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ABSTRACT This article considers bulky item delivery problems in which multiple items are retrieved and
loaded onto a vehicle from different warehouses and then delivered. This problem is described as a double
traveling salesman problem with three-dimensional container loading constraints with multiple stacks. The
double TSP with multiple stacks is used to determining the shortest route performing pickups and deliveries
in two separated networks (one for pickups and one for deliveries) using only one container. Repacking is not
allowed after loading the items into the container. An integer linear programming model is proposed to solve
this problem, a standard genetic algorithm and an improved genetic algorithm is designed. In the improved
genetic algorithm, a Lin-Kernighan algorithm is used to improve the delivery route, a k-means clustering
algorithm, and a heuristic packing scheme improvement rules work together to improve the loading route.
The results show that the improved genetic algorithm is superior to the standard genetic algorithm in large
scale problems.

INDEX TERMS Double traveling salesman problem, three-dimensional container loading, bulky item
delivery, genetic algorithm.

I. INTRODUCTION
The rapid development of e-commerce has significantly
propelled the growth and improvement of the modern logis-
tics industry. According to the National Retail Federa-
tion, in 2015, almost 60% of Amazon’s online transactions
included free shipping, which meant the company paid bil-
lions in shipping expenses. With such a trend and the fact that
shipping and delivery are very costly, companies make every
effort to reduce the transportation expenses on a per package
and per order basis. Of course, the features of the ship-
ping and delivery process largely depend upon the nature of
goods.

It is not surprising for a consumer to spend a few minutes
online and easily place an order for a refrigerator, wash-
ing machine, or treadmill, with delivery and installation in
two days. For e-commerce players and logistics companies,
the most challenging part is delivery. Among their biggest
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challenges is working out the logistics for heavy and bulky
items. According to our survey conducted at a distribution
center of RRS Logistics, a leading bulky item logistics com-
pany in China that provides logistics services for heavy and
large household appliances orders, the following features
have to be considered when shipping and delivering bulky
items.

First, bulky items with large volumes and heavy mass
commonly require large storage spaces, specific storage facil-
ities, and material handling equipment. In bulky item logis-
tics companies, warehouses are often designed for particular
types ofmerchandise. Thus, different types of items are stored
in and retrieved from different warehouses. When the orders
are delivered, the orders assigned to a truck consist of mul-
tiple items with various delivery destinations. As illustrated
in Fig.1, five items a, b, c, d, and e are assigned to a truck.
These items are stored in three warehouses (D1, D2, and
D3). The truck driver usually is the one who decides how
to pick up, to load the truck, and to deliver the items in
logistics practice. Fig.1 presents one possible loading route
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FIGURE 1. Illustration of bulky-item distribution process.

0p → D1 → D2 → D3 → 0p, and one possible
delivery route 0D → d → e → c → a → b → 0D,
where 0p and 0D are pseudo-depots for loading and delivery
operations. Therefore, two routing problems are necessary
when considering loading and delivery.

Second, since handling bulky items is laborious and
time-consuming, the loading and positioning sequences sig-
nificantly influence the loading and delivery efficiency and
are inherently related to routing problems. There are blocking
relationships among bulky items in a limited space. Thus,
reloading is inevitable if an item is delivered before the
ones spatially blocking it, significantly diminishing delivery
efficiency.

The bulky item delivery problem with the aforementioned
features can be abstracted as a double traveling salesman
problem (DTSP) with loading constraints. Two routes are
identified in two separate networks, i.e., a loading route
and a delivery route, with a corresponding feasible vehicle
loading plan. Reference [1] has investigated a similar DTSP
problem considering two-dimensional container loading con-
straints with multiple stacks. In their model, the vehicle
space is considered a rectangular shape and divided into
several horizontal stacks. No vertical stacking is allowed.
However, from a practical perspective, both the packages and
the vehicle space are cuboid-shaped. Thus, vertical stacking is
usually inevitable, which means three-dimensional (3D) con-
tainer loading constraints should be considered. In a related
area, vehicle routing problems with loading constraints were
researched by [2] and [3], who indicated that most related
works decoupled the problems into two stages. The routing
problems are handled at the first stage, and the container
loading problems are solved at the second stage with the
previously generated routes as the constraints. This two-stage
approach does not lead to joint optimization since the routing
and loading problems are inherently coupled. However, inte-
grating 3D loading constraints into a routing problem com-
plicates the model significantly as it affects the formulation
at the bottom in terms of the definitions of the variables and
descriptions of the constraints.

To our knowledge, [4] first proposed amathematical model
that integrated capacity-constrained vehicle routing prob-
lems with 3D loading constraints (3L-CVRP). In their work,
the orientation and stability constraints in a 3D space were
formulated. Reference [5] and [6] further extended the load-
ing feasibility constraints by considering support surface and

FIGURE 2. Blocking relationship in a 3D container.

vulnerability constraints. In these existing 3L-CVRP models,
sequence-based loading is usually assumed, which means
that the loading sequence is the exact reverse of the delivery
sequence. As shown in the example in Fig.2, if the possible
loading sequence is b → c → d → e → a, then the
only delivery sequence is a → e → d → c → b. This
assumption greatly restrains the possible loading and delivery
sequences for cargo loaded in 3D spaces. Multiple possible
delivery sequences correspond to the loading sequence b→
a → c → e → d , such as e → d → a → c → b or
d → e → c → a → b. Thus, without the assumption
of sequence-based loading, the spatial constraints interacting
with the loading and delivery sequences become much more
complicated. Besides, for the bulky item delivery situation
considered in this article, where different item types are
retrieved from different warehouses, sequence-based load-
ing inevitably leads to repeat visits to the same pickup
nodes.

This article aims to study bulky item delivery problems
by pursuing the joint optimization of the DTSP and 3D
container loading problems. An integer linear programming
model, abbreviated as 3L-DTSPMS, is established, and the
coupling relationship between pickup/delivery routing and
the item-loading sequence is specifically formulated. It is
assumed that different types of items with identical physical
sizes are loaded into a single container with loading sta-
bility constraints and blocking relationship constraints. The
assumption of sequence-based loading commonly consid-
ered in related works is relaxed in this study. An improved
genetic algorithm is designed to solve the problem. A Lin-
Kernighan algorithm is used to improve the delivery route, a
k-means clustering algorithm, and a heuristic packing scheme
improvement rules work together to improve the loading
route. A numerical study is conducted to verify the efficiency
of the proposed algorithm. The remainder of the article is
organized as follows. In section II, the related works are
reviewed. The proposed 3L-DTSPMS model is formulated
in section III, followed by the presentation of the algo-
rithms in section IV. In section V, a numerical study is
carried out. Conclusions and future works are discussed in
section VI.

VOLUME 9, 2021 13053



M. Ruan et al.: Double Traveling Salesman Problem With Three-Dimensional Loading Constraints for Bulky Item Delivery

TABLE 1. Models and Algorithms for the DTSPMS.

II. RELATED WORKS
Reference [1] initially established a DTSPMS model with
two-dimensional loading constraints. Since then, the prob-
lem has received increasing attention. In the past decades,
formulations and algorithms have been developed for this
problem, which is summarized in Table 1. From the model
features listed in Table 1, it is obvious that all the literature
on DTSPMS considered two-dimensional container loading
constraints. In other words, only horizontal stacking and
infeasible load constraints in the horizontal direction were
considered. However, in the bulky item delivery problem,
the cuboid features of the boxes and vehicles are critical
for feasible loading and delivery plans. Therefore, verti-
cal stacking and 3D load-infeasible constraints have to be
considered.

The 3D container loading constraints were considered
in some research on capacity-constrained vehicle routing
problems (3L-CVRP) and pickup and delivery problems
(3L-PDP). In the first study to address 3L-CVRP, [27] pro-
posed a tabu search algorithm to solve the 3L-CVRP and
considered sequence-based loading, stacking, and vertical
stability constraints, as well as the fixed vertical orientation
of the items in the vehicles. Reference [4] established the first
mathematical model for a 3L-CVRP and proposed a GRASP
algorithm to solve it. Reference [6] proposed a 3L-CVRP
model, which was solved using a mathematical program-
ming solver Gurobi, with the assumptions of a homogeneous
vehicle fleet, sequence-based loading, stacking constraints,
orientation constraints, and stability constraints. Reference
[28] proposed a heterogeneous fleet vehicle routing problem
with 3D loading constraints (3L-HFVRP) and developed an

adaptive variable neighborhood search utilizing an extreme
point-based first-fit heuristic to find a feasible loading pattern
for each route.

Reference [29] modeled a capacitated vehicle routing
problem minimizing fuel consumption under 3D loading
constraints (3L-FCVRP) and adopted an evolutionary local
search framework that incorporated a recombination method
to explore the solution space. Reference [30] proposed a
column generation technique-based heuristic for 3L-CVRP
and applied an efficient heuristic pricing method to speed
up the column generation. Reference [31] and [32] investi-
gated VRPs with backhauls, time windows, and 3D loading
constraints. Reference [33], [34] extended the classic pickup
and delivery problem to integrate routing and 3D loading
problems (3L-PDP). They did not give the mathematical
problem formulation but proposed a hybrid algorithm to solve
the 3L-PDP.

Reference [35] focused on the split delivery vehicle routing
problem with three-dimensional loading constraints combin-
ing vehicle routing (3L-SDVRP) with a proposed hybrid
algorithm consisting of a local search algorithm for routing
and a genetic algorithm and several construction heuristics for
packing. Reference [36] investigated a vehicle routing prob-
lem with three-dimensional loading constraints and mixed
backhauls (3L-VRPMB) and proposed a hybridmetaheuristic
consisting of a reactive tabu search for the routing problem
and different packing heuristics for the loading problem.
Reference [37] proposed a new integrated model to incorpo-
rate both the three-dimensional and time window aspects of
the routing problem (3L-CVRPTW), developing a two-stage
algorithm solve it. In the first stage, a simulated annealing
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FIGURE 3. Cartesian coordinate system for the 3D vehicle loading space.

algorithm was used to determine the number of vehicles
required, the number of routes, the order of the service, and
each node’s service time; then, these decisions were entered
three-dimensional loading problem.

To our best knowledge, 3D loading constraints have not
been addressed in the related works on DTSPMS. Thus, this
paper’s major contribution is to mathematically formulate a
3D loading constrained DTSPMS by considering the cou-
pling relationship of the pickup/delivery routes and the item
loading sequence. An improved genetic algorithm is designed
correspondingly.

III. 3L-DTSPMS FORMULATION
The objective of the 3L-DTSPMS is to identify the short-
est routes performing loading and delivery in two relatively
separate regions and identify an associated, feasible 3D con-
tainer loading plan. In this article, the Cartesian coordinate
system is employed for the 3D vehicle loading space, as illus-
trated in Fig.3. It is assumed that the vehicle is rear-loaded
(i.e., X dimension in Fig.3). Lifting the boxes in the height
direction (i.e., Y dimension in Fig.3) or moving them in the
width direction (i.e., R dimension in Fig.3) is not permitted
in the loading or unloading operations.

A. NOTATIONS
The notations for the 3L-DTSPMS formulation are shown
in Table 2.

B. MATHEMATICAL FORMULATION
Themodel is formulated based on the following three aspects.
First, the loading position is described using the first octant
of the Cartesian coordinate system. Fig.3 illustrates the coor-
dinate system with the back-bottom-left corner of the vehi-
cle’s container at the origin of the coordinate system. The
boxes’ front-upper-right corner is mapped to Cartesian coor-
dinate point (r, x, y), where r , x, and y denote the width
position, length position, and height position, respectively.
We use R,X , and Y to represent the index set of the

TABLE 2. Notations of the 3L-DTSPMS Formulation.

corresponding elements. The container is divided into mul-
tiple stacks. For instance, the container in Fig.3 is divided
into five stacks. Since all the items are identical, we do not
consider the items’ true dimensions, but the dimension is
used as a unit (i.e., stack 1, stack 2, and so on). Since the
item of customer i and the location of customer i correspond
one-to-one, without loss of generality, the item of customer i
and the location of customer i are represented with the same
notation, i. It is assumed that the container is cuboid shaped
and that the width, the length, and the height of the container
are integers. All items are assumed to have identical shapes
and sizes.

Second, the loading position feasibility constraints are
considered in terms of vertical stability and blocking rela-
tionships. To ensure the boxes’ vertical stability, certain
restrictions are introduced to avoid suspending the boxes
in the vertical direction. When a box is loaded into the
container, it must be placed at the bottom of the container
(i.e., boxes a(1,5,1) and b(3,3,1) in Fig.3) or directly above
other boxes (i.e., box c(4,1,2), d(1,2,2), and box e(2,1,4)
in Fig.3). To describe the blocking relationship constraints,
the container is divided into several independently accessible
loading stacks. When a box is moved out of the container,
all the boxes immediately above and to the right in front of
it must first be moved. The boxes are allowed to be piled in
the vertical direction since fragility is not considered in this
work.

Third, the DTSP route constraints with multiple loading
warehouses are considered. It is assumed that each order con-
sists of exactly one item with an associated loading location
and delivery destination. Several orders can be picked up
from the same warehouse in a practical situation, storing the
same item type, whichmeans a warehouse with shared pickup
items might be revisited in the loading process. To manage
this situation, it is assumed that different orders correspond
to different loading nodes, while different loading nodes may
have the same coordinates. The distance between any two
loading nodes with the same coordinates is assumed to be
zero.

An integer linear programming formulation for the
3L-DTSPMS is given as follows. The objective is to mini-
mize the total loading and delivery route costs with DTSP
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TABLE 3. Decision Variables of the 3L-DTSPMS Formulation.

route constraints, loading stability constraints, and blocking
relationship constraints in a 3D vehicle container.

Objective function:

min
∑
T∈T
i,j∈V T

cTij x
T
ij (1)

s.t.
∑
i∈V T

xTij = 1, T ∈ T , j ∈ V T (2)

∑
j∈V T

xTij = 1, T ∈ T , i ∈ V T (3)

yTij + y
T
ji = 1, T ∈ T , i, j ∈ I (4)

yTik + y
T
kj ≤ y

T
ij + 1, T ∈ T , i, j, k ∈ I (5)

xTij ≤ y
T
ij , T ∈ T , i, j ∈ I (6)∑

r∈R,x∈X ,y∈Y
zrxyi = 1, i ∈ I (7)

∑
i∈I

zrxyi = 1, r ∈ R, x ∈ X , y ∈ Y (8)

zrx(y+1)i ≤ ξ rxy, r ∈ R, x ∈ X , y ∈ Y, i ∈ I (9)

ξ rxy =
∑
i∈I

zrxyi , r ∈ R, x ∈ X , y ∈ Y (10)

zrxyi + z
r(x+s)y
j ≤ 1+ ypij, r ∈ R, x ∈ X , s ∈ S,

S = {1, 2, . . . ,L − x}, y ∈ Y, i, j ∈ I , i 6= j (11)

zrxyi + z
r(x+s)y
j ≤ 1+ yDji , r ∈ R, x ∈ X , s ∈ S,

S = {1, 2, . . . ,L − x}, y ∈ Y, i, j ∈ I , i 6= j (12)

zrxyi + z
rx(y+1)
j ≤ 1+ ypij,

r ∈ R, x ∈ X , y ∈ Y, i, j ∈ I , i 6= j (13)

zrxyi + z
rx(y+1)
j ≤ 1+ yDji ,

r ∈ R, x ∈ X , y ∈ Y, i, j ∈ I , i 6= j (14)

xTij , y
T
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j (15)

zrxyi , ξ rxy ∈ B, r ∈ R, x ∈ X , y ∈ Y, i ∈ I (16)

1) DTSP ROUTE CONSTRAINTS
Equation (2) and (4) restrict each loading or delivery oper-
ation to only one loading or delivery node. Equation (4)
guarantees the only precedence relationship between any two
nodes. Equation (5) ensures that if node i is visited before
node k , and node k is visited before node j, then node i is
always visited before node j. In addition, (5) also plays a role

as a subtour eliminator. Equation (6) restricts the relationship
between variable xTij and variable y

T
ij . Equation (15) indicates

that the decision variable is binary.

2) LOADING STABILITY CONSTRAINTS
Equation (7) ensures that each box can only be loaded in
one position in the container. Equation (8) indicates that
one position can only be assigned to one box. Equation (9)
indicates that if ξ rxy takes the value 1, then there is a box at
coordinate point (r, x, y), and box imay or may not be loaded
immediately above the coordinate point (r, x, y). Otherwise,
if ξ rxy takes the value 0, then box i cannot be loaded immedi-
ately above the coordinate point (r, x, y). Additionally, (10)
ensures that there is only one box at coordinate point (r, x, y),
and restricts the relationship between variable ξ rxy and vari-
able zrxyi . Equation (16) indicates that the decision variable is
binary.

3) BLOCKING RELATIONSHIP CONSTRAINTS
Equations (11) - (14) bind the container loading variables to
the routing problem variables and ensure that box reloading
will not happen in the delivery process. To describe the block-
ing relationship in the horizontal direction, (11) indicates
that if box i is loaded in position (r, x, y), and box j is to
be immediately loaded next, then box j might be loaded in
position (r, x + 1, y) or (r, x + 2, y), . . . , or (r,L, y), and
thus yPij = 1. In this case, (12) guarantees that box j must
be delivered before box i in the delivery route, i.e. yDji = 1,
since box i is blocked by box j in the horizontal direction.
To describe the blocking relationship in the vertical direction,
(13) indicates that if box i is loaded in position (r, x, y),
the box j is to be immediately loaded next, and then box j
might be loaded in position (r, x, y + 1), and thus yPij = 1.
In this case, (14) guarantees that box j must be delivered
before box i in the delivery route, i.e. yDji = 1, since box i
is blocked by box j in the vertical direction.

IV. GENETIC ALGORITHM FOR 3L-DTSPMS
The proposed model can be solved using a standard MIP
solver, Gurobi, to obtain optimal solutions when the problem
size is smaller than 12 items (i.e., there are 24 nodes in the
loading and delivery network). However, when the problem
size reaches 13 items (i.e., there are 26 nodes in the loading
and delivery network), it will take hours for Gurobi to find
the optimal solution. According to the data from the RRS
Logistics Company in China, a typical number of orders
handled by a vehicle is commonly in the range of 30 to
50 items. Therefore, the genetic algorithm is employed in this
article.

A. STANDARD GENETIC ALGORITHM
In the standard genetic algorithm, the delivery route is rep-
resented as a chromosome, and chromosomes make up the
initial population G0. A loading route and loading plan based
on the current population generation are then constructed.
The complete solution consists of a loading route, a 3D
container loading plan, and a delivery route. After a delivery
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route (a chromosome in this population) has been generated,
a loading route is generated by inverting the delivery route.
For example, when the delivery route is v1 → v2 → . . . →

vn, the loading route is vn → vs−1 → . . . → v1. A feasible
3D container loading plan is then generated as follows. The
loading route identifies the loading sequence. The first box
is loaded in the back-bottom-left corner of the container,
i.e., the initial position (1, 1, 1). For subsequently loaded
boxes, the set of available positions are generated in turn.
These positions must be in front, to the right, or immediately
above the previously loaded box. The loading position is
randomly selected from the set of available positions when
an item is loaded until all the items are loaded into the
container. The total route cost C of a complete solution is
used to indicated the fitness of the population Genk (k =
0, 1, . . . , kmax), the fitness function is expressed as sk = 1/C .
After the current population’s fitness is calculated, the genetic
algorithm selection, crossover, and mutation are carried out
below. The crossover and mutation operators work only on
the delivery routes, adopting the genetic algorithm’s stan-
dard operation, namely, the roulette wheel selection strategy,
position-based crossover, and reciprocal exchange mutation.
Multiple iterations are then carried out. The procedure for the
standard genetic algorithm is given in Algorithm 1.
Reference [38] showed that the roulette wheel selection

complexity was O(n2), Where n is the number of customer
points in the delivery route. Therefore, the genetic algorithm’s
complexity can approximately express as O(MaxGen×λn2).
Where MaxGen represents the maximum number of itera-
tions, and λ represents the population size. In the standard
genetic algorithm for solving 3L-DTSPMS, the loading route
is reversely generated according to the delivery route. The
complexity analysis of generating packing scheme according
to packing route is as follows: load the first customer’s box
on the loading route to the (1,1,1) position of the container,
the second customer’s box can be placed in a maximum of
three positions in the container, i.e., in front, to the right,
or immediately above the previously loaded box, the third
customer’s goods can be placed in a maximum of 5 positions
in the container, i.e., in front, to the right, or immediately
above the previously loaded box, and so on. The formula for
calculating the worst time complexity of the packing part is
shown in the formula: O(1) + O(3) + O(5) + . . . + O(2n −
1) = O(n2). Therefore, the standard genetic algorithm’s
complexity is O(MaxGen× λ(n2 + n2)).

B. IMPROVED GENETIC ALGORITHM
An improved genetic algorithm is now introduced to tackle
the 3L-DTSPMS and improve the delivery and loading route.
In generating and improving the delivery route, the genetic
algorithm is used to optimize and improve the delivery
route. The Lin-Kernighan algorithm ( [39]–[41]) improves
the genetic algorithm in the initial population generation part.
As the pickup warehouses are independent of each other,
and because customers’ items may be located in the same
warehouse, a k-means clustering algorithm ( [42]) is used

Algorithm 1 Standard Genetic Algorithm
Require: 3L-DTSPMS problem data, item number N ,

crossover probability pc, mutation probability pm, maxi-
mum iteration number kmax

Ensure: Best solution to 3L-DTSPMS
1: Construct initial population G0, each chromosome is

encoded by a delivery route
2: for (k := 1 to kmax) do
3: Reverse all chromosomes to form the populationGk−1

loading route
4: Generate the loading plan according to the loading

route Gk−1
5: Evaluate the fitness of initial population Gk−1, s∗ ∈

Gk−1 is the current best solution
6: Select the delivery route in Gk−1
7: Parental chromosomes are selected inGk−1 by roulette

wheel selection
8: Crossover using position based crossover operator

with probability pc
9: Mutate using reciprocal exchange mutation operator

with probability pm
10: Generate complete solution
11: Generate Gk
12: Calculate the fitness of population Gk , and set the

current best solution as sc
13: Set sk = sc
14: if the fitness of sc ≤ the fitness of s∗ then
15: s∗ = sc
16: end if
17: end for
18: Return the best solution.

to optimize the loading route when the route is processed.
The blocking relation of the loading plan is also considered
at this point, and a heuristic method is adopted to regenerate
the loading path.

First, an approximate optimal delivery route is gener-
ated according to a genetic algorithm. In this stage, the
Lin-Kernighan algorithm is used to optimize the generation
of the delivery route’s initial solution. The pseudo-code of the
algorithm is shown inAlgorithm 2. In contrast toAlgorithm 1,
the delivery route’s cost is used as the evaluation of fitness
function. According to the Lin-Kernighan algorithm ( [41]),
suppose gi = Dstart(Xi)end(Xi) − Dstart(Yi)end(Yi) is the gain of
deleting an edgeXi and adding Yi. TheD value of an edgeXi is
expressed as the distance from start(Xi) to end(Xi), Gi be the
sum of g1+ . . .+ gi. See Algorithm 3 for the pseudo code of
the Lin-Kernighan algorithm used. Refer to the [39] for the
specific content of the Lin-Kernighan algorithm. The com-
plexity of Lin-Kernighan algorithm was O(n2.2) (see refer-
ence [39] for details). Therefore, the complexity of improved
delivery route GA algorithm is O(MaxGen× λ(n2 + n2.2)).
Since the loading route in GA (Algorithm 1) is generated

by the direct reversal of the delivery route, many routes
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Algorithm 2 Improved Delivery Route Genetic Algorithm
Require: Items delivery location data, item number N ,

crossover probability pc, mutation probability pm, maxi-
mum iteration number kmax

Ensure: Best solution to delivery route
1: Construct initial population Gen0, each chromosome is

encoded by a delivery route
2: for (k := 1 to kmax) do
3: for (each chromosome of population Genk−1) do
4: The Lin-Kernighan algorithm(Algorithm 3) is used

to improve the initial chromosome which consisting
of a distribution route

5: Generate new each chromosome of population
Genk−1

6: end for
7: Selection, crossover, mutation and evolution of

Genk−1 chromosome are perform. The specific steps
are shown in step 5-16 of Algorithm 1

8: end for
9: Return the best solution.

that repeatedly visit the same warehouse. Therefore, so the
next step is to improve the loading route. Due to the cou-
pling relationship between the loading route and the deliv-
ery route, when the approximate optimal delivery route and
loading route are generated, respectively, a blocking relation-
ship is established between items. The blocking relationship
between the loading route and the delivery route should be
considered first when optimizing the loading route. There-
fore, steps 3 and 4 in Algorithm 1 need to be improved. When
improving the loading route, the loading plan also needs to
be changed to align the current loading route and packing
scheme with the current delivery route.

The blocking relationship between items can be defined as
follows: if two items i and j in two route networks (loading
route and delivery route) are not accessed in the same order
(i.e., i precedes j or j precedes i), then the two items have
a blocking relationship. The constraint of the load blocking
relationship is that for an item with coordinates (r, x, y),
only items with coordinates (r, x, y+1) above and (r, x+1, y)
behindmay blocked that item. The route’s adjustmentmode is
illustrated in Fig.4, which is shown from the same perspective
as that in Fig.2. If the items i and j are located in the same
stack, there are three possible situations (i.e. in B1, B2, and
U1 Fig.4). For the situations B1 and B2 situations in Fig.4,
since items i and j have a blocking relationship, their positions
in the loading route and the loading plan will be exchanged to
preserve the feasibility. For situation U1 in Fig.4, there is no
need to exchange the positions of items i and j in the loading
route since they do not have a blocking relationship. If items
i and j are located in different stacks as illustrated by U2 in
Fig.4, they do not have a blocking relationship. Therefore,
it is not necessary to exchange their positions in the loading
route.

Algorithm 3 Lin-Kernighan Algorithm
Require: An initial chromosome consisting of a delivery

route Ts
Ensure: An improved route T ∗

1: while No stopping criterion is triggered do
2: Set i = 1. Choose a node from route Ts as t1. t1 is the

start node of the entire search procedure
3: if every node has already been tested as t1 then
4: Stop and return the improved route T ∗

5: end if
6: Choose an edge X1 = (t1, t2) that belongs to T
7: if all edges have been tried as X1 then
8: go to step 2
9: end if

10: Choose an edge Y1 = (t2, t3) that does not belong to
T. so that G1 = g1 > 0

11: if this is impossible and all choices for Y1 have been
tested then

12: go to step 6
13: end if
14: Set i = i+ 1;
15: Choose Xi = (t2i−1, t2i), such that:
16: a. Xi 6= Yp, for all p < i, and
17: b. Add an edge between t2i and t1 so that T ∪Y \X can

form a route T ′

18: if T ′ is a shorter route than T then
19: set T = T ′ and T ∗ = T ′

20: end if
21: if i = 2 and all choices for Xi have been tested then
22: set i = 1, go to step 10
23: end if
24: if i > 2 and all choices for Xi have been tested then
25: set i = 2, go to step 27
26: end if
27: Choose Yi = (t2i, t2i+1), such that:
28: a. Gi = g1 + . . .+ gi > 0,
29: b. Yi 6= Xp for all p ≤ i, and
30: c. Xi+1 exists
31: if Yi can be chosen then
32: go to step 14
33: end if
34: if i = 2 and all choices for Yi have been tested then
35: go to step 15
36: end if
37: if i > 2 and all choices for Yi have been tested then
38: go to step 27
39: end if
40: end while

In the improved loading route stage, the loading route is
optimized by the k-means clustering algorithm ( [42]). After
the k-means clustering algorithm is completed, each cate-
gory’s nodes are randomly connected according to the clus-
tering category to form a complete loading route. A feasible
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FIGURE 4. The relationship between DTSP and loading plan.

3D container loading plan is then generated according to
Section IV-A. Then the blocking relationship between the
loading route and the delivery route is then determined.
If there is a blocking relationship between items, the loading
route of the item corresponding to the blocked location is
exchanged until all the loading plans are not blocking with the
delivery route. The complexity of k-means algorithm cluster-
ing is O(nlogkn) (see reference [43] for details), where k is the
number of clustering. The improved loading route clustering
algorithm also includes generating the final packing plan,
where the complexity of the packing scheme is also express
as O(1) + O(3) + O(5) + . . . + O(2n − 1) = O(n2). There-
fore, the complexity of the improved loading route clustering
algorithm is O(n2 + nlogkn).

The complete solution in this part consists of a load-
ing route and a 3D container loading plan. Thereafter,
the improved delivery route genetic algorithm (Algorithm 2)
combined with the improved loading route clustering algo-
rithm (Algorithm 4) is consequently referred to as the
improved genetic algorithm (IGA).

V. NUMERICAL STUDY
The proposed 3L-DTSPMS model is solved using Gurobi
8.1.0 when the number of orders is less than 12, which means
there are less than 24 nodes in the loading and delivery
network. The standard genetic algorithm and the improved
genetic algorithm are implemented using Java 4.6.3. Three
groups of numerical studies are conducted with 80 instances
(R01-R80) in total and are run on a Lenovo 20H1001NCD
laptop with 12 GB RAM and a 2.70 GHz processor. Unless
noted otherwise, themaximum allowable runtime is set as one
hour.

A. TEST INSTANCES
The test instances used are designed following the idea
of generating the DTSPMS test instances in [1]. With the
warehouse located at (0,0), the items’ loading locations are

Algorithm 4 Improved Loading Route Clustering Algorithm
Require: Items loading location data, item number n, deliv-

ery route.
Ensure: Best solution to loading route.
1: Randomly assign all data items to a k initial cluster
2: repeat
3: Compute centroids for each cluster
4: Reassign each data item to cluster of closest centroid
5: until no change in cluster assignments
6: Randomly connect the nodes in each category according

to the clustering category to form a complete loading
route

7: Generate the loading scheme according to the loading
route

8: Update new loading routes and loading schemes until
there is no blocking relationship between loading scheme
and delivery route

9: Return the best solution.

randomly positioned in the area of−10×−10. The associated
delivery destinations are then randomly generated in the area
of 100×100. Euclidean distances are rounded to the smallest
integer.

In this numerical study, different container configurations
are tested. These are defined by (W, L, H), with W, L, and
H representing the width, the length, and the height of the
container, respectively. The optimal solutions are obtained by
Gurobi for test instances from R01 to R50 with the number of
nodes ranging from 16 to 24. The number of nodes for the test
instances from R51 to R80 ranges from 36 to 100, in which
Gurobi cannot obtain optimal solutions within the prescribed
maximum allowable runtime of one hour. In the instances
from R01 to R50, the genetic algorithm’s performances and
improved genetic algorithm are compared with the optimal
solutions obtained by Gurobi. In the instances from R51 to
R80, the appropriate lower bounds are calculated for use as
the performance benchmark. For the GA and IGA, the param-
eters of the crossover rate, mutation rate, and population
size are set as 0.70, 0.10, and 70, respectively. A sensitivity
analysis is conducted to evaluate the impact of parameter
setting.

B. COMPUTATIONAL RESULTS
The numerical studywas divided into three groups for testing:
the instances from R01 to R20 considering 16 nodes in the
same container configuration, from R21 to R50 considering
16 to 24 nodes in different container configurations, and from
R51 to R80 considering 36 to 100 nodes in different container
configurations.

1) RESULTS OF THE INSTANCES WITH 16 NODES
In the instances from R01 to R20, the number of nodes is
set as N = 16 (i.e., containing 8 orders), excluding two
pseudo-depots in the loading and delivery regions. A lower
bound for the proposed 3L-DTSPMS problem is calculated
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TABLE 4. Results of the Instances With 16 Nodes.

using Gurobi, referred to as LB in Table 4. The loading route
and delivery route are considered two separate TSPs and are
solved using Gurobi. The sum of the costs of these two TSPs
is set as the lower bound. The results are given in Table 4,
where OPT is the optimal solution obtained by Gurobi,
CC is the container configuration (W, L, H), and GA/OPT
and IGA/OPT are 1/gaps between the genetic algorithm
and the improved genetic algorithm to the optimal solution,
respectively.

The results showed that the GA and IGA could converge
rapidly (within 10 seconds), and the optimal solution was
found for all instances from R01 to R20. The optimal solu-
tions of the proposed 3L-DTSPMS are quite close to the
lower bound. This result is because when the problem size
is small, there are many feasible loading plans in a container
with a fixed volume. Thus, finding an optimal loading plan is
possible to be found associated with the optimal loading and
delivery routes.

2) RESULTS OF THE INSTANCES WITH 16 TO 24 NODES
In the instances from R21 to R50, the impacts of the con-
tainer configurations and problem size are evaluated. In the
instances from R21 to R35, the number of nodes is fixed at
N = 20, while the container configuration is adjusted. In the
instances from R36 to R50, both the number of nodes and the
container configuration are adjusted. The parameter setting
here is consistent with Section V-B1. The maximum problem
size is limited to N = 24 since it is the maximum size of the
problem that can be solved by Gurobi within one hour. The
results are given in Table 5.

The results show that the GA and IGA converged rapidly
(less than 20 seconds); again, the optimal solutions of the
proposed 3L-DTSPMS are quite close to the lower bound
(LB). In these instances, the performance of the IGA is
worse than that of the GA, which may be because the opti-
mal loading route of a single commodity was destroyed
during the loading route clustering process, increasing the

TABLE 5. Results of the Instances With 16 to 24 Nodes.

total route cost. By comparing the results under the different
container configurations (2,3,2), (3,2,2), and (2,2,3) in the
instances from R21 to R25, R26 to R30, and R31 to R35,
respectively, it is observed that for a certain problem size and
a certain container volume, changing the dimension of the
container does not significantly influence the optimal solu-
tion. This outcome can also be observed when the container
configuration is set as (2,4,2), (4,2,2), and (2,2,4). Notably,
in the instances R40, R45, and R50 with the problem size
set as N = 24 and the container configuration set as (2,4,2),
(4,2,2), and (2,2,4), respectively, a change in the container’s
dimensions significantly impacts the computational time of
Gurobi. It took Gurobi less than 120 seconds to find the
optimal solution for the instances R45 and R50 associated
with configurations (4,2,2) and (2,2,4). In comparison, it took
Gurobi approximately 660 seconds for instance R40 asso-
ciated with the configuration (2,4,2). This indicates that the
container’s length impacts the difficulty of solving the prob-
lem more significantly than the container’s width or height.
A similar conclusion was drawn by [7] for a DTSPMS in a
2D container situation.

3) RESULTS OF THE INSTANCES WITH 36 TO 100 NODES
When the problem size is larger than 24 nodes, the optimal
solution cannot be obtained by Gurobi within one hour. Thus,
in the instances from R51 to R80, where 36 ≤ N ≤ 100,
the lower bound (LB) calculated by Gurobi is used as a
benchmark to evaluate the performance of the algorithms.
The parameter setting here is consistent with Section V-B1.
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TABLE 6. Results of the Instances With 36 to 100 Nodes.

It can be seen that the performance of the IGA is signifi-
cantly better than that of the GA, no matter in terms of time
consumption or numerical results. When the problem scale
is small (36 ≤ N ≤ 40), the effect of the GA and IGA is
very similar. As the size of the problem increases from 60 to
100, the quality of the solution obtained by the GA becomes
increasingly worse, and it takes approximately 5 minutes to
converge.

When the problem scale is less than 60 nodes, the algorithm
converges within 60 seconds; when the problem scale is
80 nodes, the algorithm converges within 200 seconds; and
when the problem scale is 100 nodes, the algorithm converges
within 600 seconds. The quality of the solution obtained by
the IGA also diminishes, but it is a great improvement over
the GA, and the solution can be obtained with this quality
in a few seconds. When the data size increased, the IGA
performed better than the GA, possibly because the optimal
loading routes for many items were not broken during the
loading route clustering. Moreover, the bigger the problem
size was, the better the IGA performed over GA. This result is
consistent with objective reasoning: When the problem scale
is small, clustering is not significant, and when the problem
scale is large, clustering is more accurate and targeted.

C. SENSITIVITY ANALYSIS
The population size, crossover rate, and mutation rate are
the GA parameters that might impact the algorithm’s per-
formance. In this study, the scale of test cases is between

16 and 100 nodes. The population size is set between 50 and
100 based on experience, and 50, 70, 90, and 100 are selected
as the test points for observing the influence of population
size on algorithm performance. The crossover rate is the
probability of two chromosomes crossing, which is generally
high. In this study, the crossover rate ranges from 0.3 to 0.9,
and the interval is divided into three segments on average. The
endpoint values of 0.3, 0.5, 0.7, and 0.9 are selected to test the
crossover rate’s impact. The mutation rate is the probability
of gene mutation in the chromosome, which is relatively low.
In this study, the mutation rate ranges from 0.05 to 0.20, and
the interval is divided into three segments on average. The
endpoint values of 0.05, 0.10, 0.15, and 0.20 are selected to
test the mutation rate’s impact.

For all the instances of R01 to R80, a sensitivity analysis is
conducted to evaluate the impact of population size, crossover
rate, and mutation rate on the performance of the proposed
IGA. The results show that the impacts of the parameter
settings are not statistically significant.

VI. CONCLUSION
In bulky item logistics practice, loading and delivery routes
are inherently coupled with vehicle loading plans in a 3D
circumstance. Thus, this article modeled a bulky item deliv-
ery problem as a double traveling salesman problem with
three-dimensional container loading constraints with mul-
tiple stacks (3L-DTSPMS). The major contribution of this
work is to take 2D container loading constraints from existing
DTSPMS literature and extend it into 3D container load-
ing constraints using the proposed integer linear program-
ming model, in which loading stability constraints, blocking
relationship constraints, and DTSP routing constraints are
formulated to obtain the joint optimization of DTSP and
3D container loading problems. To solve the model, Gurobi
can obtain an optimal solution for relatively small problem
instances (i.e., less than 24 nodes in the loading and deliv-
ery network in our numerical study). For larger problems,
the standard genetic algorithm and the improved genetic algo-
rithm are proposed. Three different implementations have
been tested, and the results are summarized as follows: when
considering the homogeneous container, 16 nodes, the GA
and the IGA can converge to the optimal solution in 10 sec-
onds; when considering heterogeneous container, nodes from
16 to 24, the performance of IGAwas slightly worse than that
of GA. By comparing the test results of the length, width, and
height of the container under the heterogeneous container, it is
found that the length of the container has a greater influence
on the difficulty of solving the problem than the width or
height of the container; when considering nodes from 36 to
100, the proposed IGA is superior to the standard GA. The
results of the sensitivity analysis showed that the influence of
parameter setting was not statistically significant.

However, in the real-world, loading and delivering bulky
items are much more complicated processes. Thus, further
studies are necessary, possibly in the following directions.
First, the assumption of identical item sizes should be relaxed
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TABLE 7. Abbreviations of This Paper.

in future work. Second, multi vehicles with different capacity
limitations is another direction worthy of further study, espe-
cially when a delivery time window needs to be met. Third,
more complicated loading constraints should be considered,
including the vulnerability of items, the loading direction,
item weights, and center of gravity.
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