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ABSTRACT High-performance Elliptic Curve Cryptography (ECC) implementation in encryption authen-
tication severs has become a challenge due to the explosive growth of e-commerce’s demand for speed
and security. Point multiplication (PM) is the most common and complex operation in ECC which directly
determines the performance of the whole system. This article proposes a 6CC-6CC (clock cycle) dual-field
PM architecture and a 6CC-4CC dual-field PM architecture based on maximizing utilization of Karatsuba
multipliers and re-ordering schedule strategy in PM. The Montgomery Ladder algorithm used in PM is
modified to a 4CC algorithm for better resource utilization and parallel computation. To solve the frequency
drop problem while working on large finite field, the PM architectures for high and low field are carefully
studied to have universal critical path length and balanced performance. Both of the architectures are
implemented over GF(2571) and GF(2283) on Xilinx Virtex-5 and Virtex-7 FPGAs (Field-Programmable
Gate Array) for comparison. The 6CC-6CC architecture is shown to have the best performance on GF(2571),
which achieves one PM operation in 17.44 µs using 81549 LUTs (Look-Up-Table) with the frequency
of 197.2 MHz on Virtex-5, and 12.55 µs using 80970 LUTs with the frequency of 274.1 MHz on Virtex-
7. The 6CC-4CC architecture performs better on GF(2283) with the shortest computation time. It takes only
3.21µs to finish one PM operation on Virtex-5 and 2.22µs on Virtex-7, which are faster than all the previous
designs. The implementation results prove that the proposed architectures have state-of-the-art performance
as well as higher versatility for ECC designs.

INDEX TERMS Elliptic curve cryptography (ECC), dual-field point multiplication, montgomery ladder,
field-programmable gate array (FPGA) implementation.

I. INTRODUCTION
Elliptic Curve Cryptography (ECC) is a widely-used
public-key cryptographic algorithm, which was proposed by
Koblitz [1] and Miller [2] separately in 1985. The security
of ECC relies on Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP), which provides ECC with an equivalent level
of security with a shorter key compared with the common
public-key cryptographic algorithm, RSA [3]. Thus, ECC has
the advantages of faster computing speed, lower bandwidth as
well as lower storage requirement. Commonly, ECC is imple-
mented over a prime field GF(p) or a binary field GF(2m) [4].
Due to carry-free property, ECC operations over binary fields
are much more suitable for hardware implementation. When
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implementing ECC on hardware, many designers turned to
Field-Programmable Gate Arrays (FPGAs) because of its low
cost, flexibility and short development period.

With the prosperity of digital economy, e-commerce
has been widely spread, and the security of e-commerce
has become an important premise to ensure its work-
ing. Therefore, fast and reliable encryption authentication
servers are essential in the process of e-commerce transac-
tion. FPGA-based cryptographic processors/accelerators for
servers have become an inevitable trend. The security of
ECC is related to the field size. As the development of
super computers, the field size of ECC applications has
to be increased to ensure safety. However, when existing
high-performance ECC hardware designs are modified to
larger fields to increase safety, there will be a significant
drop in operating frequency, resulting in less competitive
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TABLE 1. Complexity and latency analysis of different multipliers over GF (2m).

performance as opposed to the design purpose. Thus, imple-
menting a high-performance as well as high-security ECC
design on FPGA remains a challenge.

A. RELATED WORK
Point multiplication (PM) is the most common and complex
operation in ECC, thus the majority of reported literatures
focused on improving the operation of PM in order to increase
the overall performance of ECC.

In order to optimize PM, some works explored new oppor-
tunities in modular multipliers over binary fields, as modular
multiplication is executed during the whole process of PM.
Depending on the organization of computation, there are bit-
serial/ digit-serial, systolic multipliers, and bit-parallel mul-
tipliers [5], [6]. The complexity and latency (Clock Cycles,
CCs) comparison are shown in Table 1.

1) BIT-SERIAL/DIGIT-SERIAL MULTIPLIER
In bit-serial/digit-serial multipliers, results are generated
serially, which will be available after a large amount
of clock cycles. For resources-constrained applications,
bit-serial/digit-serial multipliers are preferred due to
area-efficient property. In [7], a fully digit-serial polyno-
mial basis GF(2m) multiplier was proposed, where both the
operands enter the architecture concurrently at digit-level. S.
Pillutla proposed a modified interleaved modular reduction
multiplication algorithm and its bit-serial sequential architec-
ture in [8]. Themultiplier achieves an improvement of 39% in
area and 17% in area-delay product estimations for GF(2409).
It is obvious that bit-serial/digit-serial multipliers achieve
area-efficient at the sacrifice of latency, which are rarely used
in high-performance ECC designs.

2) SYSTOLIC MULTIPLIER
Systolic structures have the advantages of regularity, mod-
ularity, and concurrency, which offer high-throughput while
the area and latency are usually large. Reference [9] proposed
a systolic architecture for polynomial basis over GF(2m)
multiplier based on trinomial irreducible polynomials, which
achieves 10% reduction in area complexity when compared
with the best existing area-efficient multiplier over GF(2409).
Reference [10] analyzed the hidden systolic penalties in terms

of register complexity and latency of computation in multi-
pliers and proposed a systolic-like and a super-systolic-like
structure for multiplication over GF(2m).

3) BIT-PARALLEL MULTIPLIER
In bit-parallel multipliers, all input bits are handled in
parallel. Almost all real-time applications turn to bit-parallel
multipliers due to high speed and low latency. Practically,
two or three pipeline stages are inserted to optimize the
critical path. According to complexity, bit-parallel mul-
tipliers are divided into two categories, quadratic multi-
pliers and subquadratic multipliers. Based on multipliers
with quadratic complexity, [11] proposed a novel two-stage
pipelined full-precision multiplier in high-performance (HP)
PM architecture and a one-stage pipelined full-precision mul-
tiplier in low-latency (LL) architecture with careful schedul-
ing for the Montgomery Ladder algorithm. Though [11]
performs well on GF(2163), the frequency decrease of [11]
is also obvious on GF(2571). Reference [12] proposed a
novel speed-oriented architecture of PM based on a bal-
anced full-precision multiplier that shows great consistency
through different fields. The frequency of its implementation
over GF(2571) is only 13% lower than that over GF(2571).
However, the area cost (LUTs) is higher than most works.
Karatsuba-Ofman multiplier (KOM) is a typical bit-parallel
multiplier [13] which is able to reduce the complexity of
a multiplication from O(n2) to O(nlog23) at most [14]–[16].
Reference [17] analyzed hardware complexity of KOMs on
FPGA and ASIC (Application Specific Integrated Circuits)
and gave optimum iteration steps of KOMs for an arbitrary
bit-depth. Reference [18] proposed a fast PM design with a
two-stage pipelined KOM. Besides, the Montgomery Ladder
algorithm is modified to share execution paths, so that the
critical path contains few extra digital logic apart from the
multiplier accumulator. The frequency of this design remains
at a high level on small fields (GF(2163), GF(2233) and
GF(2283)). However, on a larger field GF(2571), the frequency
drops more than 50% compared with that on GF(2163). Ref-
erence [19] carried out theoretical analysis of the quadratic
and subquadratic multipliers and drew a conclusion that the
quadratic multiplier is a better option for high-speed ECC
implementation when area is irrespective.
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Apart from multipliers, some works focused on increasing
parallelization of PM, so as to realize a high-performance
ECC. Reference [20] applied a fix-base comb PM architec-
ture to perform regular PM by pre-computation. Choosing
window size as four, low-complexity (LC) and low-latency
(LL) architectures have been proposed. Due to pre-
computation, PM is executed in parallel. These architectures
are designed for applications of Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) that use fixed curve and base point,
so that PM can be calculated in parallel after pre-computation.
However, this technique is not applicable for all ECC appli-
cations. Some works [21]–[26] focused on rearranging the
data flow of PM to satisfy complex data dependency with
parallel structures. In these designs, additional registers are
always needed to store intermediate values or to break critical
paths.

Some works applied PM over special elliptic curves to
improve the performance of ECC. Over Koblitz curves, spe-
cial cases of Weierstrass Curve, Frobenius mappings can be
used to accelerate PM [27]–[29]. Recently, Li and Li [30]
proposed a high-performance PM architecture by apply-
ing pipelined mixed-form double-digit scalar converter with
compact recoding over Koblitz curves. Frobenius mappings
were applied to get a tremendous promotion in compu-
tation time. Moreover, in recent years, ECC over Binary
Edwards curve (BEC) [31] and Binary Huff curve (BHC) [32]
were given extensive attention due to high security. Based
on algorithm-level unified addition laws, ECC over BEC
and BHC has inherent preventive of Simple Power Anal-
ysis (SPA) [33]–[38] at the cost of higher computational
complexity. Imran et al. [39] proposed a flexible hardware
architecture that implements point multiplication algorithm
for both elliptic curve cryptography (ECC) and Binary Huff
Curves (BHC) and users can trade off between the algorith-
mic execution time and different reliability/security levels.

B. MAIN CONTRIBUTION
Most existing high-performance ECC designs are only able to
operate over one pre-set binary field. However, for real-time
Internet-based security equipment, PM is required to be
compatible with several fields, as to meet different security
levels and protocols. To cope with this, integrating several
single-field PM architectures directly seems to be a simple
way, but this will definitely lead to rather low rates of resource
utilization, since when one PM is carried out, all other PM
parts are idle.

Moreover, considering the critical path, though most
of high-performance ECC designs support all NIST-
recommended curves, the authors preferred to implement
designs over small fields, GF(2163) (for binary field) and
GF(256) (for prime field). References [11], [18] and [44]
exploited high-speed PM architectures on small binary
field GF(2163) with high operating frequency (more than
200 MHz). However, the high-frequency feature that these
designs relied on to achieve low latency usually fails when
it comes to larger fields like GF(2571). This means that these

high-performance architectures are not universal enough to
apply in real-world applications.

To deal with these problems, based on the universal
Weierstrass Curve, we proposed two novel PM architec-
tures, 6CC-4CC (clock cycle) dual-field PM architecture and
6CC-6CC dual-field PM architecture, each of which is com-
patible with two binary fields and achieves equally compet-
itive performance on both supported fields. In this case, our
design can meet different security levels and protocols. The
FPGA synthesis results show that the performance of our
designs ranks top among related works.

The main contributions of this article are as follows:
1) Based on the Montgomery Ladder, a modified 4CC

PM algorithm is proposed for high performance hard-
ware implementations. When implementing two sets of
modified 4CC PM algorithm on three modular mul-
tipliers, the advantages in frequency and efficiency
of 6CC algorithm and the advantages in speed of 3CC
algorithm can be gathered. It makes 4CC algorithm
most suitable to be implemented in a speed-oriented
PM design.

2) 6CC-6CC and 6CC-4CC dual-field PM architectures
with different emphasis are proposed. The 6CC-6CC
architecture has higher performance on the high field,1

while the 6CC-4CC architecture works better on the
low field.

3) The PM architectures for high and low field are care-
fully studied to have universal critical path length
and similar frequency. This is the foundation of a
high-performance dual-field design.

4) On either supported fields, the utilization of hardware
resources is maximized to achieve equally competi-
tive performances. The balance leads to state-of-the-art
implementation results even when comparing with the
best of other single-field architectures.

The rest of this article is organized as follows. Section II
introduces related background and mathematic basis about
ECC. Section III presents the proposed 6CC-6CC dual-field
architecture, and the proposed 6CC-4CC dual-field archi-
tecture with modified 4CC PM algorithm is introduced in
section IV. Section V presents the implementation results of
the proposed architectures and comparisonswith other works.
Section VI concludes the paper.

II. PRELIMINARY
A. FINITE FIELD AND FIELD ARITHMETIC
Elliptic curves of ECC are usually defined over finite fields.
Generally, there are two types of finite fields used by ECC,
prime field GF(p) and binary field GF(2m). The differences
between these two fields are field arithmetic. Over binary
field GF(2m), the field arithmetic has a special property called
‘‘carry-free’’, which means that carries are ignored when the
arithmetic is carried out. This property leads to tremendous

1In this article, high field stands for the larger field which the dual-field
architecture supports, while low field stands for the smaller one.
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convenience for hardware design. Thus, high speed ECC
designs on FPGA/ASIC usually prefer binary field.

There are diverse representations for Elements over
GF(2m) and these representations result in different complex-
ity of field arithmetic. Among representations, polynomial
basis leads to simplemultiplication, so it is commonly consid-
ered. By polynomial basis, elements over GF(2m) can be rep-
resented as binary polynomials. Due to ‘‘carry-free’’, addition
and subtraction are simplified to executing bitwise exclusive
OR (XOR) over two binary polynomials’ coefficients. In a
sense, addition and subtraction are equivalent. Multiplica-
tion is carried out into two steps. The first is polynomial
multiplication to get a (2m − 1)-bit result. Then reduce this
result by an irreducible polynomial f (x) to obtain the final
m-bit result. The National Institute of Standard and Tech-
nology (NIST) has recommended irreducible polynomials
f (x) for different binary fields [45]. Squaring is similar to
multiplication; however, its first step is simplified to inserting
zeroes into the coefficient sequence. And high order powering
can be simplified in the same way. Inversion, which is the
most complex arithmetic, is to find the multiplicative inverse
x−1 of a given element x. Basically, there are two ways to
compute inversion, extended Euclidean algorithm and Itoh
Tsujii algorithm (ITA) [46].

B. MODULAR MULTIPLIER
Modular multiplication is executed in nearly every clock
cycle from beginning to end during PM and multiplication
is far more complex than addition and powering. Thus,
a well-designed modular multiplier is crucial to achieve
high-performance ECC. To exploit the trade-off between
area and speed of multipliers in PM, there are mainly two
types of multipliers, word-serial (digit-serial) multipliers and
bit-parallel multipliers. For high-performance cases, large
word-serial multipliers and bit-parallel multipliers are often
used with pipeline stages inserted in order to shorten critical
path delay.

Bit-parallel multipliers can be divided into quadratic
multipliers and sub-quadratic multipliers. As for quadratic
multipliers, [11] proposed a two-stage-pipeline full-precision
multiplier, in which one ofm-bit multiplier operand is divided
into n number of w-bit operands. Then n sub-multipliers
calculate the products of the otherm-bit operand and all thew-
bit operands simultaneously. The result of each sub-multiplier
is (m + w − 1)-bit long and all these results are stored in
pipeline registers. n number of (m + w − 1)-bit long results
are aligned and XORed to figure out the (2m − 1)-bit result,
which is stored in the second pipeline stage. In the end, a fast
modular reduction is done based on the chosen irreducible
reduction polynomial.

The area complexity of quadratic multipliers is O(n2).
To reduce the complexity, a special case of Toom-Cookmulti-
plier, KOM is often used. KOM can reduce the area complex-
ity down to O(nlog23) at most. The strategy of KOM is shown
in Fig. 1. As for a m-bit KOM (m is even), there are three
(m/2)-bit sub-multipliers (when m is odd, it consists of one

FIGURE 1. Area-delay efficient KOM for m = 163 on (a) four-input LUT
FPGAs and (b) six-input LUT FPGAs.

bm/2c-bit sub-multiplier and two dm/2e-bit sub-multipliers).
Them-bit multiplication is divided into three steps, ahbh, albl
and (ah + al)(bh + bl).

A · B = (ahxn + al)(bhxn + bl)

= ahbhx2n + (albh + ahbl)xn + albl
= ahbhx2n + [(ah + al)(bh + bl)

+ahbh + bl]xn + albl (1)

where n = bm/2c,A = ahxn + al,B = bhxn + bl .

KOM can be applied in a recursive way. Large KOMs can
be split into small KOMs. However, as the recursion goes on,
the delay caused by calculating [(ah + al)(bh + bl)+ ahbh +
albl] will definitely affect critical path, which will lead to low
operating frequency. Reference [17] shows the variation of
KOMs’ area and total delay when the recursive step changes
and gives the best trade-off of KOM on different FPGAs in
the end.

C. POINT MULTIPLICATION
A non-supersingular elliptic curve over GF(2m) can be repre-
sented as:

y2 + xy = x3 + ax2 + b. (2)

Points over elliptic curve E and an infinite point form a
communicative finite group based on point addition (PA) and
point doubling (PD) [47]. The mathematical expression for
PM is Q = kP, where P is point of the given curve and k is
a positive integer. The result Q is also a point on this curve.
For most common cases of point multiplication in which k
and P can be flexibly configured, PM can be achieved by
iterative scheduling of PA and PD based on each polynomial
coefficient of k . And the specific operation of PA as well
as PD can be carried out by executing several finite field
arithmetic operations.

To resist Simple Power Analysis (SPA), the execution of
PM has to be uniform when ki = 0 (ki stands for the
i-th polynomial coefficient of k) and ki = 1. The common
strategy is to use the Montgomery Ladder. In affine coordi-
nate, PA and PD, the operations executed in each iteration
both include inversion over GF(2m), which makes PM rather
time-consuming. To copewith this problem, affine coordinate
(x, y) is usually replaced with Lopez-Dahab (LD) projective
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coordinate (X ,Y ,Z ) [48]. As a result, inversions are only exe-
cuted at the end of PM.Meanwhile, due to the constant differ-
ence between two intermediate variables in the iteration of the
Montgomery Ladder, the y coordinates can be omitted during
iteration and recovered at the end of the Montgomery Ladder.
Thus, during PM, only X -coordinate and Z -coordinate are
calculated iteratively, as shown in Algorithm 1.

Algorithm 1 Montgomery Ladder in the LD Coordinate
System
Input: k = (kt−1, · · · , k1, k0)2, kt−1 = 1, P(xP, yP) ∈
GF(2m))
Output:Q = kP = (X3,Y3,Z3)

(X1,Z1)← (xP, 1), (X2,Z2)← (xP4 + b, xP2)
for i = t − 2 to 0 do
if ki = 1 then
T ← Z1, (X1,Z1)← (xP(X1Z2+X2Z1)2+X1X2 · T ·
Z2 (X1Z2 + X2Z1)2)
T ← X2, (X2,Z2)← (X24 + bZ24 T 2Z22)

else
T ← Z2, (X2,Z2)← (xP(X1Z2+X2Z1)2+X1X2 · T ·
Z1 (X1Z2 + X2Z1)2)
T ← X1, (X1,Z1)← (X14 + bZ14 T 2Z12)

end if
end for
X3← X1xPZ1Z2
Y3 ← (xPZ1 + X1)[(X1 + xPZ1)(X2 + xPZ2) + (xP2 +
yP)Z1Z2]xPZ2

1Z2 + yP(xPZ
2
1Z2)

2

Z3← xpZ2
1Z2

return Q(X3,Y3,Z3)

According to Algorithm 1, the modular operations in each
iteration are modular multiplications, modular squares and
modular additions. Since the resource and time required in
a modular multiplication are much more than in a modular
addition or squaring, it is most important to organize mod-
ular multiplication well, in order to gain better efficiency.
Therefore, the six modular multiplications in each iteration
should be placed into six steps, and other modular operations
should be inserted to the six separate steps to ensure the data
dependency is sorted. This is called a 6-step Montgomery
Ladder Algorithm, as shown in Algorithm 2.

III. 6CC-6CC DUAL-FIELD ARCHITECTURE
A. TRADITIONAL DUAL-FIELD PM AND ITS LIMITATIONS
Based on the 6-step Montgomery Ladder which is shown
in Algorithm 2, a normal 6CC single-field architecture [11]
(shown in Fig. 2) can be easily transformed to a dual-field
one by updating the parts that are related to the field param-
eters. For example, for binary fields GF(2m) and GF(2n),
the multiplication before reduction which is simple multipli-
cation with addition replaced with exclusive-or, the statema-
chine which is determined by the algorithm, and the
datapath (registers and MUXs in Fig. 2) can all be shared.
Only modular reduction, modular squaring, and maybe other

Algorithm 2 6-Step Montgomery Ladder Algorithm When
ki = 1
Input: R1(X1,Z1),R2(X2,Z2), ki+1
Output: R1(X1,Z1),R2(X2,Z2)
if (ki+1 = 1) then
step1: Z1← X2Z1;A← Z2
step2: X1← X1Z2;Z2← A2;R2← A4;A← X2

else if (ki+1 = 0) then
step1: X1← X1Z2;A← Z2
step2: Z1← X2Z1;Z2← A2;R2← A4;A← X2

end if
step3: X2← bR2 + A4;R1← A2

step4: Z2← R1Z2;A← X1 + Z1
step5: X1← X1Z1;Z1← A2

step6: X1← xZ1 + X1
return R1(X1,Z1),R2(X2,Z2)

FIGURE 2. A normal 6CC single-field PM architecture from [11].

modular power units which are related to field parameters
need to be added, together with some multiplexers attached
to these newly-added units and the original ones to select the
chosen field.

When the two chosen supported fields GF(2m) and GF(2n)
have a certain relation such as m ≈ 2 ∗ n, the limitation of
this dual-field architecture is revealed. When working on the
low field GF(2n), only the lower n bits of the datapath and
the multiplier are used. In this case, a lot of the resources
are wasted, resulting in low performance during low-field(
GF(2n)) operations. Such a design has lost its purpose of
working efficiently on both fields.

A simple update to the traditional architecture is to utilize
the unused logic by implementing another low-field 6CC
operation on the higher n bits of the datapath and the mul-
tiplier. This method can evidently increase the utilization of
the datapath to nearly 100% (since m ≈ 2 ∗ n), however the
rate of rise in multiplier utilization depends on the design of
the multiplier.
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B. KARATSUBA MULTIPLIER
The multiplier implemented in the proposed architecture is
a Karatsuba multiplier, as introduced in Sec. II-B. In the
situation ofm ≈ 2∗n, for an m-bit Karatsuba multiplier, three
n-bit sub-multipliers are implemented on the top partition
level, processing a1 ∗ b1, a2 ∗ b2, (a1 + a2) ∗ (b1 + b2)
separately. Apparently, this multiplier has the potential of
supporting only one modular multiplication on GF(2m) but
three modular multiplications on GF(2n). If we apply two sets
of low-field 6CC operations (each requiring one multiplica-
tion each cycle) asmentioned in the last subsection, two out of
three of the sub-multipliers are used, increasing the utilization
of multiplier to 66%. With the help of the Karatsuba mul-
tipliers, the improved 6CC-6CC dual-field architecture can
calculate twice as fast on the low field, at the cost of only a
few more small modular power units and modular reduction
units which will not significantly influence the performance
of high field.

C. IMPROVED 6CC-6CC DUAL-FIELD ARCHITECTURE
1) ARCHITECTURE
The detailed architecture of the proposed 6CC-6CC
dual-field PM is shown in Fig. 3. It consists of one dual-field
modular square unit, one dual-field modular quadruplicate
unit, one Karatsuba multiplier, one 2w (w is introduced later)-
bit datapath and two sets of statemachines. The structure of a
dual-field modular square unit is shown in Fig. 4. Compared
to the one used in traditional dual-field architectures, one
more GF(2n) modular square unit is used to support two
GF(2n) parallel calculations. The FSM in the architecture
means actually two statemachines, one for higher w bit,
and one for lower w bit. When working in high field, two
statemachine jump exactly the same, using the same k . When
working in low field, two statemachine jump on different ks
and calculate in parallel.

Compared to the traditional dual-field architectures, this
novel architecture utilized one more statemachine, one more
modular quadruplicate unit on the low field, one more mod-
ular square unit on the low field and a few MUXs. The cost
of area is little, but the gain in the low-field calculation speed
is 100%.

2) RESOURCE SHARING
The Karatsuba multiplier and the datapath are shared as
illustrated in Fig. 5. Thew in Fig. 5 is the minimum value that
is larger than 2 ∗ n and m where m ≈ 2 ∗ n. To simplify the
explanation, we take common fields m = 571 and n = 283
and w = 286 as an example.
During GF(2283) mode, the lower 286 bits and the higher

286 bits of the datapath are used to transport two sets of data.
When entering the multiplier, due to the top-level segment of
Karatsuba, these two sets go right into mul1 (shown in Fig. 3)
and mul2 which are independent to each other (the result
of mul_share will be influenced, but it is not used in this
mode). The outputs of the sub-multipliers are strobed to two

FIGURE 3. Detail of proposed 6CC-6CC dual-field architecture.

FIGURE 4. Structure of dual-field modular square unit.

FIGURE 5. Illustration of bit distribution.

GF(2283) modular reduction units and then two multiplexers
to organize the results back to pattern shown in Fig. 5, before
going back to the datapath again.
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FIGURE 6. 6cc-6cc statemachine.

During GF(2571) mode, the lower 286 bits and the higher
286 bits of the datapath are controlled by different statema-
chine that jump the same way, so they can be viewed as a
whole.When entering themultiplier, the three sub-multipliers
now work in the mechanism of Karatsuaba to present only
one result, which will then go through GF(2571) modular
reduction and into the datapath again.

3) STATEMACHINE AND DATA FLOW
The statemachine in the proposed 6CC-6CC architecture is
shown in Fig. 6 When the operation starts, the state jumps
to init from idle, to set initial values of X1, X2, Z1, Z2 as
mentioned in algorithm. Then the statemachine jumps to the
most common iteration, from st0_stay/st0_flip to st6 itera-
tively until all bits of k are processed. Then the state jumps
to sort_st0 to put the results of X1, X2, Z1, Z2 into registers.
In the next state sort_st1, the result of X1 and X2, Z1 and
Z2 are exchanged if the last bit of k is 0, or retained if the
last bit of k is 1. The statemachine then jumps to the stage to
calculate Y . As shown in algorithm, the calculation of Y needs
12 multiplications. The 12 states from gety_st0 to gety_st11
process one multiplication in each to get the final results of
X , Y and Z .
To show the scheduling of hardware resources in the most

important states, the data flow of the 8 states in the Mont-
gomery ladder iteration is demonstrated below.

Whether in high field or low field, the data flow of this
architecture follows the 6CC algorithm, which is related to
both ki and ki+1. The combination of ki and ki+1 includes ki =
0 and ki+1 = 0, ki = 1 and ki+1 = 1, ki = 1 and ki+1 = 0,
ki = 0 and ki+1 = 1. Since the difference between ki = 1

FIGURE 7. 6CC Data flow of ki = 1 while ki+1 = 1.

and ki = 0 is merely an exchange of X1 and X2, as well as
Z1 and Z2, only the situations of ki = 1 while ki+1 = 1, and
ki = 1 while ki+1 = 0 are shown respectively, in Fig. 7 and
Fig. 8.
In the figures, MUL stands for the modular multiplier,

QUA stands for modular quadruple unit, SQR stands for
module squaring unit, ADD stand for modular addition.

4) CRITICAL PATH
According to the dataflow shown in Fig. 7 and Fig. 8, the crit-
ical data dependency is that the result of the multiplier needs
to be ready in 2 clock cycles. Therefore, apart from the input
registers of the multiplier, onemore stage of pipeline registers
is inserted into the multiplier to shorten the critical path.

The critical path of 6CC-6CC architecture is shown
in Fig. 9. Since the place of the pipeline registers inside
the Karatsuba multiplier can be altered, first we remove
it from consideration. Apparently, the path with most
logic levels should be the one starts at the input of
the modular multiplier, passes through the modular adder,
and ends at the output registers of the FSM. Now add
the pipeline registers into consideration. Since its place
can be flexibly changed, it can be placed to divide the
path mentioned above equally into two halves. There-
fore, the critical path length of the 6CC-6CC architecture
is: (tKOM_in_GF(2m)+tMUX+tadd+tMUXs_in_FSM )/2. And the
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FIGURE 8. 6CC Data flow of ki = 1 while ki+1 = 0.

critical path should be the path from multiplier input to
the pipeline register inside multiplier, or the path from the
pipeline register to the output register of the FSM. Compared
with a single-field architecture, the critical delay is only
tMUX/2 higher.

5) LATENCY CALCULATION
According to the statemachine in Fig. 6, the Montgomery
Ladder iteration takes 6 clock cycles to process one bit of
k . After the iterations, two cycles are required to sort results
and another 12 cycles are required to calculate y. Since the
high and low mode utilize the same 6CC algorithm, the only
difference is that in the low field two operations are done in
parallel. Therefore, the latency calculations are:

high-field mode: 6 ∗ m(6CC)+2(get X1/Z1/X2/Z2) +
12(calculate y)

low-field mode: 6 ∗ n(6CC)+2(get X1/Z1/X2/Z2) +
12(calculate y) for two operations.

IV. 6CC-4CC DUAL-FIELD ARCHITECTURE
When working on low field, the proposed 6CC-6CC architec-
ture only use two out of three sub-multipliers of Karatsuba.
This leads to approximately 66% utilization of the multiplier.
And since multiplier takes up most of the design’s area,
a large part of hardware resources is still wasted when work-
ing in low-field mode. In field applications, users usually use

Algorithm 3 4CC PM Algorithm
Input: k,P(xp, yp)
Output: R1(X1,Z1),R2(X2,Z2)
Initialization: R1(X1,Z1) ← (xP, 1), R1(X2,Z2) ←
(xP4 + b, xP2)
for i from t − 2 down to 0 do
if ki = 1 and ki+1 = 1 then
St1: Z1← X2 Z1
St2: X1← Z2 X1
St3: X2← bZ4

2 + X
4
2 , Z2← Z2

2 X
2
2

St4: X1← X1 Z1 + xp(X1 + Z1)2, Z1← (X1 + Z1)2

else if ki = 1 and ki+1 = 0 then
St1: X1← Z2 X1
St2: Z1← X2 Z1
St3: X2← bZ4

2 + X
4
2 , Z2← Z2

2 X
2
2

St4: X1← X1 Z1 + xp(X1 + Z1)2, Z1← (X1 + Z1)2

else if ki = 0 and ki+1 = 0 then
St1: Z2← Z2 X1
St2: X2← X2 Z1
St3: X1← bZ4

1 + X
4
1 , Z1← Z2

1 X
2
1

St4: X2← X2 Z2 + xp(X2 + Z2)2, Z2← (X2 + Z2)2

else if ki = 0 and ki+1 = 1 then
St1: X2← X2 Z1
St2: Z2← Z2 X1
St3: X1← bZ4

1 + X
4
1 , Z1← Z2

1 X
2
1

St4: X2← X2 Z2 + xp(X2 + Z2)2, Z2← (X2 + Z2)2

end if
end for
return R1(X1,Z1),R2(X2,Z2)

only one field at one time. If they choose to use the low
field, the third sub-multiplier in the Karatsuba multiplier is
completely useless. This awkward situation has prompted us
to develop a new 6CC-4CC architecture that fully utilizes all
the sub-multipliers in Karatsuba to further increase speed and
hardware utilization in low field.

In order to fully use the sub-multipliers, the first step
is to find a multi-multipliers architecture for the low field.
Based on the 6-step algorithm introduced in Algorithm 2,
the implementation can be done in 2CC with 3 multipliers,
3CCwith 2multipliers, 4CCwith 2multipliers, and 6CCwith
a single multiplier. 2CC introduces very complex cascaded
multiplexers and data exchanges that result in large critical
path [11], leaving only 3CC and 4CC to choose from.

A. 4CC PM ALGORITHM AND OTHERS
The 4CC PM algorithm is shown in Algorithm 3. In the

first two cycles the 4CC algorithm calculates the first two
multiplications in the 6-step PM algorithm, and it calculates
two multiplications each cycle in the following two clock
cycles. The difference of three competitive algorithms, 3CC,
4CC and 6CC are shown in Fig. 10. Accordingly, the first two
states in 4CC is the same with 6CC, and the last two states
in 4CC is the same with 3CC. 3CC combines the first two
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FIGURE 9. The critical path of 6CC-6CC architecture.

FIGURE 10. Comparison of 3CC 4CC and 6CC designs.

FIGURE 11. 4CC data flow of ki = 1 while ki+1 = 1.

states in 4CC into one, leading to a critical data dependency
between the last and the first state. 4CC combines step3 and
step4 into one, and step5 and step6 into one, without intro-
ducing more critical data dependency than the original 6CC
algorithm.

B. 4CC DATA FLOW
According to the Algorithm 3, the dataflow of 4CC PM can
be easily concluded as shown in Fig. 11 and Fig. 12.

FIGURE 12. 4CC data flow of ki = 1 while ki+1 = 0.

Again, only two scenarios out of four ki and ki+1 com-
binations are shown, as the other two can be obtained by
exchanging X1 and X2, Z1 and Z2 in Fig. 11 and Fig. 12.

C. CHOICE OF *CC ALGORITHM AND ITS INFLUENCE ON
MULTIPLIER
In the past, 4CC is usually considered less efficient because
the second multiplier only works half the time, as shown
in Fig. 11 and Fig. 12. However, if we use 3 multipliers to
do 2 sets of 4CC operations in parallel, the shared multiplier
can work for the second main multiplier when it is free from
the operations needed in the first main multiplier, as is shown
in Fig. 13. Consequently, this proposed 4CC architecture can
work as efficient as the 3CC architecture, while using all three
sub-multipliers in the lower field.

From another standpoint, the pipeline stages inserted in
the multiplier need to be considered when choosing the xCC
architecture for the low field. In a dual-field architecture,
the pipeline stages must be the same among both fields,
otherwise the critical path will be determined by the one
with less stages, influencing the performance of the field
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FIGURE 13. How the middle multiplier is shared to work with different
main multipliers in 4CC algorithm.

with more pipeline stages. According to dataflow of 6CC
in Sec. III-C3, dataflow of 4CC in Sec. IV-B and dataflow
of 3CC from [12], the data dependency of 3CC can only allow
one-stage pipeline to be inserted in the loop, while 4CC and
6CC can allow 2-stage pipeline in the loop and so have shorter
critical path. In this case, 4CC and 6CC algorithm are more
compatible to be unified in a dual-field architecture.

Combining these two points, we choose 4CC algorithm to
implement in low field while remaining the 6CC design in
high field.

D. 6CC-4CC ARCHITECTURE
Based on the methodology mentioned in the last section,
we proposed the 6CC-4CC dual-field point multiplication
architecture as shown in Fig. 15. The main calculation
units include 4 modular adders, 4 modular square units and
2 modular quadruple units in low field, 1 modular square unit
and 1 modular quadruple unit in high field and 1 dual-field
Karatsuba modular multiplier.

1) DUAL-FIELD KARATSUBA MODULAR MULTIPLIER
As shown in Fig. 16, the dual-field Karatsuba modular
multiplier is comprised of three separate Karatsuba sub-
multipliers2 with one-stage pipeline, three modular reduction
units in low field, one modular reduction unit in high field,
several multiplexers and XOR banks to sort the input and
output according to the Karatsuba algorithm.

When working on the low field, the multiplexers of
mul_share selects mul_sh as input. Three multipliers work
separately, using three sets of inputs. The results go through
three low-field modular reduction units to generate three
outputs, mul_outl, mul_share_out and mult_out, which are
used in two sets of 4CC PM calculations.

When working on the high field, the input multiplexers
select the XOR result of lower and higher halves of mul_in1,
and the XOR result of lower and higher halves of mul_in2.
The results of these three sub_multipliers are strobed to the

2multipliers whose inputs are half the length of the main multiplier inputs.

FIGURE 14. 6cc-4cc statemachine.

Karatsuba calculation XOR bank to generate the multiplica-
tion result based on Karatsuba algorithm, followed by the
high-field modular reduction unit. After reduction, the mod-
ular multiplication result is re-divided in half to send back
to the united datapath, following the same data structure
of 6CC-6CC architecture shown in Fig. 3.

2) WORKING MECHANISM AND DATA FLOW
In this section, we will introduce how this proposed archi-
tecture utilizes its resources to support operations in both
fields.

In low-field mode, the architecture can be viewed as
two symmetric parts, each producing a 4CC calculation.
Mul1 and the connected modular square units and adder,
and the low-field modular quadruple unit in the left of the
figure work in the whole 4 cycles, while mul_share works
only in the first two cycles. The resources in the symmetric
part of the mentioned units in Fig. 15 work with mul_share in
the same way. To avoid conflict in using mul_share, the 4CC
operation of the right side needs to start two cycles after
the left side (also shown in Fig. 13), so that in the 4i and
4i+ 1 cycles mul_share works for left, and in the 4i+ 2 and
4i+ 3 cycles mul_share works for right. Apart from this, two
separate sides operate in the same 4CC dataflow discussed
before in Sec. IV-B.

In high-field mode, the sub-multipliers work as a whole,
following the same 6CC dataflow of 6CC-6CC architecture
shown in Sec. III-C3.

3) STATEMACHINE
The statemachine of the share multiplier when working in the
low field is shown in Fig. 13 and discussed in the last section.
In the high field, the share multiplier and the main multipliers
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FIGURE 15. 6CC-4CC dual-field point multiplication architecture.

work as a whole in the Karatsuaba mechanism. Therefore,
the main statemachine controls the two main multipliers in
the low field, and the three multipliers as a whole in the
high field. The main statemachine of the proposed 6CC-4CC
architecture is shown in Fig. 14. The states to sort result,
to calculate Y and the initial states are the same with the
6CC-6CC statemachine, while the Montgomery Ladder iter-
ations include 4CC and 6CC. After init state, the state will
jump to 4CC iteration if the architecture is working on the
low field, or to 6CC iteration if the architecture is working
on the high field. The detailed hardware scheduling of each
state in 4CC and 6CC iteration are demonstrated in the cor-
responding data flow.

4) DIFFERENCE WITH 6CC-6CC
Critical path:

The critical path of 6CC-4CC architecture (shown
in Fig. 17) is (tkaratsuba_mul_in_GF(2m)+tMUX +tMUX+tadd +
tSQR+tMUXs_in_FSM )/2, only (tSQR + tMUX )/2 higher than
6CC-6CC. The frequency difference is little.

Latency:
On high field GF(2m), both architectures utilize the same

6CC dataflow, so the latency is the same 6 ∗ m(6CC)+2(get
X1/Z1/X2/Z2)+12(calculate y);

On low field GF(2n), the latency of 6CC-4CC architecture
is 2(gap for share_mul to support two ops)+4∗n(4CC)+2(get
X1/Z1/X2/Z2)+12(calculate y) for two operations. The aver-
age latency of one PM in 6CC-4CC is 2 ∗ n+ 8, almost 50%
lower than 6CC-6CC (3 ∗ n+ 7).

Area:
The gain in hardware resources is 3modular adders, 3mod-

ular square units and 1 modular quadruple units on the low
field, and one set of statemachine for share_mul.

V. IMPLEMENTATION RESULTS AND COMPARISONS
A. OVERVIEW
To enable fair comparisons with existing works, the pro-
posed 6CC-6CC and 6CC-4CC dual-field designs are imple-
mented on Xilinx Virtex-5 series and Virtex-7 series FPGAs
respectively using Synplify 2019 tool. During implemen-
tation, the field parameters m and n are instantiated with
571 and 283, which also satisfy the requirement m ≈ 2 ∗
n. While GF(2163), GF(2233) and GF(2409) are three other
NIST-recommended that are equally important, the imple-
mentations of this article mainly focus on GF(2283) and
GF(2571) for two reasons. First, GF(2571) is the largest (most
resource-consuming) among all NIST-recommended fields.
It is one extreme scenario that most previous designs fail
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FIGURE 16. Three separate Karatsuba sub-multipliers in dual-field
Karatsuba modular multiplier.

to retain the high performance. An equally balanced perfor-
mance onGF2571) with smaller fields can prove the universal-
ity and flexibility of the design. Second, the dual-field designs
presented in the paper are intended to be extended to support-
ing all five binary fields. Supporting smaller fields based on
a design on the largest field is easy, just add a few MUXs
and field-related modular reduction units, the area and fre-
quency will not be significantly influenced. On the contrary,
supporting larger fields based on a design on smaller field
may significantly influence the overall performance, since the
datapath and multiplier which are most resource-consuming
must be extended to support larger bit-length.

The synthesis results of the proposed designs compared
with other works are shown in Table 2 and Table 3. Inside the
tables, area which is quantified by LUTs (Look-Up-Table)
and frequency is directly given by the synthesis tool, while
the latency which is measured by Clock Cycles is derived
from the calculation of hardware scheduling mentioned in
Sec. III-C5 and Sec. IV-D4. Based on latency and the maxi-
mum frequency, total computation time of PM can be figured
out. To better evaluate the classic trade-off between area and
speed (shown in the form of computation time) existing in
digital circuits, the parameter Performance is introduced. It is
calculated by:

Performance =
#Clock Cycles× #LUTs

Freq.
× 10−3

= Computation Time× #LUTs× 10−3 (3)

One major difference between the proposed 6CC-6CC,
6CC-4CC architectures and other works is that each pro-
posed architecture supports both GF(2283) andGF(2571). This
means that the results of 6CC-6CC (or 6CC-4CC) archi-
tecture on both fields comes from the same implementa-
tion, hence have the same maximum frequency and occupied
LUTs. For each of the other works that appears in both tables
like [18] and [30], the results of GF(2283) and GF(2571) are
based on the same architecture, but actually comes from
different implementations. Since these different implemen-
tations can be optimized according to specific field parame-
ters, the comparison between the proposed architectures and
others is actually not fair. However, the performance of the
proposed 6CC-6CC and 6CC-4CC designs still rank among
the top.

B. THE SYNTHESIS RESULTS OF OUR WORKS
The proposed 6CC-6CC dual-field architecture reaches
the maximum operating frequency of 197.2 MHz on
Virtex-5, at the cost of 81549 LUTs. On Virtex-7, the maxi-
mum frequency of 6CC-6CC architecture is 274.1 MHz, and
80970 LUTs are occupied. For 6CC-6CC architecture, it takes
856 CCs to finish one PM on GF(2283) while 3440 CCs on
GF(2571); thus, computation time is 4.34 µs (Virtex-5) and
3.12 µs (Virtex-7) on GF(2283) and 17.44 µs (Virtex-5) and
12.55 µs (Virtex-7) on GF(2571), respectively.

The proposed 6CC-4CC dual-field architecture reaches
the maximum operating frequency of 178.7 MHz on Virtex-
5, at the cost of 87067 LUTs. On Virtex-7, the maximum
frequency of 6CC-4CC architecture is 258.6 MHz, and
86228 LUTs are occupied. As for timing, compared with
6CC-6CC architecture, the critical path of 6CC-4CC archi-
tecture is 10.4% longer than 6CC-6CC architecture onVirtex-
5, and 6% longer on Virtex-7. These low percentages of
timing differences are consistent with the theoretical analysis
in Sec. IV-D4. As for area, 6CC-6CC architecture has subtle
advantage in LUTs compared with 6CC-4CC architecture,
6.3% on Virtex-5 and 6.4% on Virtex-7. For 6CC-4CC archi-
tecture, it takes 573.5 CCs (on average) to finish one PM on
GF(2283) while 3440 CCs on GF(2571). Based on frequency
and latency (Clock cycles), computation time is 3.21 µs
(Virtex-5) and 2.22 µs (Virtex-7) on GF(2283) and 19.25 µs
(Virtex-5) and 13.30 µs (Virtex-7) on GF(2571).

C. COMPARISON ON GF(2571)
On GF(2571), the 6CC-6CC architecture reaches the highest
frequency among all existing works at the cost of reasonable
LUTs. The performance of 6CC-6CC architecture is the best,
and the performance of 6CC-4CC architecture is also among
the top. The 6CC-6CC architecture outperforms 6CC-4CC
architecture in every way on Virtex-5 and Virtex-7. The loss
in performance on GF(2571) of 6CC-4CC architecture is to
give way to the improvement in performance on GF(2283).
Among related works, [44] is the only other dual-field

design implemented on GF(2283) and GF(2571). And both
our proposed architectures are better than [44] on GF(2283)
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FIGURE 17. The critical path of 6CC-4CC architecture.

TABLE 2. FPGA implementation results on GF(2571).

TABLE 3. FPGA implementation results on GF(2283).

and GF(2571) in the field of computation time as well as
performance.

On Virtex-7, both proposed architectures are state-of-
the-art designs, which perform 93.8% and 71.2% better than
the best existing work [12]. On Virtex-5, the performance
of 6CC-6CC architecture is 5.5% better than the best existing
work [30]. The superiority in performance is evident, not to
mention the ability to support more than one field. The per-
formance of 6CC-4CC architecture on Virtex-5 is far better
than [18] and [12], but is 10.4% worse than [30]. However,
the high-performance PM architecture in [30] is designed to
work only on single preset field over Koblitz curves, which
is a special case of Simplified Weierstrass Curves. But the
proposed 6CC-4CC design is compatible with all Simplified
Weierstrass Curves cases, and supports both GF(2283) and
GF(2571) fields. The advantages on flexibility compensate
for the inferiority in performance, making the proposed 6CC-
4CC architecture equally competitive with [30].

D. COMPARISON ON GF(2283)
Since our designs are dual-field, extra control logic is
inevitably introduced into datapath, which will definitely lead
to rise in occupied LUTs, increased length in critical path and
thus decrease in performance. This effect is even more severe
when the proposed architectures work on GF(2283). In this
case, the performance of the proposed designs may not be
the best, but the speed increase brought by parallelization can
still stand out in comparison with other works on GF(2283).

On GF(2283), the proposed 6CC-4CC dual-field architec-
ture performs much better than 6CC-6CC architecture on
Virtex-5 andVirtex-7, due to the great improvement in the uti-
lization of hardware resources which is based on the modified
4CC PM algorithm. Therefore, we will take 6CC-4CC archi-
tecture as the example to compare with other works. The per-
formance of 6CC-4CC architecture is better than [44] (432%
on Virtex-5), [26] (201% on Virtex-5) and [49] (113.5% on
Virtex-7).
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Compared with [18], the performance of our 6CC-4CC
architecture is 26.2%worse on Virtex-5. However, our design
stands out in the aspect of computation time, which is 239%
faster. Also, the implementation results in [18] shows that
it only works well on small finite fields such as GF(2163),
GF(2233) and GF(2283). On large field like GF(2571), the per-
formance is much weaker due to the drop in frequency. If the
architecture of [18] is extended to a dual-field design, the fre-
quency of working on GF(2283) will be dragged down by the
less-competitive frequency of GF(2571), not to mention the
additional frequency loss brought by additional MUXs. This
will make its performance worse than ours on both GF(2283)
and GF(2571).

The performance of the proposed 6CC-4CC architecture
is inferior to [20] (−31.6% on Virtex-5 and −40.1% on
Virtex-7) and [51] (-56.7% on Virtex-5 and -76.1% on
Virtex-7). These two works are designed for ECDSA, and
the elliptic curve as well as the base point of their design
in PM is fixed while the scalar changes. But in our design,
both base point and scalar are unknown and they are both the
input of our architecture. Thus, the application scope of our
design is far broader. Besides, the computation time of our
design is merely 3.21µs on Virtex-5 and 2.22µs on Virtex-7,
indicating our design is more competitive when it comes to
speed-oriented cases.

The performance of [30] is 55% better than our design on
Virtex-5. However, as mentioned in Sec. V-C, [30] is only
suitable for Koblitz curves on a single field whereas our
design has better applicability.

The implementation results on GF(2283) and GF(2571)
show that, the proposed 6CC-6CC architecture and
6CC-4CC architecture each has its prominence on perfor-
mance, speed and applicability compared to other related
works. These proposed architectures also stand out in the
aspect of universality, since only a few works in literature
have studied dual-field architectures, which are more related
to actual field applications. Among the two proposed designs,
6CC-6CC is better at working on GF(2571) than on GF(2283),
making it more suitable for applications that mainly works
on GF(2571); while the 6CC-4CC architecture has more
balanced performance on both supported fields, and is better
for applications whoseworking field is uncertain at the design
period.

VI. CONCLUSION
In this article, we modified the Montgomery Ladder to
4CC PM algorithm for hardware and proposed a 6CC-6CC
dual-field PM architecture and a 6CC-4CC dual-field PM
architecture based on maximizing utilization of Karatsuba
multipliers and re-ordering schedule strategy in PM. For
PM over GF(2n) and GF(2m) which satisfy the relation,
m ≈ 2 ∗ n, the proposed architectures can work as effi-
cient. The universality of frequency on different fields is also
excellent, rendering these proposed architectures high perfor-
mance on all supported fields. The FPGA implementations
on GF(2571) and GF(2283), Virtex-5 and Virtex-7 prove that

our designs are state-of-the-art even when comparing with
the top single-field architectures. In the future, the proposed
architectures can also be easily extended to supporting all five
NIST-recommended fields, by doing some minor updates on
the modular squaring and reduction units.
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