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ABSTRACT 3D reconstruction is an important topic in the field of the emerging applications such as
smart robotics, virtual reality (VR), augmented reality (AR), and autonomous driving. RGB-D simultaneous
localization and mapping (SLAM) technique is widely used in the reconstruction process. However, low
light and low textured environment often results in insufficient point features and fails the reconstruction.
To address this problem, we propose a robust RGB-D SLAM system using high dynamic range (HDR)
image information called HDR-based SLAM. The deep learning based HDR generation method is adopted
to map a single low dynamic range (LDR) image into a radiance map which is normalized to exclude the
influence of exposure time. We retrained the ORB descriptor patch to fit the normalized radiance maps in
the feature matching step. The proposed method can improve the quantitative camera trajectory accuracy
and qualitative result of geometry reconstruction. Experimental results show that the proposed method has
better performance compared to that of the standard range imaging SLAM under challenging low light
environment, which helps expand the applicability of 3D reconstruction system.

INDEX TERMS 3D reconstruction, feature-based SLAM, high dynamic range (HDR), deep learning, ORB,

low light environment.

I. INTRODUCTION

On account of its wide range of applications, 3D scene
reconstruction has become one of the most important and
active research topics in the field of computer vision over
the past few years. Thanks to the launch of the consumer-
grade depth sensor such as Xtion, Realsense, and Kinect, the
pixel-wise depth and color information of the objective could
be obtained more efficiently and economically compared to
monocular and stereo camera.

Many methods are proposed for robust camera tracking
and efficient volumetric integration in 3D reconstruction.
Visual simultaneous localization and mapping (SLAM) can
estimate camera motion and reconstruct a 3D scene simul-
taneously. There are two kinds of SLAMSs: feature-based
and direct (dense) slams. Feature-based methods extract a
sparse set of points from each frame and match them tem-
porally by their feature descriptors. Because of the sparse
feature set, these systems are sensitive to occlusion. Dense
SLAM methods employ the entire image to increase the
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matching robustness and accuracy in camera pose estimation.
However, dense methods rely on minimization of pixel-wise
photometric error between intensities images, which require
high computation power and mostly cannot achieve real-
time processing without the aid of a GPU [41]. Although
the dense slams have more accurate pose estimation, feature-
based approaches have merits in real-time applications with
CPU. A recent improvement has been obtained by making
use of geometry constraint to extract and match feature points
like ORB-SLAM [25]. However, in low light scene, insuffi-
cient points are extracted, which may cause wrong matching.
We use HDR images to reproduce more details in the images
than the conventional one so that we can extract more reliable
feature points to match.

The high dynamic range (HDR) imaging is the technique
to reproduce a wider range of brightness levels than the low
dynamic range (LDR) imaging, which brings higher contrast
to the screen, greater color intensity without being oversat-
urated, and more details in low light images [1]. For LDR
imaging, a scene is captured by using single exposure and the
brightness levels are only 256 (8-bit unsigned char), which
results in overexposed bright regions or underexposed dark
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ones. In contrast, HDR imaging uses 32-bit float values per
channel to better represent the luminance information similar
to the human visual system. HDR images can be obtained
through hardware or software. The hardware method uses
multiple devices or a special CCD image sensor, which is
usually not for commercial purposes [2], [3]. Alternately, the
software one is more applicable, which uses common camera
to acquire LDR images first and then transform them to HDR
images by multi-exposure or the tone mapping techniques.
The most common multi-exposure image fusion technique
captures several images of the same scene with different
exposure times, and then merge them to generate a HDR
image [4]-[6]. When the scene is dynamic or being cap-
tured hand-held, the misalignment issue and ghosting artefact
need to be dealt with [7], [8]. In addition, a HDR image
can also be generated by a single LDR image using tone
mapping such as histogram-based methods [9], [10] or deep
learning [11], [12].

In the field of computer vision, given that HDR imag-
ing can preserve details in both extremely dark and light
regions, it has great potential to facilitate various tasks,
such as 3D reconstruction [13]-[15], visual simultaneous
localization and mapping (visual SLAM) [16], [17], object
recognition [18], and image correction [19]. For 3D recon-
struction, Meilland ef al. [13] is the pioneer work focusing
on real-time HDR texture mapping. In their visual SLAM
system, gamma-based inverse CRF is used to transform RGB
images into radiance domain and use them for tracking.
Because the system relies on built-in auto exposure (AE),
camera transformation and exposure time need to be esti-
mated jointly. Li ef al. [14] also relies on AE but decouples
exposure compensation from tracking. By using the normal-
ized radiance maps that is independent of exposure time, the
tracking becomes more robust. Recently, some researches
focus on actively controlling the exposure time [16], [17]
to improve visual SLAM in HDR environments. Unlike the
previous works, which are based on dense-SLAM systems,
we propose a feature-based HDR-SLAM, and incorporate it
into the 3D reconstruction pipeline to improve the recon-
structed results under low light environments. Additionally,
Yeh et al. [15] also uses normalized radiance maps as inputs
during camera tracking but relies on inverse CRF to generate
radiance maps from RGB images. Since the calibration of
CREF function is device-based, the method can only be reason-
ably used to reconstruct 3D scenes using sequences captured
by calibrated depth camera. Therefore, it is not as appli-
cable as our adopted deep learning-based HDR generation
method.

The rest of this paper is organized as follows. Section II
reviews the background knowledge and the related work.
Section III presents the details of the proposed 3D reconstruc-
tion pipeline. Section IV explains the proposed HDR-based
SLAM. Experimental results are demonstrated in Sec. V.
Finally, concluding remarks are made in Sec. VI.
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Il. BACKGROUND REVIEW

In 3D reconstruction, tracking objectives (camera pose esti-
mation) is one of the most important steps in the whole
pipeline. The most straightforward method is that only the
registration between the current frame and the previous frame
are conducted based on either point-to-point or point-to-
plane error matrix called frame-to-frame tracking. However,
errors would accumulate as the time goes by. Frame-to-model
tracking has been widely used in recent reconstruction frame-
works to overcome this problem. Frame-to-model tracking
establishes a global model, to which latter frames are aligned
and thus reduces the temporal error propagation.

RGB-D SLAM can be categorized into two classes: direct
methods and feature-based methods. Direct methods extract
all the geometry or photometric information to find relative
camera pose through minimizing the photometric error while
feature-based methods that extract and match features from
color images. Kinect-Fusion is the classic work for direct
methods that the depth frame is aligned to a global volumetric
model and the iterative closest point (ICP) algorithm is used
to estimate the camera pose [20]. However, KinectFusion
have some limitations in terms of drift error, high computa-
tions and small mapping space.

Most of the following researchers have focused on the
performance of KinectFusion. Extended KinectFusion is to
extend the measurement range by using a rolling reconstruc-
tion volume and color fusion [21]. ElasticFusion can reduce
tracking drift error and secure global consistency by detecting
local and global loop closures [22]. Zhou and Koltun [23]
proposed a dense scene reconstruction method by finding
points of interest through density function to preserve detailed
geometry of object. The experiments results indicate that
this method can obtain globally consistent pose estimation
for every frame in the scene to reduce alignment errors.
Choi et al. [24] introduce the global pose optimization on
the basis of line processes, which makes the reconstruction
pipeline robust against erroneous alignment.

Feature-based SLAM is efficient because only part of
information is used compared with direct methods. ORB-
SLAM [25] is one of the classic feature-based monocular
SLAM methods; It uses sparse ORB features from the input
image as well as local bundle adjustment and pose graph opti-
mization to estimate the camera pose. Engelhard et al. [26]
proposed a hand-held RGB-D SLAM system for indoor map-
ping, which includes SURF feature extraction and matching,
ICP for pose estimation, and pose graph optimization for
refining trajectory in the pipeline. ORB-SLAM?2 [27] con-
currently handle camera tracking, local mapping and loop
closing. Trajectory drift can be improved significantly by
bundle adjustment and pose graph optimization. BundleFu-
sion proposed by Dai et al. [28] combine sparse SIFT features
with pose estimation framework including dense photometric
and geometric errors to align current frame with keyframes.
Endres et al.. [29] evaluated the accuracy, robustness and
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FIGURE 1. The pipeline of the 3D reconstruction system.

computations of SIFT, SURF and ORB features, which indi-
cate that ORB is more suitable for the real-time applications.

Ill. SYSTEM OVERVIEW

Fig. 1 shows the proposed 3D reconstruction pipeline includ-
ing the following four steps: (1) Using the consumer-grade
RGB-D camera to capture a scene or an object. (2) Employing
the proposed HDR-based SLAM to estimate the camera pose.
(3) Reconstruct the 3D surface mesh by fusing depth infor-
mation into the truncated signed distance function (TSDF)
volume. (4) Mapping color images onto the geometry recon-
struction model. The details of these steps will be elaborated
in the following subsections.

A. CAMERA POSE ESTIMATION

Camera pose estimation plays an essential role in 3D recon-
struction because more accurate camera trajectory can gen-
erate better geometric model. Camera pose estimation is to
localize the camera and contains tracking and optimization.
Because visual odometry (VO) estimates the current camera
pose through the previous motion state, the measurement
errors would accumulate as time goes by and lead to serious
odometry drift error. Visual SLAM builds a globally con-
sistent map and uses loop closure detection to detect large
loops and correct accumulated drift by pose-graph optimiza-
tion, so it can produce more accurate camera pose [30].
ORB-SLAM?2 is known as one of the well-known Visual
SLAM systems, which can perform in real-time on standard
CPUs. By integrating loop closing, relocalization, map reuse
and bundle adjustment, the reconstruction performance can
be improved significantly and applied to a wide variety of
environment. Because of lacking the reliable features, ORB
SLAM is easy to fail in low light environments. To improve
this problem, we proposed HDR-based SLAM which uses
HDR images to retain feature matching performance in low
light conditions.

B. 3D SURFACE MESH RECONSTRUCTION

After camera tracking, we integrate RGB-D images and cam-
era poses into a global model by TSDF which is a voxel
grid to represent a physical volume of space. The TSDF
volume can be regarded as a 3D cube consisting of voxels
and each voxel in the volume contains a TSDF value, and

16570

the weight. The TSDF value stores the distances from the
voxels to the observed surface. Its value is positive when
in front of the surface, negative when behind, and nearing
zero when at the surface. By using octree data structure
to hierarchically partition the TSDF volume and store the
TSDF values, the system can handle reconstruction of large-
scale scenes given that the octree representation is faster and
more memory efficient than the regular grid. Then, march-
ing cube [31] that uses a divide-and-conquer approach to
locate the surface in a logical cube is employed to find
the zero-crossings in the volume and generate the triangle
mesh.

C. COLOR MAPPING

Color information of the interested 3D object is very impor-
tant for high-fidelity digitization results, which the surface
shape cannot provide by itself. Color mapping is the last
step of 3D reconstruction; it maps several color frames to the
surface of a model to generate textured results. The goal of
color mapping is to estimate the color of each point in the
3D model, and the most straightforward method is to aver-
age the values at the corresponding positions of all images.
Many researches focus on labeling the corresponding points
between the images and the model; however, the process is
usually time-consuming especially when the image size is
large. Also, it is hard to estimate the accurate point positions
on the model surface with no texture. Some works try to
align the features in the color images to those in the model;
however, the model may not accurate enough, which results in
performance degradation. Furthermore, 3D model is always
reconstructed through the depth information, and the camera
poses of depth maps can be used as reference of their corre-
sponding color images.

In this paper, the comprehensive multi-view stereo textur-
ing methods [32] are used to generate the color texture. Com-
pared with volumetric blending used in many reconstruction
systems [33], it can solve the blurring, ghosting and other
visual artifacts and generate better results. We will not show
the textured models in experiments because our goal is to
improve the model reconstruction in low light condition, but
the texture would affect the qualitative evaluation of geometry
reconstruction.

IV. PROPOSED HDR-BASED SLAM

Compared to LDR images (the common color images), HDR
images in float format can present broader range of luminance
in the real environment. The HDRFusion [14] that is based on
direct fusion method shows both tracking and mapping can
be improved by integrating the radiance map into the SLAM
system. Here, we applied the concept on the improvement of
the feature-based SLAM methods (ORB-SLAM?2), and two
modifications are made: (1) Use normalized radiance maps
and depth images as input instead of RGB-D images and (2)
Train the patch-descriptor especially for normalized radiance
maps.
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A. RADIANCE MAP GENERATION

When the depth sensor is held by hand to record a scene or
an object in sequence, the common HDR imaging methods
combining multiple images is not applicable because they
may have different exposure time. In the traditional methods,
the camera response function (CRF) can map the relationship
between RGB pixel values to radiances, the inverse CRF f !
is used to generate an HDR image from a single exposed LDR
image. The CRF is defined as in [34]:

B=f(R+n;(R) +nc) + ng, (H

where B is a pixel brightness value ranged from O to 255 and
R is a radiance value, ny is the noise dependent to radiance,
n is the constant noise and n, is the additional quantization
noise, which can be ignored. Also, both the means of n; and
n. are equal to zero, and their variances are defined as:

Var (ng) = Ro?, 2)
Var(n,) = 03, (3)

Because the CRF of each camera is different, the pre-
calibrated process is needed. The calibration process is to
set the depth sensor at fixed position, and capture images
with different exposure times. By using Debevec et al’s
method [4], given the captured images with different expo-
sure times, camera response curve for each color channel
can be recovered. Therefore, with the estimated CRF of our
depth sensor, and inverse CRF can be calculated directly to
transform a single LDR image to a radiance map.

The above methods are primarily model-driven; the
requested various camera parameters make it difficult to suit
all types of applications. In the recent years, deep learning
has led to very good performance on image processing. Here,
we include the CNN based method to transfer LDR images
to HRD images to increase the feasibility of the proposed
3D reconstruction system. Marnerides et al. [35] proposed a
new multiscale CNN architecture, called ExpandNet, for high
dynamic range expansion from low dynamic range content.

The ExpandNet has three branches in the architecture and
they are local, dilation and global branches. In the local
branch, network learns the ways to maintain and expand
high frequency detail while the dilation branch learns similar
information with the larger receptive field. The global branch
provides overall information by learning the global context
of the resized input. Each branch accepts low light LDR
images as input and is responsible for a particular aspect: the
local branch handles local detail, the dilation branch handles
medium level detail, and the global branch handles higher
level image-wide features.

The non-linear transformations of CNN in three branches
are given an input vector x, so a network of i layers can be
expressed as:

Joranch @) = (H; @ Hi_1 ® --- @ H ® Hy) (x), @

where H; is the i/ hidden layer in each branch and ® is the
composition operator. The output of the fusion layer for HDR
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image can be written as:

Sfusion ) = 0 [b +w (ylocal @ Ydilation D )’global)] , ()

where Yiocal, Ydilation and Ygiopar are the outputs of the three
branches, W is the weight matrix of the fusion layer, b is the
bias, o is the scaled exponential linear unit (SELU) activation
function and & is the concatenation operation.

Both W and b are learnable part of the fusion layer to
concatenate the multi-features at each spatial location, which
combines the features to obtain the color and detailed infor-
mation for the HDR imaging. Then, a small one-layer net-
work called fusion layer processes the extracted features of
three branches to transform a single LDR image to a HDR
prediction.

B. NORMALIZED RADIANCE MAP GENERATION

Radiance measures the amount of luminance a sensor cap-
tured within exposure time, Af, which is formulated as R =
LAt. In [14], the normalized radiance map is defined as:

Ry (u) —E(Ry) Ly (u) At — E(Ly At)

Ry @) = = %o SVarn AD
_ Ly () — E(Ly)

SVarLy)

where N is the 80 x 80 patch, u is a pixel location in the
patch N, Ry (u) is the normalized value at pixel u, E(Ry) is
the mean radiance of the N, and «/Var(Ry) is the standard
deviation of radiances in N. For example, for each pixel in a
640 x 480 radiance map, and normalization following (6) is
performed individually within a 80 x 80 window.

Depth sensors have default auto exposure function to better
acquire images similar to the one seen by human visual sys-
tem. When the camera moves from the bright area to the dark
area, the exposure time is set longer gradually to make the
image brighter. However, if the camera moves fast across the
boundary of bright and dark area, the exposure time changes
drastically, which results in video flickering. Video flickering
would reduce the accuracy of camera tracking, or even fails
the tracking. As can be seen in (6), Ry (u) is independent of
exposure time At, and this property can fight against video
flickers. Because the normalized radiance map is invariant
to exposure time, it can better represent the scene than color
image does. In addition, HDR images can present wider range
of light conditions. Therefore, we use normalized radiance
map as input of the proposed HDR-based SLAM system to
get better camera poses.

Q)

C. PATCH-DESCRIPTOR TRAINING

HDRPFusion is a tacking method directly optimizes the geom-
etry through minimizing photometric errors making use of all
the information in the normalized radiance map. In compar-
ison, the proposed HDR-based SLAM system is a featured-
based system, which is relatively more efficient as only partial
information is involved. In the ORB-SLAM system, the ORB
features [36] are extracted from RGB images; then, camera
poses calculated by optimizing the projection errors between
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FIGURE 2. FAST feature detection on color images and corresponding normalized radiance maps.

the features and sparse representation of map is built from
the selected features. The feature matching process has three
major steps. First, keypoints are detected in an image. Sec-
ond, feature vectors are used to descript the regions around
keypoints. Finally, the corresponding features are obtained
by comparing similarities between the descriptors. ORB is
a combination of oriented FAST (Features from Accelerated
Segment Test) and rotated BRIEF (Binary Robust Indepen-
dent Elementary Features); it uses oriented FAST for key-
point detection and a rotated BRIEF as the descriptor.

FAST is a corner detection method that compare intensities
of the centered pixel with its surrounding circular pixels [37].
We will detect FAST features on normalized radiance map.
Fig. 2 shows the FAST feature extraction results of float-
format normalized radiance map.

The descriptor, rotated BRIEF, encodes the information
around a keypoint into binary strings, so the similarity
between two descriptors can be evaluated by calculating
their hamming distance. The two features can be regarded as
highly-correlated and matched if their hamming distance is
smaller than a predefined threshold. To generate the binary
descriptor, the patch is centered at a keypoint to include
256 pairs of points. For each patch, if the intensity value
of one point in the pair is larger than the other point,
the descriptor value would be ‘1°, otherwise it would be
‘0’. After that, we get a 256 binary string to describe the
keypoint.

In the rotated BRIEF, the patch is trained by 300k
keypoints in the PASCAL 2006 dataset. The training pro-
cess is designed to learn 256 pairs from about 200k pos-
sible pairs and ensure that they have the two properties,
uncorrelation and high variance [36]. Uncorrelation means
that the difference between each pair should be as large
as possible, thus maximizing the amount of information
these 256 pairs carry. High variance means it is more dis-
criminative for a feature, so it can respond to different key-
points. Because the distribution of pairs in LDR images is
different from those in the normalized radiance map, we need
to retrain the patch for the normalized radiance map. The
first step is to collect the raw HDR images online to gen-
erate normalized dataset. Then, about 200k FAST features
are detected in these normalized radiance maps. Finally, the
learning process is re-implemented based on the greedy algo-
rithm [36]. Fig. 3 shows the descriptor patch trained by 200k
HDR-keypoints.
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FIGURE 3. The descriptor patch trained by keypoints extracted from:
(a) color images; and (b) normalized radiance maps.

V. EXPERIMENTAL RESULTS

To illustrate the robustness and efficiency of the proposed
method, we have carried out some experiments on the real-
world scene data (TUM RGB-D dataset [38] and our dataset).
The quantitative and qualitative comparisons are performed
with ORB-SLAM?2 which uses LDR images as inputs.

A. LOW LIGHT REAL-WORLD SCENE DATASETS

In the experiments, two types of datasets are used to evaluate
the proposed method: TUM RGB-D dataset and our dataset.
The TUM RGB-D dataset consists of calibrated color and
depth sequences recorded with full frame rate (30 FPS) using
Microsoft Kinect sensor, and provides the ground truth of
camera trajectories obtained from a high-accuracy motion-
capture system. The other dataset is recorded by us with the
other kind of depth camera: Asus Xtion, which can provide
the testing datasets with a wide variety of consumer depth
cameras. In total, four sequences are selected for evaluation,
including three sequences from TUM RGB-D dataset and one
sequence from our dataset. All testing datasets are handheld
sequences and their detailed information is shown in Table 1:
fr1_xyz captures an office desk and contains primarily trans-
lation motions along the principal axes of the depth camera;
fr1_360 scans from the office center and makes a 360-degree
turn with fast wave motion.; frl_room moves around and
scans the whole office; cafeteria captures a long scene con-
sists of potted plants and dining tables, and flickering hap-
pens when the camera moves fast across bright and dark
regions.

To test the robustness of the proposed method, we further
augment the real-world scene datasets to more challenging
low light environment. Low light LDR images are simulated
using the function EnhanceBrightness in open-source image
processing library imgaug [39], which creates an augmenter
that reduces the brightness of an image by a selected factor
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FIGURE 4. Generated low light LDR images of dataset fr1_xyz and cafeteria.

TABLE 1. Detailed information of the testing datasets.

Dataset Sequence Duration Length Frames
(s) (m)
TUMDRGB' frl xyz 30.09 7.112 790
TUMDRGB' frl 360 28.69 5.818 744
TUMDRGB_ fr1_room 48.90 15.989 1352
Our dataset cafeteria 22.37 9.299 678

ranging from O to 1. Here, we set the brightness factor at 0.1
to generate low light real-world scene datasets. Fig. 4 shows
the generated low light LDR images of dataset fr1_xyz and
cafeteria.

B. EVALUATION PROCESSES

In the experimental results, we provide quantitative evalua-
tion of camera tracking (section V-C) and qualitative eval-
uation of 3D geometry reconstruction (section V-D) using
low light testing datasets on three methods: (a) ORB-SLAM?2
with LDR inputs; (b) HDR-SLAM with HDR inputs; and
(c) HDR-SLAM with normalized HDR inputs. For quanti-
tative evaluation, there are two reasons why we only focus
on camera tracking: first, ground truth camera trajectories
are easier to obtain than ground truth 3D geometry models;
second, when estimated camera trajectory iS more accurate,
the quality of the final reconstruction result is usually better.
Therefore, quantitative evaluation metric absolute trajectory
error (ATE) is used, and tracking information including per-
centage of losing tracking, average number of keypoints, and
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average number of matched map points are also presented in
section V-C.

ATE is frequently used for evaluating tracking accuracies
in visual SLAM systems by measuring the absolute pose
differences between the estimated camera poses P and the
ground truth trajectory Q. As shown (7) and (8), the rigid
transformation S between Trajectory P and Q is calculated
by the least squares method [40], and then root mean squared
error (RMSE) is applied to all the translation components of
error matrices E at each time i to get the ATE pysk .-

E; = 0} 'sP;, @)
1 « :
ATE s = (; > ||rmns(Ei)||2) : ®)
i=1

In addition to ATEgysg which measures the accuracy of
the estimated camera poses, we also show other tracking
information that can provide more insights into the whole
camera tracking process in section V-C, including percent-
age of losing tracking, average number of keypoints, and
average number of matched map points. The meaning of
these tracking information are: when the percentage of los-
ing tracking is high, fewer aspects of depth information are
fused into the TSDF volume and would lead to incomplete
reconstructions; etection of representative keypoints is the
foundation of feature-based visual SLAM system; because
matches between current feature points and existing local
map points are essential to minimize the reprojection errors
in camera pose estimation step, representative matched map
points can ensure more accurate and drift-free localization.
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TABLE 2. Comparison of tracking information during tracking on low light testing datasets.

Sequence Evaluation Metrics ORB-SLAM2 HDR-SLAM HDRTSLAM
LDR HDR Normalized HDR
percentage of losing tracking 10.89% 0 0
frl xyz avg. num. of keypoints 472 992 1005
avg. num. of matched map points 193 292 251
percentage of losing tracking 81.85% 0 0
frl 360 avg. num. of keypoints 336 995 1004
avg. num. of matched map points 30 204 212
percentage of losing tracking 13.09% 0 0
frl_room avg. num. of keypoints 756 1970 2004
avg. num. of matched map points 181 351 358
percentage of losing tracking 52.65% 0 0
cafeteria avg. num. of keypoints 566 1005 1004
avg. num. of matched map points 121 158 175

With the proposed 3D reconstruction pipeline, textured 3D
models would be reconstructed. In section V-D, we would
present the qualitative evaluation of 3D geometry reconstruc-
tion without texturing given that textures would make it hard
for us to observe the minor variations in the reconstructed
geometry models.

C. CAMERA TRACKING

First, we show details of the tracking process with percentage
of frames lose tracking, average number of keypoints, and
average number of matched map points. Second, to ver-
ify the improvement of the proposed method in terms of
camera tracking accuracy, we evaluate on low light testing
datasets using evaluation metric ATE gyse. Here we com-
pare three methods: (a) ORB-SLAM?2 with LDR inputs;
(b) HDR-SLAM with HDR inputs; and (¢) HDR-SLAM with
normalized HDR inputs.

Table 2 provides the insights of camera tracking processes.
ORB-SLAM?2 with LDR inputs has relatively fewer num-
bers of keypoints and matched map points and therefore
would lead to different percentage of failure that lose tracking
frames. In contrast, after transforming the LDR images to
HDR images and normalized ones, details and contrasts of the
images are enhanced, so the number of representative features
is significantly increased to improve the tracking robustness.
Here, average number of keypoints and matched map points
provide insights of the camera tracking process rather than
final tracking accuracy. Take dataset fr1_xyz for example,
though the average number of the matched map points of
HDR-SLAM with HDR inputs is the largest, we will show
that, in terms of the stability of matched map points, camera
trajectory accuracy, and reconstruction quality, HDR-SLAM
with normalized HDR inputs performs the best for all of them.

We also plot the tracking information in time sequence.
In Fig. 5 and 6, red background indicates the time when
the failure tracking lost cases happen, orange line labels the
number of the matched map points, and green line labels the
number of detected keypoints. Fig. 5 shows the camera track-
ing process of each method on low light fr1_xyz dataset and
demonstrates two points: (1) ORB-SLAM?2 easily loses track-
ing because of the unstable keypoints and matched points;
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(a)

(©)

FIGURE 5. Camera tracking information of: (a) LDR inputs; (b) HDR
inputs; (c) normalized HDR inputs on low light fr1_xyz dataset.

(2) for HDR-SLAM with normalized HDR inputs, even
though the average number of the matched map points (251)
is smaller than the one with HDR inputs (292), the orange
curve (matched map points) and the green curve (detected
keypoints) are both more stable. Consequently, we can con-
clude that the matched map points and detected keypoints
of HDR-SLAM with normalized HDR inputs has superior
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FIGURE 6. Camera tracking information of ORB-SLAM2 on low light:
(a) fr1_360; (b) fr1_room; and (c) cafeteria testing datasets.

quality and is more invariant to low light environment, low
texture, and fast motion.

Fig. 6 shows the camera tracking process of ORB-SLAM2
on other testing datasets. It illustrates that when matched map
points decrease rapidly to a small number, failure tracking lost
would happen until previously tracked scene is seem again.
In ORB-SLAM?2, small number of matched map points is
prone to occur because of the lack of representative keypoints
in low-contrast LDR images. So, in the low light environ-
ment, when the captured scene is textureless or the motion
is fast or not continuous, ORB-SLAM?2 would easily lose
tracking.

Table 3 shows the comparison of camera trajectory accu-
racy using the evaluation metric ATERyse. Experimen-
tal results show that in the challenging low light scenes,
ORB-SLAM?2 lose tracking in all testing datasets whereas
HDR-based methods can successfully track each sequence.
Furthermore, since the proposed HDR-SLAM with normal-
ized HDR inputs achieves the best camera trajectory accuracy
ATERryse on every testing dataset, it can prove that, for
HDR-SLAM systems, the normalization of HDR inputs can
enhance the robustness of camera tracking. One thing worth
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TABLE 3. Comparison of camera trajectory accuracy (ATE gy in
centimeters) on the low light testing datasets.

ORB-

SLAM2 HDR-SLAM HDR-SLAM
Sequence Normalized
LDR HDR HDR
frl xyz X 2.055 1.977
frl 360 X 27.52 20.72
frl room X 27.17 13.93
cafeteria X - -

X denotes losing tracking; - denotes that all the frames are
successfully tracked but AT Egysg cannot be computed due to the lack
of ground truth data.

TABLE 4. Comparison of average running speed (FPS) during camera
tracking.

ORB-
SLAM?2 HDR-SLAM HDR-SLAM
Normalized
LDR HDR HDR
Average 24 16 15

Running Speed

noting is that, for our dataset cafeteria, all the frames are
successfully tracked, but ATE grysg cannot be computed due
to the lack of ground truth camera trajectory.

Fig. 7 (a) illustrates how the ORB-SLAM2 with LDR
inputs loses tracking because of the lack of keypoints and
matched map points at frame 401-445 on low light frl_xyz
dataset. In comparison, the corresponding frames of HDR-
SLAM methods have more representative features and can
successfully track each frame. Overall, we can conclude that
the proposed HDR-SLAM with normalized HDR inputs can
achieve the best performance during the camera tracking
stage.

In terms of computation cost, we provide the average
running speed (fps) of these three SLAM systems in Table 4.
The experiments are carried out with an Intel Core 17-4790
CPU (four cores @ 3.6 GHz). Because feature generation step
applied on float-format HDR images is more complex, HDR-
SLAMs need more computation power.

D. 3D GEOMETRY RECONSTRUCTION

1) METHODS BASED ON FEATURE-BASED SLAM

This section demonstrates that the proposed HDR-SLAM
with normalized HDR inputs not only estimates the most
accurate camera poses, but also generates the best 3D geom-
etry reconstruction results among all the methods. Fig. 8-11
shows the reconstruction results of the three methods on four
datasets.

Fig. 8 (low light fr1_xyz): for ORB-SLAM2, due to
tracking lost, there are some low-quality and missing
areas (marked by red circles); for HDR-SLAM with HDR
inputs (ATEgryse = 2.055) and normalized HDR inputs
ATEgrpse = 1.977), slightly worser camera trajectory accu-
racy does not cause obvious defection on geometry model
because the office desk is scanned back and forth repeatedly;
the results of the two HDR-SLAM method are both good.
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Frame 375 Frame 400 Frame 401

Before lose tracking

Frame 375 Frame 400

Frame 427 Frame 446

Relocalization

Lose Tracking

______________________________________________________________________________________________

Frame 446

FIGURE 7. Keypoints detection examples of: (a) LDR inputs; (b) HDR inputs; (c) normalized HDR inputs on low light fr1_xyz dataset.

Fig. 9 (low light fr1_360): for ORB-SLAM?2, because the
percentage of losing tracking is high (81.85%, frame 18-487
and 606-744), only limited part of the office is reconstructed
as marked by the blue rectangles; reconstruction quality of
normalized HDR inputs around textureless whiteboard region
is obviously better than HDR inputs as marked by red circles;
fr1_360 is a very challenging sequence because the camera
moves very fast and it captures some textureless whiteboard
and ground regions, hence even though the proposed method
can track all the frames, the calculated camera poses are not
precise enough to construct extremely fine 3D model.

Fig. 10 (low light fr1_room): for ORB-SLAM?2, because
there is a clip of sequence lose tracking (13.09%, frame
821-996 and 998), the areas around the cabinet is not recon-
structed as marked by blue rectangles; HDR-SLAM with the
HDR inputs suffers from more severe drifting problem as
marked by orange circles; reconstruction quality of normal-
ized HDR inputs around the cabinet is obviously better than
HDR inputs as marked by red circles.

Fig. 11 (low light cafeteria): for ORB-SLAM?2, because
it starts to lose tracking in the middle of the sequence and
never relocalize (52.65%, frame 322-678), only the areas
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scanned at first have been reconstructed as marked by blue
rectangles; reconstruction quality of normalized HDR inputs
of the whole scene is obviously better than HDR inputs as
marked by red circles and rectangles.

Overall, for ORB-SLAM?2, because losing tracking prob-
lem happens, different degrees of degradation in recon-
structed models occur, including low-quality, misaligned and
missing issues. Additionally, HDR-SLAM with the normal-
ized HDR inputs performs better or equally well in compar-
isons to the one with HDR inputs. To sum up, the proposed
HDR-SLAM with the normalized HDR inputs also performs
the best in terms of 3D geometry reconstruction quality.

2) DENSE SLAM METHOD

Given that HDRFusion [14] is the first work to incorporate
normalized HDR map into the dense RGB-D dense system,
we also show the comparison of their reconstruction result.
The experiment is built with the source code provided by the
authors and an additional NVIDIA GeForce GTX 1080 GPU
(8 GB GDDRS5X memory) is used. We have followed the
authors’ instruction to calibrate our Xtion depth camera and
set up parameters to enable the reconstruction on our dataset:
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(b) (c)

FIGURE 9. 3D geometry reconstruction results of: (a) LDR inputs; (b) HDR inputs; (c) normalized HDR inputs on low light fr1_360
dataset.
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(b)

FIGURE 10. 3D geometry reconstruction results of: (a) LDR inputs; (b) HDR
inputs; (c) normalized HDR inputs on low light fr1_room dataset.
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(a)

(b)

FIGURE 11. 3D geometry reconstruction results of: (a) LDR inputs; (b) HDR inputs;
(c) normalized HDR inputs on low light cafeteria dataset.

16579



IEEE Access

C.-H. Yeh, M.-H. Lin: Robust 3D Reconstruction Using HDR-Based SLAM

FIGURE 12. 3D geometry reconstruction result of HDRFusion [14] on low light cafeteria dataset.

RGB-D frame resolution is 640 x 480; resolution of TSDF
volume is 512x512x512; size of TSDF volume is 10 (meter);
initial camera position with respect to TSDF volume is [3.0,
3.0, 3.0] (meter). Noted that since HDRFusion [14] is heavily
based on camera calibration process to generate HDR images,
we could only carry out the experiment with our own dataset
(low light cafeteria) but not TUM datasets due to the lack of
their camera calibration information.

Fig. 12 shows that for the low light cafeteria dataset, due
to the constraint of GPU memory, smaller TSDF volume
resolution leads to coarser reconstruction. Additionally, based
on the observation that 3D geometries of the tables and
the chairs are mostly incomplete, we can conclude that the
reconstruction quality of our proposed method is better.

VI. CONCLUSION

This paper has presented a robust normalized HDR-based
3D reconstruction pipeline to reconstruct challenging low
light scenes scanned with a consumer RGB-D depth camera.
Different from related methods which rely on pre-calibrated
CRF function to generate HDR images from LDR image,
our adopted deep learning-based generation method is not
restricted by specific calibrated camera and thus has better
applicability. We have evaluated the proposed method on
challenging low light TUM RGB-D dataset and our dataset.
Experimental results show that the proposed normalized
HDR-based 3D reconstruction method performs better than
ORB-SLAM?2 with LDR inputs and HDR-SLAM with HDR
inputs in terms of both camera tracking accuracy and 3D
geometry reconstruction quality. We also demonstrated that
compared to ORB-SLAM?2 which is prone to lose tracking
and reconstruct defect models, the proposed method can
successfully track all the frames and is robust to low light
environment, low texture, and fast motion. The proposed
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method has demonstrated the following two concepts: besides
dense SLAM, it is also feasible and beneficial to use HDR
images as the input of feature-based SLAM since salient
features can be detected in HDR images; second, the deep
learning based HDR image generation framework can be
adopted in various system to replace complex camera cali-
bration process.

In the future, since we have demonstrated the effective-
ness of incorporating the proposed HDR-SLAM into 3D
reconstruction system, we are going to add the low-light
detection mechanism to build a more flexible system with
minimum increase on computation complexity. In addition,
we will extend this work by incorporating normalized radi-
ance map and learning-based deep fusion method into the
surface reconstruction stage.
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