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ABSTRACT Dictionary-based fault diagnosis methods, focusing on storing feature patterns of known
faults, have been widely used for electromechanical systems. The state of component degradation caused
soft faults, however, are continuously changeable. Thus, conventional dictionaries cannot be applied for
diagnosis of soft faults with multi-degradation levels. To address this issue, this article develops a new type
of dictionary by combining the unit residual signal vector (URV) and the linear discriminant analysis (LDA)
for feature transformation, which is referred to as URV-LDA dictionary. The unit residual signal vector keeps
the fault feature growth trends but eliminates the degradation severity influence. The linear discriminant
analysis is then implemented to find the best projection directions for classification. Specifically, two
dictionaries named as the URV-MLDA binary-value dictionary and the URV-SLDA unique-value dictionary
are proposed. To validate the efficiency of two developed dictionaries, an electromagnetic relay is carried
out and two conventional methods are compared. The comparison results show the developed dictionaries
can better solve the soft faults issues with significant increases on diagnostic accuracy.

INDEX TERMS Fault diagnosis, fault dictionary, linear discriminant analysis, and electromagnetic relay.

I. INTRODUCTION
In modern industries, electromechanical systems have
become more integrated and complex [1]. The continuously
severe operational conditions may cause the degradation of
the components in the system, and unexpected instantaneous
environment shocks may cause the catastrophic failure of
components, which may further cause system faults. The
study of fault diagnosis for these electromechanical systems
attracts more attention in recent decades [2]-[4]. Compared
with component catastrophic failures (hard faults) which
are always determined states (such as the open circuit fail-
ure or the short circuit failure), degradation caused faults
(such as the bearing crack generation), also known as soft
faults, are gradually generated with continuously changeable
states. Thus, fault diagnosis for soft faults is more difficult
(21, [51-17].

Fault diagnostic methods can be categorized as data-driven
methods and model-based methods. Data-driven methods
mainly utilize extracted features of measured signals for fault
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diagnosis. Some representative data-driven methods include
the principal component analysis (PCA)-based methods [8],
[9], the support vector machine (SVM) [10], and the artifi-
cial neural network (ANN)-based methods. The diagnostic
performance of these methods relies on the correctness and
completeness of extracted healthy and faulty features [11].
However, the data mining and the feature extraction process
can be regarded as a random searching process, since the
usability of a specific feature cannot be predicted before
it is extracted. Thus, these methods are better suitable for
systems with large amounts of historical and online mea-
sured signals/features. When data acquisition or diagnos-
tic time is limited, it requires more effort to minimize the
number of monitored features and simplify the diagnostic
model. Model-based methods, however, utilize the knowl-
edge of the system model to directly figure out the rela-
tionship between fault states and monitored physical features
for fault diagnosis. The knowledge can be obtained from
physical principles, fault mechanisms, and relevant exper-
tise, et al. Compared with the data-driven methods, model-
based methods are suitable for systems whose fault effect
and theoretical model are well studied so as to avoid the
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random searching of useful features. It can be further clas-
sified into two types. One is parameter identification-based
methods, which focus on establishing the quantitative system
model between component parameters (or state parameters)
and the system-level observers (testable features of the sys-
tem). The predicted features derived from the model and the
monitored features are compared to isolate the fault loca-
tion [12], [13]. However, such quantitative models are dif-
ficult to be constructed for complex systems. The other type,
the dictionary-based methods, prefer to establish qualitative
relationships between given system states and observers. The
dictionary-based methods only map the weak dependency
relationship between predetermined fault states and a series
of system features, which do not require the precise quan-
titative system model [14]. Traditionally, such dictionaries
can be derived from various theoretical or numeric mod-
els such as the expert system models [15], [16], the graph
theory models [3], [17]-[19], and fault simulation models
[20]-[22], et al. As the signal processing technique develops,
more data-driven methods can also be used to construct dic-
tionaries. Due to its simplicity and directness, the dictionary-
based methods are widely used for soft fault diagnosis in
analog circuits [17]-[19], [23]-[25], digital circuits [26],
[27], and modular systems [28], [29].

Although the dictionary-based methods are widely used,
they still have drawbacks. The conventional dictionaries only
focus on describing the feature distributions of deterministic
fault states, thus, it is unable to diagnose the faults with
undetermined states. Since the states of soft faults are contin-
uously changeable, the conventional dictionary-based diag-
nostic methods cannot be applied for soft faults [21]. On the
other hand, the simplicity and directness of the dictionary
demand the sacrifice of the feature distribution precision.
In the conventional dictionaries, the feature distribution of
each fault state is represented using a series of independent
feature intervals. Without considering the dependency among
features, the conventional dictionaries will “expand” the real
feature distribution of each fault state. Thus, the impractical
overlap of the feature distributions under different fault states
occurs, which may waste the usability of features and may
further lead to an improper diagnostic strategy. To solve the
soft faults issue, a proper idea is to find out new features
which are insensitive to the severity level of faults but are
sensitive to the fault modes. Taking the linear analog circuit
as an example, [21] developed a dictionary using the slope
of the node-voltage as features. Even the severity level of
faults changes, the slope is invariant for a given fault mode.
In [30], the current residual is selected as the feature, and the
sign of which is used to classify different faults of a pulse
width modulation (PWM) rectifier. Although the magnitude
of the residual varies as the fault severity increases, the sign of
the residual still keeps constant. In [31], the features derived
from the residual signal are approximately linearly increased
as the fault severity increases. It also indicates the residual
signal can show the fault growth directions. For the overlap-
ping issue, it can be solved by projecting original features
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into a new feature space. In the field of the data-driven
fault diagnosis studies, various linear transformation methods
(such as the principal component analysis (PCA), and the
linear discriminant analysis [32], [33]) and nonlinear methods
(such as ANN, and SVM [34]) are available to solve this
issue. Compared with the nonlinear transformation methods,
the linear transformation methods have simple structures and
are more efficient to avoid the overfitting problem. As men-
tioned before, applications of model-based methods are usu-
ally with relatively small feature sample size. In that case,
the overlapping issue is more likely to occur. Thus, a simple
linear transformation method is more suitable. The linear
discriminant analysis, which is such a robust and simple
linear transformation method, has been successfully applied
for Tennessee Eastman process [32], [34], and bearings
[35]-[37] to improve the diagnostic accuracy.

Inspired by the above studies, this article proposes a new
type of dictionary— the unit residual vector linear discrim-
inant analysis (URV-LDA) dictionary, to drawback the soft
fault issue of conventional dictionary-based diagnosis meth-
ods. By utilizing the unit residual signal features instead of the
original features, the new dictionary stores the fault feature
growth trends, which can better consider the ‘“‘expandabil-
ity” of the feature distribution caused by degradation. Thus,
a better diagnostic ability for soft faults can be obtained.
Using the transformed unit residual signal features, the linear
discriminant analysis is then implemented to further learn
best projection directions without losing original growth
trends.

This article is organized as follows. In Section II, the
dictionary-based fault diagnosis methods are summarized.
For the first time, three types of dictionaries are catego-
rized based on the value form of elements in the dictionary.
Section III describes the proposed two developed new dictio-
naries represented with the combination of the residual signal
vector and the linear discriminant analysis. To validate the
efficiency of the developed dictionaries, the fault simulating
experiment of an integrated electromechanical device — the
electromagnetic relay is carried out in Section IV. And the
diagnostic accuracy results, as well as the comparison with
other methods, are also discussed. The main contributions are
then concluded in Section V.

II. REVISIT OF DICTIONARY-BASED FAULT DIAGNOSIS
The dictionary-based fault diagnosis methods are widely
used in many systems. Although such methods all use a
dictionary for fault diagnosis, the dictionaries may have
slightly different expression types in different application
fields. In this part, the authors category dictionaries into three
basic types for the first time. The category is based on the
value form of elements in the dictionary. Which are named as
the binary-value dictionary, the multi-value dictionary, and
the unique-value dictionary.

A. BINARY-VALUE DICTIONARY
The binary-value dictionary is named because the elements
are binary, which are filled with “1” and *“0”. Table 1 is
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TABLE 1. Example of a Binary-Value Dictionary

14 b 5]

Fault-free 0
Fault 1 0
0
1

Fault 2
Fault 3

(=3 el K==l R

TABLE 2. Example of a Multi-Value Dictionary

t 15 13

Fault-free
Fault 1
Fault 2
Fault 3

N == |

0 0
1 1
2 2
1 0

an example of the typical binary-value dictionary with three
features t; ~ t3 for three faults.

This kind of dictionary is also named as the dependency
matrix (or D-matrix), which is widely used for complex
systems/ modular systems testability analysis and fault diag-
nosis. For each feature, a single discriminant rule is prede-
termined. If the feature value of a given fault state (including
the fault-free state) satisfies the discriminant rule, the corre-
sponding element value is set as “0”’. Otherwise, the element
value is set as ““1”’. Generally, the discriminant rule is pre-
ferred to be determined according to the fault-free state. Thus,
element values of the fault-free state can be regularized as
“0”s.

The binary-value dictionary is well suited for the cases
whose features are from functional tests since the outcome
of functional tests is either “pass” or “fail”. To use the
binary-value dictionary for fault diagnosis, the binary series
of each row should be unique.

B. MULTI-VALUE DICTIONARY

In common with the binary-value dictionary, the multi-value
dictionary also only uses a single discriminant rule for each
feature. The difference is that the multi-value dictionary
allows more than two values for each element. An example
of the multi-value dictionary is shown in Table 2. Taking #;
as an example, its value can be “0”, “1”, or “2”.

The multi-value dictionary is suitable for cases in which
each feature under different fault states only exists several
countable values or intervals. It is widely used for analog
circuit fault diagnosis, which is also known as the ‘“‘integer-
coded dictionary”. In cases of the analog fault diagnosis,
faults whose feature value intervals are similar are coded with
the same integer such as “0”’, “1”°, or ““2”. To make the form
consistent, the integer codes referring to the fault-free state
are set as ““0”’s. The integer code series of each row should
also be unique for fault diagnosis.

C. UNIQUE-VALUE DICTIONARY

For the first two types of the dictionary, a single discrim-
inant rule is used to determine the element value for each
feature (column) under each fault state. Instead of using
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TABLE 3. Example of a Unique-Value Dictionary

h 153 15}
Fault-free By~ ~Bot By ~Bp By ~Byt
Fault 1 By ~Bi By, ~Bi' Bi; ~Bi3
Fault 2 By ~By By ~Bxn' By ~By'
Fault 3 By ~By" By ~By' By ~By'

the single discriminant rule for each element, the unique-
value dictionary expresses the element with a unique interval
for each feature under each fault state. The unique-value
dictionary is formed as Table 3.

For a given feature #; under the i-th fault, its corresponding
element is expressed as an interval between B; and B; And
the boundaries (Bl.; and B;) of each interval can be any
unique values.

Generally speaking, the third type dictionary can be
regarded as a generalized form of the first two types. The
binary-value dictionary tries to cluster faults into two groups
with each feature, the multi-value dictionary tries to cluster
faults into multi-groups with each feature, while the unique-
value dictionary does not strictly attempt to cluster faults
with a single feature. For fault diagnosis, the intervals of
each feature are allowed to be overlapped with each other,
as long as the feature vector overlapping area of any two
fault states is small enough. Since the unique-value dictionary
eases the requirement of each feature compared with the first
two dictionaries, more features can be considered to construct
the dictionary.

IIl. DIAGNOSIS USING DICTIONARY WITH URV-LDA
REPRESENTATION

As mentioned in the Introduction, the soft faults and the fea-
ture intervals overlapping issues are two critical problems for
dictionary-based fault diagnosis. In this part, the developed
new type of dictionary is described, which applies the linear
discriminant analysis and the unit residual signal vector for
dictionary construction to solve the overlapping issue and the
soft fault issue, respectively.

A. LINEAR DISCRIMINANT ANALYSIS

The linear discriminant analysis (LDA) derived from Fisher’s
linear discriminant, is used to separate different classes by
optimizing a series of linear combinations of original fea-
tures. The LDA is a supervised classification method since
it requires labeled feature samples.

The purpose of the LDA is to maximize the between-class
sample distance while minimizing the within-class sample
distance. Taking the two-class issue as an example, these
distances can be expressed in terms of the scatter matrices
as follows:

Sp (¥) = (o — p1)(po — )"
1
Sw@) =) = u =)'

where Sp(x) represents the between-class scatter matrix,
Sy (x) represents the within-class scatter matrix, x denotes the
M x 1 feature vector of each sample, X; denotes the sample set

ey
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Overlapping Area Fault-free
| Feature Boundaries of Faults Fault Mode 1
e Fault Mode 2

Best Discriminant Line

Original Feature #2

B‘est Projection Line

Original Projection Line

Original Feature #1

FIGURE 1. LDA used for fault diagnosis with single degradation level.

of the i-th class, g and 1 represents the mean feature vector
of two classes, respectively.

The scatter matrix ratio (Sp/S),), which indicates the dis-
criminant level, is a deterministic matrix for a given feature
sample set X. Using an M x 1 non-zero vector w, a new feature
can be obtained as y = w! x. Then, the scatter matrix ratio
with y can be maximized by optimizing w as (2).

Sp o) wlSy(x)w
Sw @ WIS, (x)w

According to the generalized Rayleigh quotient theory,
J(w) reaches its maximum value Apax Which is also the
biggest eigenvalue of the matrix S,,(x)~'S,(x), only when w
is the corresponding eigenvector.

The advantages of the LDA can be shown in Fig. 1. For the
original features of the fault mode 1 and the fault mode 2,
the feature distributions defined from the dictionary-based
methods overlap heavily. The samples located in the orange
overlapping area cannot be identified. Thus, it is hard to
find proper discriminant rules to separate the fault mode
1 (or 2) from the other classes. However, by projecting orig-
inal feature samples on a proper line (the best projection line
in Fig. 1), the distribution overlap significantly decreases.

To implement the LDA for fault diagnosis of soft faults
with multi-levels, a simple idea is to label each sample by its
fault mode as shown in Fig. 2.

@

arg maxJ (w) =
w

B. COMBINATION OF RESIDUAL SIGNAL VECTOR
AND LDA
Although the LDA method can improve the fault diagno-
sis performance of the dictionary-based methods, it still
has drawbacks. The LDA only aims at separating different
classes, which still lacks the ability to indicate the similarity
of classes. Thus, the LDA cannot be directly used for the
soft fault diagnosis, since different soft faults with different
degradation levels may have similar feature vector intervals.
To address this issue, the primary features should be pre-
processed. The residual signal, which refers to the difference
between the measured feature and the predicted feature of a
given signal, is also a well-known health indicator for fault
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Shift Trend of Fault 1

Fault-free

Incipient Fault 1
Incipient Fault 2
Catastrophe Fault |
Catastrophe Fault 2

Original Feature #2

Original Feature #1

FIGURE 2. LDA used for fault diagnosis with multi-degradation levels.
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FIGURE 3. Unit residual signal vector transformation process.

diagnosis and prognosis. When the residual signal exceeds
a preset threshold, the system is determined as faulty. For a
given feature vector x, the normalized residual signal vector
(RV) x’ can be obtained as follows:

;X — 1o
00

x 3)
where 1o and og is the mean feature vector and the standard
deviation vector of the fault-free state, respectively. After the
transformation, the primary feature vectors are mapped into
the RV space as shown in Fig. 3.

To further shrink the RV space into a unit area and elimi-
nate the degradation level influence, a scale parameter L(x")
which is shown in (4) can be used.

L) = |l = )7 o ()
where ||x’||» denotes the 2 norm of x’.

Then, the unit residual signal vector (URV) with a given
radius parameter Ry, can be obtained as:

“)

L ()c’)_1 x' L(x") >Ry

1
R =
X" (Run) x/ L (x/) <Ry,

&)
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After transforming to the URV space, all the samples fall
in a hypersphere centered at the origin as shown at the lower
right corner in Fig. 3. By adjusting Ry, to a proper value,
most of the fault-free samples can be mapped to the inside
of the hypersphere, while most of the faulty samples are
mapped on the surface. The adjustment of Ry, can be objected
as:

arg r%ax (min(L+, Kg) + max(L™~, KR))

th
T ={|L&) = Ra| . ¥ € Xg) ©)
L™ ={|L() = Ran| . X" & X5)

where min(A, Kg) and max(A, Kg) represents the Kg-smallest
scale parameter values and the Kg-largest scale parameter
values of the sample set A, respectively.

Since the URV keeps the feature growth trends of each
fault and eliminates the effect of the degradation, soft fault
diagnosis with multi-levels can be regarded as the typical
classification problem. Thus, the LDA can be applied to
improve the fault diagnosis accuracy by using the URV as
inputs.

C. TWO LDA STRUCTURES FOR DICTIONARY
CONSTRUCTION

After transforming the URV samples of each fault mode
with LDA into a new feature space, the fault dictionary can
be constructed using the new features. In the constructed
dictionary, each element represents the expected feature inter-
val which can be obtained from the decision function of
the LDA. The LDA structure, which determines the trans-
formation matrix, can significantly affect the classification
performance of the new features. In this article, two LDA
structures are applied for the fault dictionary construction.
One is the combination of a series of typical 2-class LDA
which is specified as the “multiple LDA”, and the other is a
single LDA for multi-classification which is specified as the
“single LDA”.

1) DICTIONARY CONSTRUCTION WITH MULTIPLE LDA

The multiple LDA (MLDA) structure can be regarded as
a combination of a series of 2-class LDA, of which each
follows the ““one-against-the rest” rule. For each fault mode,
a typical 2-class LDA, which is named as a local LDA,
is used to discriminate the corresponding fault mode from
the others. The transforming vector of each local LDA is
assembled to be the global transforming matrix w. The local
LDAs follow the same rule as described in Section III (A).
Thus, the scatter matrices (S,,(x) and Sp(x)) in (1) can be
used.

Since the RV transformation described in Section III
(B) has already separated feature samples of the fault-free
state and that of the faulty states as two parts (with an
Ryp-radial hypersphere), the fault-free state does not need to
be considered again during each local LDA solving process.
Then, the scatter matrices for the j-th local LDA can be
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adjusted as:
M—1

2w
i=1,i#j
M-1
=2 [

= e — )|
i=1

SE ) = (i — iy — i)’ iy =

N

where S}f(x; J) is the between-class scatter matrix, Sf,(x) is
the within-class scatter matrix. M is the total class number, X;
denotes the sample set of the i-th fault mode, and p; denotes
the mean feature vector of X;.

Using (7), the solution of the multiple LDA for a
multi-classification problem can be derived as:

wa = [wi,wa, -, wy—1]
Wi : {A]W] = )\-maij» )Lmax = €lg(A, 1)} (8)
A =St @7 SE@), 2 =x"(Ra)

where eig(A, 1) denotes the maximum eigenvalue of a given
matrix A.Sf(x; J) is the between-class scatter matrix, and
Sf,(x) is the within-class scatter matrix.

The new feature vector can be obtained as y = wg z. Since
each vector wj is directly used to discriminate the j-th fault
mode, each new feature only requires a single boundary for
discrimination. The boundary B; of the j-th feature y; can be
determined by:

max(Yj_, Kg) + min(Yj"', Kp)

B — 2K ’
J max(Y+ Kp) +min(Y;", Kp)

2Kp

E(Y") > E(Y;)

. EQY) < EY))
©

where max(Y, Kp) and min(Y, Kp) denotes the Kp-largest
values and the Kp-smallest values of a given sample set Y,
respectively. Yj+ is the feature set of j-th fault, and Y is the
feature set of the other faults.

Since each new feature is responsible for discriminating a
single fault, the URV-MLDA dictionary is sparse and can be
regarded as the binary-value dictionary.

2) DICTIONARY CONSTRUCTION WITH SINGLE LDA

Besides using an MLDA structure to solve the multi-
classification problem, a single LDA (SLDA) can also
achieve the goal. Compared with the MLDA, the SLDA
follows the ‘“‘one-against-the rest” rule. However, the scatter
matrix ratio cannot be calculated directly, since the scatter
matrices may not be scalars for multi-classification. To obtain
the optimized w, the objective of the scatter matrix ratio
should be modified as:

[1diag (wTSb (x) w)
[1diag (WT'S, (x) w)
D TS;, (x) wj

FI (10)

w; TS, (x) wj

arg maxJ (w) =
w
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where diag(A) refers to the main diagonal of a given matrix
A, D refers to the dimension of the expected output vector.
The scatter matrix ratio is approximately expressed to be a
ratio of the products of two scatter matrices. It can be further
expressed as the product of a series of generalized Rayleigh
quotients as shown in the second line of (10). Thus, the opti-
mized w can be determined as the corresponding eigenvectors
of the D-largest eigenvalues of Sy (x) 1S, ().

With the “one-against-the rest” rule, the scatter matrices
Sy (x) and Sp(x) should also be modified as follows:

Sy (x) = Z?:l [(Mi — px )i — MX)T]

spw =30 30 o e — )]

where py denotes the mean feature vector of the entire
sample set X. With the above modification, the distance
between each class center and the global center is calculated
to evaluate the between-class sample distance.

Thus, the solution of the single LDA can be described as:

(11)

W*Z[W15"' 5Wj9"' aWD]91§D§M_2
wj = {v:Av =, A = eig(A, )} (12)
A=SE@7 'S @.z=x" (Rn)

where eig(A, j) denotes the j-th largest eigenvalue of a given
matrix A.

For the new D x 1 feature vector y = wfz, the distributions
of a given feature under different faults may be overlapped
with each other. According to the review in Section II, the
URV-SLDA dictionary should be categorized as the unique-
value dictionary. Thus, the boundaries of each feature under
each fault state should be determined respectively as:

Bi; = gl X min (Yl~, KB)

13
B;j’.’: B_lxmax(Ylj,k) (13)

where max(Y;;, Kg) and min(Yj;, Kp) denotes the Kp-largest
values and the Kp-smallest values of a given sample set Yj;, Y;;
denotes the j-th transformed feature samples under i-th fault.
And B;; and Blf denote the lower boundary and the upper
boundary of the j-th feature under i-th fault, respectively.

D. FAULT DIAGNOSIS PROCEDURE OF URV-LDA
DICTIONARIES

The training and diagnosis procedure using the URV-LDA
transformed dictionary can be shown in Fig. 4.

The purpose of the training process is to determine the
transforming process parameters using given training sam-
ples and training hyper-parameters. The transforming process
parameters include the URV transformation parameters i,
80, and Ry, and the LDA transforming matrix w (wg or wy).
After obtaining the new features, the dictionary boundaries
can also be determined.

Once the transformation process is determined, the fault
diagnosis can be achieved. The diagnosis can be sepa-
rated into the distance-based fault detection step and the
pattern-based fault identification step. The fault detection
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FIGURE 4. The training and diagnosis process with the developed
URV-LDA dictionary(s).

Spring Armature

l Contact

FIGURE 5. Structure of the electromagnetic relay.

u u

step is realized by comparing L(x") and Ry, the sample whose
L(x") is smaller than Ry, is regarded as the fault-free sample.
Samples with L(x’) greater than Ry are further be LDA
transformed for fault identification. The fault identification
is realized by matching up the feature vector with each row
of the fault dictionary.

IV. VALIDATION EXPERIMENT WITH THE RAILWAY
SIGNAL ELECTROMAGNETIC RELAY

To validate the effectiveness of the developed dictionary,
the fault seeding experiment of an electromagnetic relay is
carried out. Four fault modes of the relay are simulated, and
three different degradation levels are considered. Two devel-
oped methods are compared with two conventional diagnostic
methods.

A. FAULT SEEDING AND DATA ACQUISITION DESCRIPTION
The electromagnetic relay used in the fault seeding exper-
iment is a railway signal relay, the simplified structure of
which is shown in Fig 5.

As the relay used in the railway system, the degradation
of the coil, the spring, the reed, and the armature can affect
the performance of the relay, which may further affect the
signal transmission for the entire system. There are four faults
related to the parts degradation, which are the spring loosing,
the armature stuck, the coil resistance increasing, and the reed
fatigue. These four faults can be simulated by decreasing the
spring preload, inserting thin spacers to the armature gap,
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FIGURE 6. Driving Curve of the Electromagnetic Relay.

increasing drive resistance, and modifying elastic modulus,
respectively. Also, the degradation level of these faults can
be controlled.

According to the theory analysis, the relay faults can affect
the shape of the driving signal. Fig. 6 shows the driving
current curve, which is a non-monotonic curve. To extract the
shape information from the curve, the time, and the current
value of five specific points shown in Fig. 6 are used.

Thus, eight physical features (rt; ~rts and i1 ~ i3 as
shown in Fig. 6) are determined as the primary features.
Four fault modes with three degradation levels, as well as
the fault-free state, are simulated, and each state includes
100 samples. Thus, 13 x 100 = 1300 samples are obtained
from the relay fault seeding experiment.

B. EFFECT ANALYSIS OF TUNABLE PARAMETERS

For the developed two dictionaries, tunable parameters
include Kg, Kp, and D. To analyze the influence of these
tunable parameters, only feature samples of the fault-free
and the incipient faults (faults whose degradation level is
relatively low) are used for training. And all samples includ-
ing multi-level faults are used to calculate the diagnostic
accuracy. The diagnostic accuracy is calculated as:

Acc = Ne x N™! x 100% (14)

where N¢ is the number of correctly classified samples, and
N is the total number of samples.

Taking a fixed combination of K = 3, K = 3, and
D = 3 for training, the obtained new feature space as well
as the corresponding element values of the two developed
dictionaries are shown in Fig. 7, Fig. 8, and Table 4, Table 5,
respectively.

According to the definition of Kp, it mainly affects the
discriminant result between fault states and fault-free state,
which is fault detection ability. Given fixed values of Kp = 5
and D = 3, the effect of K is analyzed by changing its value
from 1 to 9. For each combination of tunable parameters, 20
randomly generated sample sets with 250 samples (50 sam-
ples of each state x 5 fault-free/fault states) for each are used
for training, and the diagnostic results are shown in Fig. 9 in
the form of boxplots.

As seen in the above results, the diagnostic accuracy of
both dictionary increase as the value of Kp increase from
1 to 5. However, when Kp keeps increasing, the diagnostic
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FIGURE 8. Scatter plots of URV-MLDA features.

TABLE 4. URV-SLDA Dictionary Trained With 100 Samples

1 ] &)
Fault 1 —1.42~-0.11 1.67~3.29 —2.51 ~—043
Fault 2 —2.07~-034 | -3.06~-2.58 | —1.75~-0.83
Fault 3 2.97~3.70 —1.04~0.15 —0.28 ~—0.99
Fault 4 —2.68 ~—1.92 —0.42 ~0.87 127 ~1.84

TABLE 5. URV-MLDA Dictionary Trained With 100 Samples

4 2] 1 1
Fault 1 >1.57 >-147 | >-1.05 <1.13
Fault 2 <1.57 <-147 | >-1.05 <1.13
Fault 3 <1.57 >-147 | <-1.05 <1.13
Fault 4 <1.57 >-147 | >-1.05 >1.13

accuracy stops increasing, which indicates the influence of
K mainly exists when its value is relatively small. Moreover,
the effect on URV-SLDA is heavier than that of URV-MLDA.

For Kp, it is related to the boundary determination. Given
fixed values of Kg = 5 and D = 3, the effect of Kp
is analyzed by changing its value from 1 to 9, and the
diagnostic results are shown in Fig. 10 with the form of
boxplots. Compared with Kg, the influence of Kp is more
complicated.

As Kp increases, the diagnostic accuracy of URV-SLDA
decreases, while that of URV-MLDA increases first and
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TABLE 6. Diagnostic Ability Comparison Result (20 Sample Sets)

Methods Tunable Parameters
M1 Sparse LDA Lasso penalty factor 1
M2 SVM Scaling factor of RBF kernel y; penalty factor ¢
M3 | URV-SLDA Kg; Kg; D
M4 | URV-MLDA Kr; Kp

TABLE 7. Diagnostic Ability Comparison Result (20 Sample Sets)

Worst Best Average
M1 Sparse LDA 90.5% 94.3% 93.0%
M2 SVM 96.6% 98.6% 97.9%
M3 URV-SLDA 88.6% 94.9% 91.6%
M4 URV-MLDA 99.0% 99.7% 99.3%

FIGURE 9. Diagnostic accuracy results with different K (trained with
only fault-free and incipient faults samples).
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FIGURE 10. Diagnostic accuracy results with different Kz (trained with
only fault-free and incipient faults samples).
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FIGURE 11. Diagnostic accuracy results with different D (trained with
only fault-free and incipient faults samples).

gradually decreases. The optimal value of Kp for
URV-MLDA ranges from 3 to 5.

The tunable parameter D only exists in the SLDA
dictionary, by changing it from 1 to 4 (with Kg = 5 and
Kp = 5), the influence of it can be seen from Fig. 11. As seen
in Fig. 11, the optimal D ranges from 2 to 3.

Compared with K, the influence of K and D is heavier.
Although a fixed combination of tunable parameters can
be arbitrarily given, an optimization process for tunable
parameters is suggested to get a better diagnostic ability.
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C. DIAGNOSTIC ABILITY COMPARISON

To validate the ability to solve the soft fault diagnosis issue,
two developed dictionaries are compared with two kinds of
conventional diagnostic methods, which are sparse LDA, and
SVM.

The sparse LDA for comparison is constructed with a lasso
penalty to get better classification ability. The SVM in this
part uses the one-against-the-rest strategy and the sequential
minimal optimization (SMO) algorithm with a radial basis
function (RBF) kernel. To get better classification ability,
three-fold cross validation and the grid search method are
applied to optimize tunable parameters of these methods. The
tunable parameters required to be optimized of these methods
are listed as follows.

For each method, 20 sample sets are randomly generated
as training samples. For each sample set, fault-free state and
four fault modes with three degradation levels (incipient, mid-
range & catastrophic levels) are considered. 50% samples for
each state (50% x 1300 = 650 samples in total) are used as
training & validation samples, and the rest are used for the
test. The results are listed as follows.

As can be seen in Table 7, the proposed URV-MLDA dic-
tionary has the highest averaged diagnostic accuracy, which
is much better than that of sparse LDA. Although the result of
SVM s 0.1% lower than URV-MLDA, its variation is slightly
larger. On the other hand, the URV-SLDA is lower than
others. By changing the sample rate from 50% down to 10%,
the averaged diagnostic accuracy of each training sample rate
is shown in Fig. 12. When the sample rate decreases to 10%,
the averaged accuracy of URV-MLDA still keeps at 98.4%,
which is 5.3% higher than that of SVM and is 12.8% higher
than that of sparse LDA.

When training samples are limited to include only incipient
& mid-range levels or only incipient level, averaged diag-
nostic accuracy results can be seen in Fig. 13 and Fig. 14,
respectively. The result of URV-MLDA still keeps higher than
95%, however, those of SVM and sparse LDA all decrease
to less than 80%. It indicates when degradation tendency
information is limited, the diagnostic ability of SVM or sparse
LDA cannot be guaranteed.

It should be noted, URV-SLDA also has better diagnostic
accuracy than SVM and sparse LDA, when the degradation
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FIGURE 12. Averaged diagnostic accuracy results trained with incipient,
mid-range & catastrophic faults samples (sample fault level = 3).

TABLE 8. Averaged Diagnostic Accuracy Comparison With Different
Training Sample Sizes (Sample Fault Level = 3)

10% 20% 30% 40% 50%
Sparse LDA 85.6% | 91.1% | 92.5% | 93.0% | 93.0%
SVM 93.1% | 96.0% | 97.2% | 97.6% | 97.9%
URV-SLDA 87.6% | 89.8% | 91.8% | 91.8% | 91.6%
URV-MLDA | 984% | 989% | 99.3% | 99.3% | 99.3%
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FIGURE 13. Averaged diagnostic accuracy results trained with incipient &
mid-range faults samples (sample fault level = 2).
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FIGURE 14. Averaged diagnostic accuracy results trained with only
incipient faults samples (sample fault level = 1).

level of samples is limited. Thus, it can also be regarded as
an option for fault diagnosis when the degradation situation
of training fault samples is insufficient.
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FIGURE 15. Diagnostic accuracy comparison between URV-SVM and
URV-MLDA.

As mentioned above, the main reason why conventional
nonlinear (SVM with RBF kernel) and linear (sparse LDA)
classification methods perform worse is that they rely on
the existing sample distribution, which does not consider the
“expandability” of the distribution caused by degradation.
The URV transformation process, however, can somehow
compress the distribution differential caused by degradation.
Thus, the combination of URV and LDA can perform better
for the diagnosis of soft faults.

Actually, LDA can be regarded as a simple and linear
form of SVM. Thus, the combination of URV and SVM
should also be able to solve the soft fault diagnosis issue.
As seen in Fig.15, the combination of URV and SVM also
shows excellent diagnostic ability as URV-MLDA. The subtle
difference can be explained by the improper overfitting and
rough grid search optimization of SVM, which can be ignored
case by case.

V. CONCLUSION

Dictionary-based methods are widely used for hard fault
diagnosis of electromechanical systems. Unlike hard faults
with deterministic states, states of degradation caused soft
faults can be continuously changed. Without deterministic
states, soft faults cannot be diagnosed using conventional
dictionaries. To address this issue, this article develops a
new type of dictionary — the URV-LDA dictionary, which
is constructed with the unit residual signal vector (URV) and
the linear discriminant analysis (LDA).

Compared with conventional linear or nonlinear transfor-
mation used for fault dictionaries, the developed URV-LDA
transformation method first introduces the URV to perform
the fault feature growth trends instead of the original feature
distribution. Thus, the influence of continuous degradation
on feature distribution can be eliminated. Based on URV
transformation, two dictionaries named as the URV-MLDA
binary-value dictionary and the URV-SLDA unique-value
dictionary are proposed, and diagnostic accuracy for an
electromagnetic relay product is compared with conven-
tional SVM and sparse LDA methods. The results show
that the developed URV-MLDA performs better diagnostic
ability whether degradation trends are implied in samples or
not. While URV-SLDA performs delicately better than two
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conventional methods, only when fault samples with multi-
degradation levels are insufficient. It shows the developed
dictionaries can solve the soft fault issue.

As a linear classifier, LDA used in the URV-LDA dic-
tionary prefers to solve cases whose degradation trends are
relatively linearly separable such as the electromagnetic relay,
which requires simple structure and are robust to avoid over-
fitting. To issues whose degradation trends are hard to be
linearly separated, the combination of URV and nonlinear
SVM can be further applied to construct a dictionary.
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