever temperature and
the thermal models of existing Peltier devices. Section III
describes the structure of a temperature control device based
on the Peltier effect and analyzes the complexity of the
associated heat conduction model. Section IV discusses how
the LSTM network can be applied to Peltier temperature
control system identification and compares it with some other
methods. Section V describes the basics of the NHCOPSO
algorithm and compares its performance with that of other
improved PSO and evolutionary algorithms. Experimental
results of the silicon cantilever-based gas-sensing material
characterization temperature control device designed through
the above methods are presented in section VI. Finally,
section VII summarizes this paper.

II. THEORETICAL BASIS OF THE SYSTEM DESIGN
A. EFFECT OF THE TEMPERATURE CHANGE OF THE
MICROCANTILEVER ON CHARACTERIZATION
OF GAS SENSING MATERIALS
Reference [4] describes the conversion of the adsorption and
desorption of gas molecules onto a gas-sensing material into
changes in the resonant frequency of the cantilever, which
enables the calculation of key dynamic/thermodynamic
parameters of gas-sensitive materials, such as the enthalpy
change 1H , entropy change 1S, Gibbs free energy G,
and Langmuir equilibrium constant K . Based on this
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derivation [4], the present paper mainly analyzes the relation-
ship between the enthalpy change of the gas-sensing material
performance parameters and the experimental temperature
deviation.

It is assumed that the two temperatures used in the variable
temperature weighting method are T1 and T2. The corre-
sponding partial pressures of the experimental gases are p1
and p2. The gas constant is R. According to reference [4], the
enthalpy change 1H is expressed as:

1H =
RT2T1
T2 − T1

ln
p2
p1

(1)

The temperature deviation is assumed to be caused by
temperature fluctuations or a temperature gradient in the
experiment, where the real temperature values are T1 +1T1
and T2 +1T2. The enthalpy change 1H ′ given this error is:

1H ′ =
R(T2 +1T2)(T1 +1T1)
T2 − T1 +1T2 −1T1

ln
p2
p1

(2)

The error multiple E is expressed as:

E =
1H ′

1H
=

(T2 +1T2)(T1 +1T1)(T2 − T1)
T1T2(T2 − T1 +1T2 −1T1)

(3)

Let 1T1 and 1T2 in (3) be independent variables, let E
be the dependent variable, and set the other parameters as
constants. The derivatives of 1T1 and 1T2 can be used to
obtain E1T1 and E1T2 as follows:

E1T1 =
T1T2(T2 − T1)(T2 +1T2)2

(T1T2(T2 − T1 +1T2 −1T1))2

E1T2 =
−T1T2(T2 − T1)(T1 +1T1)2

(T1T2(T2 − T1 +1T2 −1T1))2

(4)

Taking the temperature control performance of the modi-
fied HWS-225L [5]–[7] as an example, the temperature uni-
formity is ±2◦C, and the temperature fluctuation is ±0.5◦C.
Therefore, 1T1,1T2 ∈ [−2.5, 2.5]. T1 and T2 are experi-
mental ambient temperatures of 303 K and 318 K [6]. When
T2 > T1, we have E1T1 > 0 and E1T2 < 0. The error mul-
tiple E is approximately 1.5, taking into account the limiting
cases1T1 = 2.5 and1T2 = −2.5. Thus, the accuracy of the
enthalpy change calculation is greatly reduced.

B. PELTIER MODEL ANALYSIS
A Peltier module is a thermoelectric semiconductor cooling
module based on the Peltier effect. When an electric current
passes through a material that consists of two different types
of semiconductors, one experiences a cooling effect because
the charge carriers release excess energy as they move from
a high energy level to a low energy level. The other semicon-
ductor experiences a heating effect when the charge carriers
move from a low energy level to a high energy level and
absorb energy from outside the system.

Peltier’s model structure diagram is shown in Fig. 1. It is
composed of p-type and n-type thermocouples connected in
series by a guide vane with high conductivity. Peltier devices
can cool and head due to their PN junction structures, which

FIGURE 1. Structure of a Peltier module. Voltage U is applied to the Peltier
module, and current flows through the n-type and p-type semiconductors.
Tc and Th are the temperatures of the cold side and hot side, respectively.

have nonlinear volt-ampere characteristics. When a current
flows through the circuit, heat will be absorbed at connector
A and released at connector B so that Th > Tc. Therefore, the
temperature difference between A and B is 1T = Th − Tc.
In practice, when a voltageU is applied to a Peltier element,

the Peltier effect, heat conduction, and Joule heat will occur
at the junction between the hot and cold ends. Therefore, the
heat Qc absorbed by the cold side can be expressed as:

Qc = αTcI −
1
2
I2R−

κS
H

(Th − Tc) (5)

In (5), α, I, R, κ , S, and H denote the Seebeck effect
factor, the current flowing through the Peltier element, the
resistance value of the device, the total thermal conductivity
of the device, and the cross-sectional area and length of the
p-type or n-type semiconductors in the device, respectively.
The first term on the right-hand side of (5) represents the
Peltier effect. The second term is the Joule heat. As the Joule
heat is divided into both the cold and hot sides, only half of
the Joule heat is considered in the calculation. The third term
represents the heat conduction between the hot and cold sides
resulting from the temperature difference. Similarly, the heat
Qh released from the hot side is expressed as:

Qh = αThI +
1
2
I2R−

κS
H

(Th − Tc) (6)

Due to the inhomogeneity of the materials, the parameters
α, R, and κ in (5) and (6) often change with temperature.
These variations can be written as:

α =
U
Th

(7)

R =
U
I
(1−

(Th − Tc)
Th

) (8)

κ =
HUITc

2STh(Th − Tc)
(9)

Once the temperature of the Peltier element’s cold and
hot sides has been determined, the relationships between
α, R, κ , and temperature become linear, and the associated
expressions can be determined experimentally [18]. However,
the temperature of the hot and cold surfaces in the Peltier
system is not constant, and it is difficult to confirm its precise
value, so the above relationship is impossible to obtain.
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FIGURE 2. Structure of temperature control chamber. (a) Structural
schematic diagram of the cantilever-based gas-sensitive material
analyzer. (b) Photograph of the experimental cavity.

III. STRUCTURE AND MODEL OF THE TEMPERATURE
CONTROL SYSTEM
A. STRUCTURE OF THE TEMPERATURE CONTROL SYSTEM
Based on the relationship between the characteristic parame-
ters of a gas-sensing material and the environmental tempera-
ture and on an analysis of the Peltier device thermal model, a
miniaturized cavity based on a double-layer Peltier structure
is proposed. The structure and the physical object are shown
in Fig. 2.

The temperature control chamber includes five main parts.
(a) Peltier modules are placed on the upper and lower

sides of the chamber to control the temperature of the test
environment through the heat transfer between the cavity wall
and the gas in the chamber. The shape of the cavity is a
cylinder with a height of 2 cm and a bottom radius of 3 cm.
The small volume of the cavity accelerates the temperature
change around the cantilever-based gas sensor.

(b) The Peltier elements on either side have a double-
layer structure. The outer Peltier element acts as a heat sink
for the inner Peltier element and exchanges heat with the
circulating liquid cooling device. The working state of the
inner Peltier element is controlled by the circuit to regu-
late the temperature. The inner components are TEC1-3505
and TEC1-3506 modules, while the outer component is a
TEC1-3506 module. The maximum temperature difference is
approximately 75◦C. Therefore, the temperature range of the
device can be extended to −40 to 180◦C by the double-layer
structure.

(c) The cooling system uses the circulating liquid provided
by a thermostatic bath for heat exchange.

(d) At the top and bottom, the wall of the chamber is
connected with an external conduit to introduce and discharge
the experimental gas, respectively.

(e) The structure of the temperature control system is
shown in Fig. 3. The temperature is detected by a PT100
device near the cantilever-based gas sensor, and the platinum
resistance signal is converted into a voltage signal by a signal
processing circuit before being transmitted to a microcon-
troller unit (MCU) through an analog-to-digital converter
(ADC). According to the current temperature value, theMCU
calculates and outputs the corresponding duty cycle of the
pulse width modulation (PWM) signal as the control signal.
Using the power isolation circuit and the driving circuit, the
Peltier system’s working power is finally regulated to achieve
temperature control.

FIGURE 3. Flowchart of temperature control system.

FIGURE 4. Peltier heat conduction structure diagram. Heat is transferred
between five layers, namely, a heat sink, an outer Peltier element, an
inner Peltier element, the cavity wall, and the gas around the cantilever.

B. MODEL ANALYSIS OF THE PELTIER TEMPERATURE
CONTROL SYSTEM
Although a thermal model of the Peltier module was pre-
sented and the relationship between the parameters of a
Peltier device and the temperature was analyzed in section II,
the specific temperature of the cold and hot sides of the
device cannot be determined in practical applications. It is
impossible to accurately establish the dynamic model of a
Peltier system in the process of temperature control using the
method described in reference [18].

The detailed components of the Peltier heating/cooling
parts (see Fig. 2) are shown in Fig. 4. The temperature con-
trol structure is divided into four parts, including a radiator
filled with circulating liquid provided by an external water
tank with a constant temperature of T0; a Peltier layer for
heat dissipation, whose outer temperature is Ta1 and internal
temperature is Ta2; a Peltier element used for heating/cooling,
whose outer temperature is Tb1 and internal temperature is
Tb2; and a cavity wall with a temperature of Tcw. The external
environment has a temperature of Tc.
The actual temperature control process consists of four

heat exchange processes: (i) between the radiator and the
Peltier element; (ii) between the Peltier element for heat dis-
sipation and the Peltier element of the heating/cooling layer;
(iii) between the Peltier element of the heating/cooling layer
and the wall of the experimental chamber; and (iv) between
the cavity wall and the internal gas environment. It is difficult
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FIGURE 5. System identification training data. (a) Sequence input to an
actual Peltier temperature control device. (b) Sequence output from an
actual Peltier temperature control device.

to derive the temperature model for the whole system through
theoretical analysis and calculations, because the temperature
inside and outside the Peltier system cannot be accurately
determined.

IV. SYSTEM IDENTIFICATION BASED ON AN LSTM
NETWORK
A. BASIS OF SYSTEM IDENTIFICATION
System identification refers to the process of determining an
equivalent model that can describe the actual system char-
acteristics from many given models based on existing input
and output data from the system [39]. The advantage of this
method is that the system model can be obtained using only
input and output data from the system. The main process
includes system data acquisition, system model establish-
ment, and model parameter identification.

Because of the differences between the heating and cooling
stages of the temperature control system, it is necessary to
identify models for the heating and cooling stages indepen-
dently. This paper mainly examines system identification
based on an LSTM network, taking the heating stage as an
example. The input to the Peltier temperature control system
designed in this paper is a PWMsignal (0−100%)with differ-
ent duty cycles calculated by the MCU, and the output is the
temperature value detected by the PT100 near the cantilever-
based gas sensor. There is a delay between the input and out-
put data due to the heat transfer through the two Peltier layers,
the cavity wall, and the internal gas environment. Thus, it
is difficult to accurately represent the system characteristics
from random input signal data. According to the law of tem-
perature change in the process of temperature control, the fol-
lowing groups of data are selected for system identification:
step response, increasing response, and decreasing response.
To facilitate the follow-up tests, the starting temperature of
each group of identification data is set to 24◦C, and the system
returns to the initial state without input after the test. As
the system is in the initial state (∼24◦C) at the beginning
and end of each test, a series of 206218 samples is obtained
by connecting each group of data end-to-end. Fig. 5 shows
the input and output sequences of the system identification
training data.

To compare the identification capabilities of various meth-
ods, we also collected three basic test sets and three control
test sets. The system input and output sequences of basic sets
test1–test3 and control sets test4–test6 are shown in Fig. 6.

FIGURE 6. System identification test data. (a) Sequence input to an actual
Peltier temperature control device in test 1–test 3. (b) Sequence output
from an actual Peltier temperature control device in test 1–test 3.
(c) Sequence input to the actual Peltier temperature control device in test
4–test 6. (d) Sequence output from the actual Peltier temperature control
device in test 4–test 6.

FIGURE 7. Structure of an LSTM cell with forget gate, input gate, and
output gate.

The control test sets represent the input and output sequences
obtained in the process of controlling the system with PID
parameters

kp = 30
ki = 0.2
kd = 100,


kp = 61
ki = 4.7
kd = 0,

and


kp = 150
ki = 3.7
kd = 0.

B. LSTM NETWORK
A recurrent neural network (RNN) is an improved artificial
neural network that includes hidden layers with self-
feedback. Compared with general fully connected neural net-
works, RNNs have several advantages when dealing with
time series problems because of their short-term memory
ability. However, the traditional RNN is prone to gradient
explosion and gradient disappearance during iteration pro-
cesses with very long time series [26]. The LSTM network
is an improved RNN based on gate control. When processing
information at time t in the time series, the internal state ct
is input for the transmission of circular information, and the
external state ht is output. The structure of the LSTMnetwork
is shown in Fig. 7.
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The three gates in the LSTM structure are a forget gate ft ,
an input gate it , and an output gate ot . The forget gate controls
how much information needs to be forgotten by the internal
state ct−1 from the previous time step. The input gate controls
how much information needs to be saved for the candidate
state c̃t at the current time step. The output gate controls how
much information needs to be output to the external state ht
of the internal state ct at the current time step. The update
equations for the three gates are as follows:

it = σ (Wixt + Uiht−1 + bi) (10)

ft = σ (Wf xt + Uf ht−1 + bf ) (11)

ot = σ (Woxt + Uoht−1 + bo) (12)

where xt is the input of the LSTM unit at time t and ht−1 is the
external state at the last time step. Candidate state c̃t , internal
state ct , and external state ht are calculated by the following
equations:

c̃t = tanh(Wcxt + Ucht−1 + bc) (13)

ct = ft � ct−1 + it � c̃t (14)

ht = ot � tan(ct ) (15)

The output sequence of a fully connected layer is often
added after the LSTM unit, and its expression is as follows:

yt = ReLU (Wfc2(ReLU (Wfc1ht + bfc1))+ bfc2) (16)

where Wi, Ui, bi, Wf , Uf , bf , Wo, Uo, bo, Wc, Uc, and bc
in (10)–(15) are the weights of the LSTM cell, andWfc1,Wfc2,
bfc1, and bfc2 in (16) represent the weights of the two fully
connected layers. The activation functions σ (x), tanh(x), and
ReLU(x) are calculated as follows:

σ (x) =
1

1+ e−x
(17)

tanh(x) =
ex − e−x

ex + e−x
(18)

ReLU (x) =

{
0, x < 0
x, x ≥ 0

(19)

C. SYSTEM IDENTIFICATION BASED ON AN LSTM
NETWORK
This paper proposes a method of model identification for
the Peltier temperature control system based on an LSTM
network. A flowchart of the proposed approach is shown in
Fig. 8. First, a network is constructed with an LSTM layer
containing 25 hidden nodes, one 25 × 12 fully connected
(FC) layer and one 12 × 1 fully connected layer, and an
ReLU layer. The mean square error (MSE) of a loss function
and the Adam optimization method [27] are used to train
and update all weights in the network. Finally, the trained
network is initialized with hidden layer state h0 and memory
unit state c0, and the current system input sequence is sent to
the LSTM network to obtain the system output sequence of
the identification model for subsequent analysis.

FIGURE 8. Structure of the identification system based on an LSTM
network. The ‘‘black box’’ model is obtained by offline training of the
LSTM network using the data in Fig. 5. The states of the network are then
initialized to process the current system input sequence and output the
corresponding sequence.

TABLE 1. Comparison of training results obtained from LSTM networks
with different structures.

To explain the identification process more intuitively, the
fitness (%) is selected as the identification evaluation crite-
rion. This is calculated as:

fitness = 100(1−
‖ymeasured − ymodel‖2∥∥ymeasured − ymeasured∥∥2 ) (20)

where ymeasured and ¯ymeasured represent the actual system
output sequence and its mean value. ymodel represents the
identification model output sequence, and ‖·‖2 denotes the
2-norm calculation. The fitness evaluation function reflects
the similarity between the output of the identification model
and the actual system given the same input sequence. The
value of this function has a range of (−∞, 100], with higher
values indicating better system identification performance.

We compared the training results produced by LSTM
networks with different numbers of hidden nodes and their
performance on basic sets test1–test3. The model with the
highest fitness value was selected as the final system iden-
tification result. LSTM networks with 10, 25, and 50 hidden
nodes and two fully connected layers were selected for com-
parison after training. The final training results and perfor-
mance on the training sets and the basic test sets are separately
presented in Table 1 and Figs. 9–12. The results show that
network LSTM25 achieves the best performance in terms of
identifying the Peltier temperature control system designed
in this paper, as the output curve on the basic test sets is the
most similar to that of the practical system.

D. OTHER SYSTEM IDENTIFICATION METHODS
(a) As stated in section I, most Peltier system model-
ing methods are based on theoretical analysis and system
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FIGURE 9. Comparison of the performance of networks LSTM10, LSTM25,
and LSTM50 on basic test sets.

FIGURE 10. Identification results for networks LSTM10, LSTM25. and
LSTM50 on test set 1.

FIGURE 11. Identification results for networks LSTM10, LSTM25, and
LSTM50 on test set 2.

identification, with a transfer function used as the simulation
model of the whole system. In this study, we used a training
sequence of length 206218 and the system identification tool
inMATLAB to establish the systemmodel. To obtain the best
identification model, 24 transfer functions were constructed
based on the common structure shown in Fig. 13, which
includes the number of poles (1, 2, 3) and whether there are
zero points, delay terms, and integrators. The best model was
determined by comparing the performance of all 24 structures
on the training sequence and basic sets test1–test3.

(b) NARX was selected as a comparative system iden-
tification method [24]. In the literature, the NARX neural
network tool in MATLAB has been used to build network
structures. We selected the NARX model from MATLAB’s

FIGURE 12. Identification results for networks LSTM10, LSTM25, and
LSTM50 on test set 3.

FIGURE 13. Structure of the transfer function model, including
proportion, zero, delay, integrator, and poles.

FIGURE 14. Structure of the NARX model, including regressors, a linear
block, and a nonlinear block.

system identification tool to identify the system. The resulting
structure is shown in Fig. 14. The NARX model takes the
system input control variables and system state variables of
M moments as the regression factors of the model and then
inputs them into the linear and nonlinear modules, respec-
tively, to obtain the output sequence. To obtain the most
suitable NARX model for Peltier temperature control system
identification, we constructed 12 NARX models by setting
the input control delay of the system to 0, 1, 2, or 3 and the
parameterM to 1, 2, or 3. The performance of each structure
on the training sequence and the basic test sets was then
compared.

(c) Theoretically, a three-layer BP neural network is capa-
ble of approximating any continuous function. Hence, BP
neural networks are often used to identify nonlinear sys-
tems [23]. However, BP has no memory function and cannot
deal with time series problems accurately. Thus, it is often
necessary to take the system state variables of M moments
as the current input of the BP network, as in the NARX
model. Fig. 15 presents the structure of a three-layer BP
neural network, including an input layer, a hidden layer with
sigmoid activation function, and an output layer. To obtain the
best system identification using a BP neural network,M was
set to 1, 2, or 3, and the number of hidden layer nodes was
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FIGURE 15. Structure of a three-layer BP network model, including the
input layer, hidden units, and output layer.

TABLE 2. Identification results using P3Z, NARX1, BP10-2, and LSTM25.

set to 10, 20, or 40. The resulting nine BP network structures
were then compared to determine the best model.

Finally, the best identification model was selected from
each of the three methods. These were the transfer function
model P3Z, with three poles and one zero, the NARX1model,
with an input control delay of 0 and M = 1, and BP10-2,
with 10 hidden layer nodes and M = 2. Their identification
results on the training sequence and basic sets test1–test3 are
presented in Table 2.

Table 2 indicates that the P3Z model does not provide
satisfactory identification performance using the training
sequence. This may be because the long sequence contains a
large number of system characteristics, including many non-
linear features. Therefore, the model accumulates numerous
errors from the continuous input sequence, resulting in poor
identification. However, P3Z exhibits good identification per-
formance on basic sets test1–test3 because the short sequence
lengths allow little opportunity for error accumulation. In
contrast, NARX1 and BP10-2 perform well with both the
training sequence and the basic test sets.

E. COMPARISON OF IDENTIFICATION METHODS
The models with the best system identification performance
were P3Z, NARX1, BP10-2, and LSTM25. These four mod-
els were then compared using a two-step process. First, input
sequences consisting of control sets test4–test6 were used
as the input to each model, and their output curves were
compared with data from the actual system. As shown in
Fig. 16, the PID parameters corresponding to control sets
test4–test6 were directly used as the PID control parameters
of each model, and their response curves were compared. The
three groups of tests are named test4ctr, test5ctr, and test6ctr.

FIGURE 16. Structure of the identification model control test.

FIGURE 17. Fitness comparison of six tests using the four models.

FIGURE 18. Identification results for set test4 using the four models.

Fig. 17 compares the fitness values of the four mod-
els for tests test4–test6 and test4ctr–test6ctr; the details of
each model identification curve for each test are shown in
Figs. 18–23. The graphs show the output curves of the four
models and of the real system. The system identification
performance of LSTM25 is better than that of the other
three models for all six groups of tests, simulating the output
curve of the system the most accurately. To verify the system
identification performance of the LSTM network, the output
curve measured by testing the actual system was compared
with that given by the LSTM network model in subsequent
system control parameter tests.

V. DESIGN OF PID PARAMETER OPTIMIZATION BASED
ON NHCOPSO
A. PSO ALGORITHM
PSO is a population-based stochastic optimization technique
[42]. It imitates the swarm behavior of insects and herds of
animals, birds, and fish as they search for food cooperatively.
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FIGURE 19. Identification results for set test4ctr using the four models.

FIGURE 20. Identification results for set test5 using the four models.

FIGURE 21. Identification results for set test5ctr using the four models.

Each member of the group changes its search mode by learn-
ing from its own experience and the experience of other
members. The convergence speed of the algorithm is fast, and
the calculation is simple and easy to implement. Martingale
theory [43] suggests that the PSO algorithm converges to the
global optimum with a probability of 1, so PSO has been
applied to various optimization problems [34].

However, as the search scope or complexity increases,
the PSO algorithm may become trapped around a local
extremum. Thus, improved PSO algorithms have become

FIGURE 22. Identification results for set test6 using the four models.

FIGURE 23. Identification results for set test6ctr using the four models.

the focus of considerable research. In reference [35], the
mean center was used to search the region of interest, and
opposition-based learning (OBL) was used to enable particles
to explore additional new regions. Reference [36] used a
random topology and OBL to improve the global search
ability of the algorithm, while reference [37] combined the
firefly algorithm with PSO to rapidly find a reliable solu-
tion. Reference [38] combined phasor theory with PSO and
achieved good results.

In the basic PSO algorithm, problem optimization involves
each particle learning its own best position pbest and that
of the population gbest. For a d-dimensional search space
problem, suppose that the number of particles in the pop-
ulation is n and the position and velocity of the popu-
lation are given by xi = (x i1, x

i
2, · · · , x

i
d , · · · , x

i
D) and

vi = (vi1, v
i
2, · · · , v

i
d , · · · , v

i
D), respectively, where i =

1, 2, · · · ,N and d = 1, 2, · · · ,D. The positions and veloc-
ities are updated according to (21) and (22), where k is the
number of iterations, ω is the inertia weight, c1 and c1 are
learning factors, and r1 and r2 are random numbers in the
range (0, 1).

vi,k+1d = ω∗vi,kd + c1
∗r1∗(pbest

i,k
d − x

i,k
d )

+ c2∗r2∗(gbest
i,k
d − x

i,k
d ) (21)

x i,k+1d = x i,kd + v
i,k+1
d (22)
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B. THEORY AND STRUCTURE OF NHCOPSO
Although the PID parameter optimization problem for the
Peltier temperature control system has only three dimensions,
the unknown system model makes it difficult to establish
the search range for the control parameters. Therefore, the
algorithm needs to search over a large range to ensure optimal
control performance. To speed up the convergence of the
algorithm in the process of parameter optimization and to
prevent the algorithm from becoming trapped around a local
optimum, an improved PSO algorithm based on the neighbor
hybrid mean center (NHMC) and OBL is designed.

It has been noted [44] that particles in a given neigh-
borhood can interact with each other and search for more
regions in the problem space after being divided into several
neighborhoods according to a certain topology. Additionally,
combined with the partial mean center theory [35], NHMC
can replace the neighborhood center of gravity [36] to guide
the local particle motion. Reference [36] uses a random topol-
ogy as the neighborhood structure and found that the conver-
gence was better than that of square and circular topologies.
Therefore, in this paper, random topology is used to form a
domain jwith K particles, find the neighbor hybrid mean cen-
ter NHMCj and calculate the reverse position of the particles
based on the OBL algorithm.

The mean center NMCj and local mean fitness are calcu-
lated in neighborhood j using:

xNMCd,j =
1
K

K∑
i=1

x id,j (23)

FNMj =
1
K

K∑
i=1

fit ij (24)

where xNMCd,j represents the information on neighborhood
mean center NMCj in each dimension d , fit ij represents
the fitness value of particle x ij in neighborhood j, and
i = 1, 2, · · · ,K . Particles with fitness values greater than the
average FNMj in neighborhood j are then selected as particle
m, where 1 ≤ m < K . Each dimension of the neighborhood
partial mean center NPCj can be expressed as:

xNPCd,j =
1
M

K∑
i=1

x id,j (25)

In (25),M is the number of particles that have fitness values
better than FNMj in neighborhood j, and d is the dimension.
Finally, to better guide the motion of the local particles, the
lowest fitness value is selected from among NMCj, NPCj,
and the lowest fitness value nbestj in neighborhood j as the
neighborhood hybrid mean center point NHMCj:

NHMCj = min(nbestj,NMCj,NPCj) (26)

Although NHMC allows the algorithm to quickly identify
the optimal local value, the particles may become trapped
around a local extremum when the search range is large
because of a decrease in population diversity. In the proposed

TABLE 3. NHCOPSO algorithm.

method, OBL is used to evaluate the current solution and its
opposite solution at the same time, with the results applied to
accelerate the search process [43]. Combinedwith themethod
described in this paper, the neighborhood hybrid mean center
NHMCj is used to move particle x ij in the opposite direction
to obtain OBLx ij . Suppose that the dynamic boundary [aj, bj]
of neighborhood j is calculated by the following equation:

ad,j = min(x id ), bd,j = max(x id ) (27)

where ad,j and bd,j are the minimum and maximum values of
all points in neighborhood j and dimension d . The opposite
point position OBLx ij is calculated by (28), and each dimen-
sion of the opposite point is constrained by (29).

OBLx ij = 2∗NHMCj − x ij (28)

OBLx id,j =


ad,j + rand ∗ (NHMCd,j − ad,j),

OBLx id,j < ad,j
NHMCd,j + rand ∗ (bd,j − NHMCd,j),

OBLx id,j > bd,j

(29)

In the above equations, rand is a random number in [0, 1],
and P is an artificially set threshold. According to the above
calculation and analysis, the NHCOPSO algorithm can be
divided into three steps. First, the population is initialized,
and then the neighborhood structure is constructed randomly.
Finally, the hybrid centers of each neighborhood are calcu-
lated, and the particles are guided to move. Table 3 describes
the details of the algorithm.
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TABLE 4. Results on CEC2013 test functions (D = 30).

C. COMPARISON OF ALGORITHMS BASED ON CEC2013
FUNCTIONS
Four improved PSO algorithms mentioned in reference [35]
were selected as comparative algorithms: opposition-based
particle swarm algorithm (OPSO), generalized opposition-
based particle swarm algorithm (GOPSO), neighbor-
hood centroid opposition-based particle swarm algorithm
(NCOPSO), and hybrid mean center opposition-based learn-
ing particle swarm algorithm (HCOPSO). Additionally, the
28-function CEC2013 benchmark was chosen to compare
the performance of the algorithms. To ensure the correct-
ness of each algorithm, the optimization results on the
30-dimensional CEC2013 benchmark functions from refer-
ence [35] were directly used for the subsequent comparison.
The parameters for the NHCOPSO algorithm were set as
follows: ω = 0.5, c1 = c2 = 2,K = 5,N = 30, and

P = 0.3. For the other four improved algorithms, the
maximum number of evaluationsmaxfeswas set to 105. Each
algorithmwas executed independently 25 times on each of the
28 functions, and the mean value was taken as the final result.
The experimental results are presented in Table 4.

Compared with the other algorithms, NHCOPSO exhibits
superior performance on the optimization functions. The
Friedman test was carried out on the optimized results, and
NHCOPSO was found to have the best average rank (2.21).
This verifies that the overall optimization performance of the
NHCOPSO algorithm is better than that of the other four
algorithms.

D. COMPARISON OF PID PARAMETER OPTIMIZATION
The black box model obtained by identification of the Peltier-
based temperature control system with the LSTM network
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FIGURE 24. PID parameter optimization process.

(see section IV) was used as the control object to optimize the
PID parameters. First, the temperature control targets were
set to 120◦C and 180◦C to compare the control parameter
optimization results for different temperature points in the
same temperature segment. The calculation result u(k) given
by (30) was then used to control the black box model. System
control performance was evaluated in terms of the integrated
time and absolute error (ITAE), which is also used as the
fitness function of NHCOPSO. Finally, the PID parameters
were identified according to the algorithm in Table 3. A
flowchart of this process is shown in Fig. 24.

u(t) = Kpe(t)+ Ki
t∑
j=0

e(j)+ Kdec(t) (30)

ITAE =

∞∫
0

t |e(t)| dt (31)

where e(t) is the difference between the system output and
the target value, and Kp,Ki,Kd represent the proportional,
integral, and differential coefficients of the PID, respectively.
The ITAE is used to evaluate the performance of the con-
trol system, with smaller values indicating better control
performance.

In this study, the ASA [43], PSO [44], and GA [46] meth-
ods were used for PID control parameter optimization, and
their results were compared with those of NHCOPSO. After
several optimization experiments for control parameters in
different ranges, we choose a typical set of search scopes
as an example to show the algorithm comparison results.
The search range was Kp ∈ (0, 3000),Ki ∈ (0, 15),Kd ∈
(0, 8000), and the number of evaluations was set to 10000.
The parameters of NHCOPSO were the same as those spec-
ified in the previous section; the ASA, PSO, and GA param-
eters were set according to references [29], [30], and [32],
respectively. Table 5 lists the parameter values and control
performance of the PID algorithm as optimized by the four
algorithms under the target temperature of 180◦C. Fig. 25
shows the ITAE convergence curves of the four algorithms
during PID parameter optimization under the target tempera-
ture of 120◦C.

NHCOPSO is obviously superior to the other three algo-
rithms in terms of search speed and precision, rapidly iden-
tifying PID control parameters that are more suitable for the
system model at different target temperatures.

FIGURE 25. Convergence curves of ASA, GA, PSO, and NHCOPSO.

FIGURE 26. PID1–PID5 control curves during PID parameter optimization.

To better illustrate how NHCOPSO optimizes the PID
parameters, Table 6 presents five sets of PID parameters
derived during the iteration process, the corresponding con-
trol effect in terms of ITAE, and the fitness between the output
curves of the LSTM network model and the actual model.
On the other hand, comparing the PID control parameter
optimization results shown in Table 5 and Table 6 when the
target temperature is 120◦C and 180◦C, respectively, it can
be demonstrated that the optimal control parameters in a
temperature range are very similar, so segmented PID control
method can be used. Fig. 26 shows the control curves corre-
sponding to the five sets of parameters. Figs. 27–31 show the
response curves of the LSTM network model and the actual
temperature control system controlled by these five sets of
PID parameters. The results verify that the LSTM network
proposed in this paper accurately identifies the Peltier system.

VI. EXPERIMENTS AND COMPARISON
A. SYSTEM STRUCTURE
The test device, shown in Fig. 32, mainly includes an
experimental gas flow control module, a circulating cool-
ing device, the testing device, a power supply module, and
a temperature control circuit board. The circuit board is
connected with Peltier modules in the upper and lower
plates of the cavity through the driving detection line, and
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TABLE 5. Results of PID parameter optimization under the target temperature of 180◦C.

TABLE 6. PID parameters obtained during iteration process under the target temperature of 120◦C.

FIGURE 27. Comparison of the PID1 control curves between the LSTM
network and the actual system (measured).

FIGURE 28. Comparison of the PID2 control curves between the LSTM
network and the actual system (measured).

the temperature around the sensor is then adjusted by heat
conduction. The Peltier module dissipates heat through the
water/coolant circulation system. The cavity is opened or
closed by lifting the upper plate. The upper and lower
plates are served by experimental gas inlet and outlet chan-
nels, respectively, and the flow rate is controlled by the
gas valve.

FIGURE 29. Comparison of the PID3 control curves between the LSTM
network and the actual system (measured).

FIGURE 30. Comparison of the PID4 control curves between the LSTM
network and the actual system (measured).

B. PERFORMANCE TEST OF THE TEMPERATURE CONTROL
SYSTEM
Sections IV and V introduced the intelligent identification
method for the Peltier temperature control system heating
model based on an LSTM network and optimization of the
PID control parameters at 120◦C using NHCOPSO. The
identification model for refrigeration temperature control can
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TABLE 7. Parameters of piecewise PID control.

TABLE 8. Performance of the temperature control system.

FIGURE 31. Comparison of the PID5 control curves between the LSTM
network and the actual system (measured).

be obtained using the same method, and the optimal PID
control parameters at various temperatures can be determined
using NHCOPSO. Different target temperature values were
divided into temperature ranges (see Table 7), and the corre-
sponding PID parameters were used for temperature control.
The temperature interval segmentation method is based on
the optimization results for the control parameters under each
temperature target. In Table 7, Tgoal represents the current
system target temperature, and Tr represents the current room
temperature. The PID parameters of each temperature seg-
ment were obtained by PID parameter optimization at some
temperature Top close to the center of the temperature range.
This section considers five target temperature points,
−40◦C, 0◦C, 60◦C, 120◦C, and 180◦C, and examines the
temperature control performance at each one. The temper-
ature control curve is shown in Fig. 33. The experimen-
tal results show that the Peltier temperature control system

FIGURE 32. Structure of the test device, including the power supply,
temperature control circuit board, heat sink, airflow control module, and
testing device.

allows the target temperature to be reached quickly and stably
at high temperatures (120◦C, 180◦C), moderate temperatures
(0◦C, 60◦C), and low temperatures (−40◦C) and offers a good
degree of temperature stability and control accuracy.

Table 8 compares the performance of the cantilever temper-
ature control system designed in this paper (method 1) with
the devices used in references [5], [6], and [7] (method 2).
The performance of method 2 was measured with tests con-
ducted at the Shanghai Institute of Microsystem and Infor-
mation Technology, Chinese Academy of Sciences. It can
be seen from the table that the heating and cooling speeds
of method 1 are more than five times faster than those of
method 2. The ambient temperature stability around the can-
tilever reaches ±0.05◦C, and the heating/cooling times from
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FIGURE 33. Temperature control curves with corresponding enlargements showing temperature stability at −40◦C, 0◦C, 60◦C,
120◦C, and 180◦C.

room temperature to −40◦C, 60◦C, and 180◦C are much
shorter than when using method 2.

VII. CONCLUSION
This paper described a temperature control system for
a cantilever-based analyzer to characterize gas-sensitive
materials using Peltier elements, an LSTM network,
and an improved PSO algorithm. First, the influence of
environmental temperature control effects on material perfor-
mance evaluation was analyzed. Based on the thermal model
of semiconductor temperature control devices, an innova-
tive cantilever temperature control device based on Peltier
elements was proposed. Second, the nonlinear relationship
between the input PWM duty cycle of the temperature con-
trol system and the temperature around the cantilever was
established using an LSTM network. Finally, an improved
PSO algorithm based on the neighborhood hybrid center and
opposition-based learning was proposed. The NHCOPSO
module offers better performance than other evolutionary
algorithms on benchmark functions and for PID param-
eter optimization for the Peltier temperature control sys-
tem. Experimental results show that the temperature control
range of the Peltier system is −40 to 180◦C, the stabil-
ity is ±0.05◦C, and the maximum heating/cooling speed
is 20◦C/min. Compared with traditional mechanical tem-
perature control methods, this system can greatly reduce

the size of the equipment required for gas-sensing material
characterization. Furthermore, the proposed system improves
the characterization accuracy, increases the heating/cooling
speed, and simplifies the system integration process.

REFERENCES
[1] Y. Bao, P. Xu, S. Cai, H. Yu, and X. Li, ‘‘Detection of volatile-organic-

compounds (VOCs) in solution using cantilever-based gas sensors,’’
Talanta, vol. 182, pp. 148–155, May 2018.

[2] W. Li, M. Li, X. Wang, P. Xu, H. Yu, and X. Li, ‘‘An in-situ TEMmicrore-
actor for real-time nanomorphology & physicochemical parameters inter-
related characterization,’’Nano Today, vol. 35, Dec. 2020, Art. no. 100932.

[3] L. Li, S. He, M. Liu, C. Zhang, and W. Chen, ‘‘Three-dimensional
mesoporous graphene aerogel-supported SnO2 nanocrystals for high-
performance NO2 gas sensing at low temperature,’’ Anal. Chem., vol. 87,
no. 3, pp. 1638–1645, Feb. 2015.

[4] P. Xu, H. Yu, S. Guo, and X. Li, ‘‘Microgravimetric thermodynamic mod-
eling for optimization of chemical sensing nanomaterials,’’ Anal. Chem.,
vol. 86, no. 9, pp. 4178–4187, May 2014.

[5] J. Ni, T. Zhao, L. Tang, P. Qiu, W. Jiang, L. Wang, P. Xu, and W. Luo,
‘‘Solution-phase synthesis of ordered mesoporous carbon as resonant-
gravimetric sensing material for room-temperature H2S detection,’’ Chin.
Chem. Lett., vol. 31, no. 6, pp. 1680–1685, Jun. 2020.

[6] P. Xu, H. Yu, and X. Li, ‘‘Quantitatively extracted Gibbs free-energy
(1G) as criterion to determine working temperature range of gas-sensing
material,’’ in Proc. 18th Int. Conf. Solid-State Sensors, Actuat. Microsyst.
(TRANSDUCERS), Anchorage, AK, USA, 2015, pp. 630–633.

[7] Y. Lv, H. Yu, P. Xu, J. Xu, and X. Li, ‘‘Metal organic framework of
MOF-5 with hierarchical nanopores as micro-gravimetric sensing material
for aniline detection,’’ Sens. Actuators B, Chem., vol. 256, pp. 639–647,
Mar. 2018.

21146 VOLUME 9, 2021



T. Lu et al.: Intelligent Modeling and Design of a Novel Temperature Control System

[8] A. Ihring, E. Kessler, U. Dillner, U. Schinkel, M. Kunze, and S. Billat,
‘‘A planar thin-film peltier cooler for the thermal management of a
dew-point sensor system,’’ J. Microelectromech. Syst., vol. 24, no. 4,
pp. 990–996, Aug. 2015.

[9] S. Yamaguchi and T. Anzai, ‘‘Impact of temperature dependence of resis-
tivity on thermal time constant of direct-current-driven Peltier device,’’
Phys. Status Solidi C, vol. 14, no. 5, 2017, Art. no. 1700118.

[10] K. K. Mahant, A. V. Patel, A. Vala, and R. Goswami, ‘‘FPGA based
temperature control and monitoring system for X-ray measurement instru-
ment,’’ in Proc. IEEE Region Conf. (TENCON), Singapore, Nov. 2016,
pp. 3249–3252.

[11] A. Wassilkowska and T. Woźniakiewicz, ‘‘Application of Peltier cooling
device in a variable-pressure SEM,’’ Solid State Phenomena, vol. 231,
pp. 139–144, Jun. 2015.

[12] M. Deng, A. Inoue, and S. Goto, ‘‘Operator based thermal control of
an aluminum plate with a peltier device,’’ in Proc. 2nd Int. Conf. Innov.
Comput., Inf. Control (ICICIC), Kumamoto, Japan, Sep. 2007, p. 319.

[13] H. Huang, S. Fu, P. Zhang, and L. Sun, ‘‘Design of a small temperature
control system based on TEC,’’ in Proc. 9th Int. Symp. Comput. Intell.
Design (ISCID), Hangzhou, China, Dec. 2016, pp. 193–196.

[14] G. Engelmann, M. Laumen, K. Oberdieck, and R.W. De Doncker, ‘‘Peltier
module based temperature control system for power semiconductor char-
acterization,’’ in Proc. IEEE Int. Power Electron. Motion Control Conf.
(PEMC), Varna, Bulgaria, Sep. 2016, pp. 957–962.

[15] A. K. R. Sombra, F. C. Sampaio, R. P. T. Bascope, and B. C. Torrico,
‘‘Digital temperature control project using peltier modules to improve the
maintenance of battery lifetime,’’ in Proc. 12th IEEE Int. Conf. Ind. Appl.
(INDUSCON), Curitiba, Brazil, Nov. 2016, pp. 1–7.

[16] W. Lyskawinski and W. Szelag, ‘‘Analysis of cooling and heating system
with Peltier cell,’’ in Proc. ITM Web Conf., vol. 19, 2018, Art. no. 01032.

[17] S. Kawahata and M.-C. Deng, ‘‘Operator-based nonlinear temperature
control experiment for microreactor group actuated by peltier devices,’’
Int. J. Autom. Comput., vol. 13, no. 4, pp. 401–408, Aug. 2016.

[18] N. Wang, M. M. Chen, H. Z. Jia, T. Jin, and J. L. Xie, ‘‘Study of voltage-
controlled characteristics for thermoelectric coolers,’’ J. Electron. Mater.,
vol. 46, no. 5, pp. 1–6, 2017.

[19] R. Sekiguchi, Y. Liu, and Y. Sano, ‘‘Thermal equivalent circuit of peltier
device considered seebeck effect and driving method improving cool-
ing efficiency of the device,’’ Electron. Commun. Jpn., vol. 101, no. 5,
pp. 73–83, May 2018.

[20] Y. Guoqiang, L. Weiguang, and W. Hao, ‘‘Study of RBF neural network
based on PSO algorithm in nonlinear system identification,’’ in Proc. 8th
Int. Conf. Intell. Comput. Technol. Autom. (ICICTA), Nanchang, China,
Jun. 2015, pp. 852–855.

[21] X. Gao, B. Sun, and S. Wang, ‘‘Hopfield neural network identification
for Preisach hysteresis system,’’ in Proc. 37th Chin. Control Conf. (CCC),
Wuhan, China, Jul. 2018, pp. 1580–1584.

[22] Q. Lv, Y. Zhang, and H. Lin, ‘‘A method of dynamic system identification
based on memory RBF network,’’ in Proc. Chin. Control Decis. Conf.
(CCDC), Yinchuan, China, May 2016, pp. 3051–3054.

[23] X. W. Zhang, ‘‘Temperature and humidity control system identification
based on neural network in heating and drying system,’’ Appl. Mech.
Mater., vol. 686, pp. 439–447, Oct. 2014.

[24] G. Wang, X. Yao, J. Cui, Y. Yan, J. Dai, and W. Zhao, ‘‘A novel piezoelec-
tric hysteresis modeling method combining LSTM and NARX neural net-
works,’’Modern Phys. Lett. B, vol. 34, no. 28, Oct. 2020, Art. no. 2050306.

[25] R. Han, R.Wang, and G. Zeng, ‘‘Identification of dynamical systems using
a broad neural network and particle swarm optimization,’’ IEEE Access,
vol. 8, pp. 132592–132602, 2020, doi: 10.1109/ACCESS.2020.3009982.

[26] S. S. Miriyala and K. Mitra, ‘‘Deep learning based system identification
of industrial integrated grinding circuits,’’ Powder Technol., vol. 360,
pp. 921–936, Jan. 2020.

[27] S. Wen, Y. Wang, Y. Tang, Y. Xu, P. Li, and T. Zhao, ‘‘Real-time identi-
fication of power fluctuations based on LSTM recurrent neural network:
A case study on Singapore power system,’’ IEEE Trans. Ind. Informat.,
vol. 15, no. 9, pp. 5266–5275, Sep. 2019.

[28] N. Hirose and R. Tajima, ‘‘Modeling of rolling friction by recurrent neural
network using LSTM,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Singapore, May 2017, pp. 6471–6478.

[29] Z. Wang, C. Li, X. Lai, N. Zhang, Y. Xu, and J. Hou, ‘‘An integrated
start-up method for pumped storage units based on a novel artificial sheep
algorithm,’’ Energies, vol. 11, no. 1, Jan. 2018, Art. no. 151.

[30] T. Wu, C. Zhou, Z. Yan, H. Peng, and L. Wu, ‘‘Application of PID
optimization control strategy based on particle swarm optimization (PSO)
for battery charging system,’’ Int. J. Low-Carbon Technol., vol. 15, no. 4,
pp. 528–535, Nov. 2020.

[31] N. I. M. Azmi, N. M. Yahya, H. J. Fu, and W. A. W. Yusoff, ‘‘Opti-
mization of the PID-PD parameters of the overhead crane control system
by using PSO algorithm,’’ in Proc. MATEC Web Conf., vol. 255, 2019,
Art. no. 04001.

[32] H. Feng, C.-B. Yin, W.-W. Weng, W. Ma, J.-J. Zhou, W.-H. Jia, and
Z.-L. Zhang, ‘‘Robotic excavator trajectory control using an improved GA
based PID controller,’’Mech. Syst. Signal Process., vol. 105, pp. 153–168,
May 2018.

[33] Y. Qin, L. Sun, and Q. Hua, ‘‘Environmental health oriented optimal
temperature control for refrigeration systems based on a fruit fly intelligent
algorithm,’’ Int. J. Environ. Res. Public Health, vol. 15, no. 12, Dec. 2018,
Art. no. 2865.

[34] M. H. Sadafi, R. Hosseini, H. Safikhani, A. Bagheri, and
M. J. Mahmoodabadi, ‘‘Multi-objective optimization of solar thermal
energy storage using hybrid of particle swarm optimization and multiple
crossover and mutation operator,’’ Int. J. Eng., vol. 24, no. 4, pp. 367–376,
2011.

[35] H. Sun, Z. Deng, J. Zhao, H. Wang, and H. Xie, ‘‘Hybrid mean center
opposition-based learning particle swarm optimization,’’ Acta Electronica
Sinica, vol. 47, no. 9, pp. 1809–1818, 2019.

[36] L.-Y. Zhou, L.-X. Ding, H. Peng, and X.-L. Qiang, ‘‘Neighborhood cen-
troid opposition-based particle swarm optimization,’’ Tien Tzu Hsueh
Pao/Acta Electron. Sin., vol. 45, no. 11, pp. 2815–2824, 2017.

[37] I. B. Aydilek, ‘‘A hybrid firefly and particle swarm optimization algorithm
for computationally expensive numerical problems,’’ Appl. Soft Comput.,
vol. 66, pp. 232–249, May 2018.

[38] M. Ghasemi, E. Akbari, A. Rahimnejad, S. E. Razavi, S. Ghavidel, and
L. Li, ‘‘Phasor particle swarm optimization: A simple and efficient variant
of PSO,’’ Soft Comput., vol. 23, no. 19, pp. 9701–9718, Oct. 2019.

[39] L. Zadeh, ‘‘From circuit theory to system theory,’’ Proc. IRE, vol. 50, no. 5,
pp. 856–865, May 1962.

[40] R. Pascanu, T. Mikolov, and Y. Bengio, ‘‘On the difficulty of training
recurrent neural networks,’’ 2012, arXiv:1211.5063. [Online]. Available:
http://arxiv.org/abs/1211.5063

[41] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[42] J.-H. Seo, C.-H. Im, C.-G. Heo, J.-K. Kim, H.-K. Jung, and C.-G. Lee,
‘‘Multimodal function optimization based on particle swarm optimiza-
tion,’’ IEEE Trans. Magn., vol. 42, no. 4, pp. 1095–1098, Apr. 2006.

[43] H. R. Tizhoosh, ‘‘Opposition-based learning: A new scheme for machine
intelligence,’’ in Proc. Int. Conf. Comput. Intell. Modeling, Control Autom.
Int. Conf. Intell. Agents, Web Technol. Internet Commerce (CIMCA-
IAWTIC), Vienna, Austria, 2005, pp. 695–701.

[44] J. Kennedy and R. Mendes, ‘‘Population structure and particle swarm
performance,’’ in Proc. Congr. Evol. Comput. (CEC), Honolulu, HI, USA,
vol. 2, 2002, pp. 1671–1676.

TIANHAI LU received the B.S. degree in electronic science and technology
from Soochow University, China, in 2018, where he is currently pursuing
the M.S. degree. His research interests include circuit system design and
intelligent information processing.

CHAO FEI received the B.S. degree in electronic information science
and technology from Nantong University, China, in 2018. He is currently
pursuing the M.S. degree in electronics and communication engineering
with Soochow University. His main research interests include information
acquisition and intelligent processing technology.

LIN XUAN is currently pursuing the M.S. degree in electronic science
and technology with the School of Electronic and Information Engineering,
Soochow University, Suzhou, China. Her current research interest includes
structure design and signal processing technology of MEMS sensors.

VOLUME 9, 2021 21147

http://dx.doi.org/10.1109/ACCESS.2020.3009982


T. Lu et al.: Intelligent Modeling and Design of a Novel Temperature Control System

HAITAO YU received the B.S. degree in physics from Peking University, in
2004, and the Ph.D. degree in microelectronics and solid state electronics
from the Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, in 2009. He is currently a Professor with
the State Key Laboratory of Transducer Technology, Shanghai Institute of
Microsystem and Information Technology, Chinese Academy of Sciences.
His current research interests include MEMS chemical sensors and lab-on-
chip. Since 2017, he has been appointed as a member of the Youth Innovation
Promotion Association CAS.

DACHENG XU received the B.S. degree in physics education from North-
west Normal University, Gansu, China, in 1984, and the M.S. degree in cir-
cuits and systems from the University of Electronic Science and Technology,
Sichuan, China, in 1992. He was a Visiting Scholar with Twente Univer-
sity, Enschede, The Netherlands, and the National University of Singapore,
Singapore. He is currently a Professor with the Department of Electronics
and Information, Soochow University, Suzhou, China. His research interests
include vibration energy harvester signal processing and MEMS inertial
sensor circuit designing and measurement technology.

XINXIN LI received the B.S. degree from Tsinghua University and the
Ph.D. degree from Fudan University. He worked as a Research Associate
with the Hong Kong University of Science and Technology. He worked as
a Research Fellow with Nanyang Technological University, Singapore. He
joined Tohoku University, Japan, as a Lecturer (COE Fellowship). Since
2001, he has been a Professor. He has also worked as an Adjunct Professor
with Fudan University, Shanghai Jiaotong University, Dalian University of
Technology, Shanghai Tech University, and Suzhou University. From 2009
to 2013, he had worked as a Consultant Professor for World Class University
Program of Korean with Chonnam National University, South Korea. He
is currently working as the Director of the State Key Lab of Transducer
Technology, Shanghai Institute ofMicrosystem and Information Technology,
Chinese Academy of Sciences. He was granted the National Science Fund
for Distinguished Young Scholar, in 2007. His Ph.D. student was awarded
National Excellent 100 Ph.D. Dissertation, in 2009. He has invented about
100 patents and published more than 300 articles in refereed journals and
conferences (including about 170 SCI journal articles). His research interests
include micro/nano sensors and MEMS/NEMS. He ever served as TPC
member for the conferences of the IEEE MEMS, Transducers, and IEEE
Sensors. He is the Editorial Member of the Journal of Micromechanics and
Microengineering. He is the International Steering Committee Member of
Transducers.

21148 VOLUME 9, 2021


