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ABSTRACT Bad weather, such as snowfall, can seriously decrease the quality of images and pose great
challenges to computer vision algorithms. In view of the negative effect of snowfall, this paper presents
a single-image snow removal method based on a generative adversarial network (GAN). Unlike previous
GANSs, our GAN includes an attention mechanism in the generator component. By injecting attention
information, the network can pay increased attention to areas covered by snow and improve its capability to
perform local repairs. At the same time, we improve the traditional U-Net network by combining it with the
residual network to enhance the effect of the model when removing snowflakes from a single image. Our
experiments on both synthetic and real-word images show that our method produces better results than those

of other state-of-the-art methods.

INDEX TERMS Snow removal, generative adversarial networks, attention mechanisms.

I. INTRODUCTION
As a special weather phenomenon, snowflakes reduce the
visibility of background scenes, affect the clarity of images,
and cause useful information in the images to disappear.
These issues have a tremendous negative effect on subsequent
image processing tasks, such as target detection [1], scenario
analysis [2], and other image processing tasks [3]. Especially
for the applications of artificial intelligence, clear and clean
images are needed to extract and process correct information
in most cases. Therefore, removing snowflakes from a single
image is of great significance in the field of computer vision.
Existing snowflake removal methods for a single image
can be divided into two types: traditional model-based and
deep-learning-based methods. The first type mainly uses the
spatial features of snow to detect and remove it from images.
Pei et al. [4] used saturation and visibility characteristics to
remove snowflakes from images by using high frequency fil-
tering. Xu et al. [5] designed a refined guidance image. First,
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the original image was degraded, and then it was differenti-
ated from the original image. By using the difference between
the degraded image and the original image as the guid-
ance, the authors reduced the degradation caused by dynamic
weather and maintained detailed information about local
regions. Ding et al. [6] claimed that the rain and snow com-
ponents of an image have the characteristics of ridge edges,
while other components have other edge properties such as
those of step edges and valley edges. A guided LO smoothing
filter combined with edge properties was used to detect and
remove the rain and snow components. Zheng et al. [7] took
advantage of the frequency characteristics of images in which
the rain and snow components were in the high-frequency
portion, and the low-frequency portion did not include the
rain and snow components. The low-frequency components
were used as the guide graph to remove the rain and snow
components from the high-frequency portion. Based on mor-
phological analysis, Rajderkar and Mohod [8] used dictio-
nary learning and sparse representation to detect rain and
snow and employed smooth filtering to repair pixels cov-
ered by rain and snow. Unfortunately, this method causes
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image blurring. Wang et al. [9] proposed a hierarchi-
cal approach for rain or snow removal in a single-color
image. First, they distinguished the high-frequency and
low-frequency components of the image and extracted the
overcomplete dictionary of rain and snow components
and nondynamic components at high frequencies from a
three-layer hierarchy of the image. A guided filter was
then applied to restore the rain and snow pixels. Finally,
the authors summed the nondynamic components to obtain
images with the rain and snow removed. Lu et al. [10]
regarded snowflakes in the atmosphere as particles. They
used the maximum value of the degree of polarization and
the angle of polarization obtained by global analysis of the
Stokes vector to accurately estimate atmospheric air-light
at infinity and the transmission map. Huang er al. [11]
used sparsity-based regularization to reconstruct a potentially
snow-free image and proposed an autotuning mechanism
to seek an improved reconstruction of a snow-free image
via time-varying inertia weight particle swarm optimizers.
Snowflakes are removed from the image through step-by-step
iteration. Model-based methods for snowflake removal only
consider one or several features of snowflakes. During the
detection and repair processes, some detailed information is
ignored and lost, resulting in image blurring.

Unlike traditional modeling methods, algorithms based on
deep learning utilize the self-learning ability of the network
to extract the features from an image to detect and remove
the rain and snowflakes in the image. Liu et al. [12] pro-
posed a multistage network called DesnowNet, which adopts
a semitransparent recovery and residual generation module
to recover images blurred by snowflakes. Lin et al. [13]
used a pyramidal hierarchical design with lateral connections
across different resolutions to enrich location information and
reduce computational time, which is based on DesnowNet.
Liet al. [14] designed a composite generative adversarial net-
work (CGAN). Unlike the previous GAN, their generator net-
work comprises a clean background module and a snow mask
estimation module to extract useful information. Based on a
3D residual network, Yan et al. [15] utilized both contextual
information and 3D scene structure information to effectively
detect snowflakes of different sizes in low frequency (LF)
images. Finally, an encoder-decoder-based LF image restora-
tion network was proposed to restore the background image.
Li et al. [16] proposed a multiscale tacked densely connected
convolutional network to detect and remove snowflakes in
an image. The results of the snowflake detection network
were transmitted forward to guide the snow removal net-
work, and the results of the snowflake removal network were
transmitted backward to guide the snow removal network.
In this way, snowflake detection and removal were achieved.
Chen et al. [17] proposed a joint size and transparency-aware
snow removal method of joint size that can address both
transparent and nontransparent snow particles by applying
the modified partial convolution. Yang et al. [18] proposed
a deep-learning-based rain streak removal method injected
with self-supervision. They created a fractal band learning
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network based on frequency band recovery to improve the
capacity to capture discriminative features for deraining.
Jaw et al. [19] proposed a framework based on a sequen-
tial dual attention deep network to remove rain streaks in
a single image. They used sequential dual attention blocks
and multi-scale feature aggregation modules to improve the
removal of rain streaks. Yeh er al. [20] proposed a method
relying on multi-scale residual learning and image decompo-
sition to remove haze from images. They employed a deep
residual convolutional neural network (CNN) and a simpli-
fied U-Net to avoid color distortion. However, this algorithm
leads to significant image blurring.

To remove snowflakes from a single image, we developed
a novel single-image snowflake removal method employing
an attention mechanism and an improved U-Net on the basis
of a GAN.

Compared to previous studies on snow removal from a
single image, our method offers the following contributions.

(1) Our method takes advantage of an attention mecha-
nism. The attention diagram of snowflakes is employed
as the guide for improving the sensitivity of the network
model to snowflakes, thereby improving the snowflake
removal ability of the model.

(2) We combine a U-Net with a residual network (ResNet)
to enhance the quality of recovered snow-free images.

This paper is organized as follows. Section 2 introduces
the deep learning network framework related to our work.
Section 3 presents our proposed network model and the loss
function. Section 4 presents the experimental results and
analysis, and the paper is briefly summarized in Section 5.

Il. RELATED WORKS

In this section, we briefly review the basic model for snow
removal from a single image and related deep learning net-
work frameworks.

A. SINGLE-IMAGE SNOW REMOVAL MODEL

Snowy images can be seen as combinations of clean back-
ground pixels and snowflake-contaminated pixels, and these
images can be expressed as follows:

I=BU-M)+S®M ey

where I represents the input image, which is corrupted by
snow, B represents clean background pixels, S represents
snow pixels, M denotes a characteristic graph of the approx-
imate snowflake position, and the operator ® represents ele-
mentwise multiplication.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)

In 2014, Goodfellow et al. [21] proposed the GAN framework
for the first time. The structure of the GAN framework is
shown in Fig. 1. As shown in the figure, this framework trains
two models simultaneously: a generator network G and a
discriminator network D. The former is trained to learn the
true distribution of given data and create a generated sample,
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FIGURE 1. Architecture of a generative adversarial network (GAN).
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while the latter is used to determine if a sample is a true
sample. The training process of G involves trying to force D to
make as many mistakes as possible, while the training process
of D involves improving its ability to determine if a sample is
areal sample or a sample generated by the generator network.
With constant training, the generator is able to generate a fake
sample that is sufficiently similar to the real sample. The loss
function of a GAN is defined as follows:

ngn m}glx K cpaaa) [log (D(x))]
+ Ezcp.o [1 — log (D(G(@)))]  (2)

where G represents the generator, D represents the discrim-
inator, X is a sample from the real data (its label is known),
and z is the sample produced by the generator (its label is
unknown).

However, the traditional GAN has some problems, such
as training instability, gradient disappearance and mode col-
lapse. Arjovsky et al. [22] proposed the WGAN model, which
includes the Wasserstein distance with superior smoothness.
They solved the vanishing gradient and mode collapse prob-
lems faced by the GAN. Mao et al. [23] adopted the least
squares loss function for the discriminator and proposed the
LSGAN model, which increases the quality of the images
generated by the network and stabilizes the training process
at the same time.

Recently, GANs have been applied in many fields,
such as image enhancement [24], image segmenta-
tion [25], target detection [26], image repair [27] and other
applications [28]-[30].

C. RESIDUAL NETWORK (ResNet)

The main problems encountered by deep learning algorithms
with network depth are vanishing gradients and exploding
gradients. The general corresponding solutions to these prob-
lems are the initialization and batch normalization of data.
However, these solutions cause other problems, such as the
degradation of the performance of the network and increases
in the network depth and error rate. Tulyakov er al. [28]
proposed the ResNet in 2015. This network solves the prob-
lems of network degradation and gradient problems, thus
improving the performance of the network.

ResNet includes a method for fitting the residual mapping,
that is, the convolution result is not directly taken as the
output, but the identity mapping is used for the calculation.
Assume that the network has a hidden layer F(x) that satis-
fies the mapping relation F(x)=H(x)-x. If multiple nonlinear
layers are combined, we can consider them as a complex
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FIGURE 2. Architecture of the residual network.

F(x)

H(x)=F(x)+x

network. Similarly, we can assume that the residual map-
ping of the hidden layer approximates a complex function:
H(x)=F(x)+x. The structure of ResNet is shown in Fig. 2.

As shown in Fig. 2, ResNet performs feature extraction
on the image by adding the outputs and inputs of multiple
convolution hierarchies, thus reducing the number of training
parameters used. Compared with other networks, ResNet is
relatively simple with fewer training parameters and a shorter
training time, thereby solving the performance degradation
problem of deep CNNs. Consequently, ResNet has been
widely used in computer vision.

D. U-NET

Ronneberger et al. [32] proposed the U-Net structure in 2015,
by forming a symmetrical U-shaped structure for image fea-
ture extraction through an encoding network and a decod-
ing network. The encoding network is mainly responsible
for downsampling and extracting high-dimensional feature
information. Each downsampling iteration contains two con-
volution operations and one pooling operation. Employing a
rectified linear unit (ReLu) as the activation function halves
the size of the sampling and doubles the number of features.
The decoding network is mainly used for the upsampling.
Each upsampling iteration contains two convolution opera-
tions, and the ReLu is modified as the activation function.
With each upsampling step, the size of the image is twice that
of the input, and the number of features is halved. During the
upsampling processes, the output features of each iteration
are combined with the features of the corresponding encoding
network to complete the missing boundary information.

lll. PROPOSED METHOD

In this section, we introduce our single-image snow removal
model based on the GAN in detail, including the gener-
ator and discriminator. The architecture of our model is
shown in Fig. 3. Additional details for each block are shown
in Fig. 4 ~Fig. 7.
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FIGURE 3. Architecture of our model.
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FIGURE 4. Architecture of the attention map estimation module.

A. GENERATOR NETWORK

The generator network in our model consists of two por-
tions: the attention map estimation module and the snow-free
image generation module. The function of the attention map
estimation module is to discover the snow-covered area by
learning between the clean image and the image polluted
by snowflakes. The snow-free image generation module can
repair the snowy image by referring to the attention map.

1) ATTENTION MAP ESTIMATION MODULE

Inspired by Mnih et al. [35] and Qian et al. [36], we uti-
lize a recurrent network to generate attention maps. The
recurrent network consists of four blocks, and each block
consists of five ResNet layers, one long-short-term mem-
ory (LSTM) layer and one convolutional layer. The structure
of the network is shown in Fig. 4. In the network training
phase, the input of this module consists of a snowy image,
a snow-free image, and a binary mask of snow. After being
processed by this module, the attention map of snowflakes
is obtained and merged with the snowy image before being
injected into the next module.

The series of ResNet layer is used to extract features from
the input image, and its structure is shown in Fig. 5. The
convolutional layer is used to generate a 2D attention map.
The attention map generated by each block is also merged
with the input images and injected into the next block at the
same time. The final attention map is obtained through the
learning processes of all four blocks

The LSTM unit contains an input gate i, a forgetting gate
f;, an output gate o, and a cell state gate C. The interactions
between gates are defined as follows:

iy = oWy Xy + Wi "Hi -1 + We; ® Cr—1 + b))

f, = O'(fo*Xt + th*H;q + W ® Ci—1 + byr)

C, =1 ® C_| +i; @ tanh(Wy.*X; + Wi *H,—1 + b)
oy = O'(on*Xt + Who*Htfl + Weo @ Ci—1 + by)
H; = o; ® tanh(Cy) 3)
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where X, represents the features generated by ResNet, H;
denotes the final output features extracted by the LSTM unit,
Cy is the unit state provided to the next LSTM, b;, by, b., and
b, represent the biases of the input gate, forgetting gate, cell
state gate and output gate, respectively, and the operator *
stands for the convolution operation.

When training the attention map estimation network,
we use pairs of images polluted by snow and snow-free
images, with both having the same background. During each
training process, the loss function of the network is defined as
the mean squared error (MSE) between the output attention
map and the binary mask. The loss function is expressed as
follows:

N
eamL(A}, M) =)~ o lyse (A, M) “)

t=1

where A; represents the attention map generated by
the attention map estimation network at time step t,
Ay = AML{(F;—1,H;—1, C;—1), F;—1 is the splicing of the
input image and the attention map generated by the previous
training process, and M represents the binary mask of snow,
which can be obtained when the snowy image is synthesized.
In our model, N = 4 and o = 0.7. We set the initial attention
map with values of 0.5, and as the number of training steps
increases, the values of the pixels covered by snow increase
gradually.

2) SNOW-FREE IMAGE GENERATION MODULE

In our proposed model, we use a U-Net-based network to
generate snow-free images. The generator module consists of
an encoding component and a decoding component. Taking
advantage of ResNet, we combine ResNet with U-Net to
improve the quality of the recovered snow-free images with a
small increase in network complexity. The structure of this
network is shown in Fig.6. In the network training phase,
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FIGURE 6. Architecture of the snow-free image generation module.

the attention map and snowy image are input into this module,
and a snow-free image is output after processing.

The encoding component is based on the downsampling
operation while the decoding component employs the upsam-
pling operation. Skip connections are utilized to retain the
details of the image. In the fifth layer of U-Net, we employ
five ResNet blocks containing dilated convolutions. The
structure of this ResNet is shown in Fig. 5. U-Net has deeper
levels and more training parameters than ResNet, which
extracts more features for restoring the image. At the same
time, this method avoids training times that are too long and
overfitting [31]. The function of dilated convolution is to
enlarge the receptive field of the network without increasing
the complexity of the parameters.

As shown in Fig. 6, the input of the first convolutional
layer is a 4D array. The first dimension represents the batch
size, and the last dimension represents the number of feature
channels. In the encoding component, we set 32 first-level
feature channels and then double the number of feature chan-
nels step by step until reaching a total of 512. Accordingly,
in the decoding component, we gradually reduce the number
of feature channels in the upsampling portion until the color
snow-free image is generated. We employ the mean absolute
error (MAE) to express the difference between the generated
image and the original image, with different scales generated
by different levels. The loss function of the network is defined
as follows:

1
Cune({RL{TH = ) Bilmar(R;, To) (5)

i=1

where R; represents the i-th output image of the decoder, T;
represents the corresponding snow-free image, and §; repre-
sents the weights of the loss at different scales. Thef values
of the 1°¢, 2", 37 and 4™ Jayers from the end of the structure
are set to 1,0.8,0.6, and 0.5, respectively. In addition, we use a
perceptual loss [34] to calculate the global difference between
the output of the snow-free image generation module and
the clean image. A trained CNN, such as the VGG16 net-
work trained on the ImageNet dataset, is employed to extract
this discrepancy. The loss function can be rewritten as
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follows:

I

e ({OL(TH = Y tuae(VGG(O,), VGG(T))  (6)
i=1
where O; represents the output image of the generation mod-
ule, 7; denotes the corresponding clean image, and VGG is a
pretrained CNN used to extract image features.

To sum up, the loss function of the generator network can

be expressed as follows:

lc = tam({A}, M) + Lune({R}, {T})
+£pL ({0}, {T)) + £Gan(0)  (7)

where Igan(0) = log(l1 — D(0)) and O represents the
generator of the final output image.

B. DISCRIMINATOR NETWORK
The discriminator network is used to classify the input image
as real or fake. As shown in Fig. 7, the discriminator contains
four groups of convolutional layers. For each layer, there is a
convolutional layer followed by a batch normalization layer
and a ReLu activation layer. A fully connected layer and a
single neuron with a sigmoid activation operation are placed
in the last layer for the output.

The loss function of the discriminator network is defined
as follows:

¢p = —log(D(T)) — log(1 — D(G(I))) (3)

where T represents the real snow-free image, and I denotes
the input snowy image.

IV. EXPERIMENTAL ANALYSIS

In this section, we introduce the data and details of the
training process. In the following subsections, the effects of
different methods are evaluated from various aspects in detail.

A. DATASET

In this paper, a snow dataset named Snow 100K?2 [8] is utilized
for training and testing, and it contains synthesized snowy
images, relevant clean images and snow masks. We employ
8000 snow masks of disparate scales and 10000 clean back-
ground images to generate 18620 synthesized snowy images.
The dataset is divided into a training set and a test set at a ratio
of 8:2 to improve the performance of the network.
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FIGURE 8. Example synthetic image results. (a) Ground truth, (b) Snowy image, () Li et al. [9], (d) Chen et al. [17], (e)Qian et al. [36], (f) Yang et al. [38],

(f) our method.

B. TRAINING DETAILS

We train the network on an NVIDIA Tesla V100 GPU.
Our proposed method is implemented using TensorFlow
1.12.0 and Python 3.6.0. The parameters of the learning rate
and batch size are set to 0.0004 and 4, respectively. All train-
ing images are resized to 256*256. In addition, the generator
network and discriminator network of the GAN are trained at
the same time, and their parameters are updated accordingly.

C. RESULTS ANALYSIS

In this section, we show the experimental results of our
method along with those of other state-of-art algorithms in
terms of removing snowflakes from a single image: the algo-
rithms of Wang et al. [9], Liu et al. [12], Qian et al. [36], and
Yang et al. [38]. We analyze the experimental results from
different perspectives. In this paper, we present six synthe-
sized snowy images, as shown in Fig. 8 and Fig. 10, which are
included in these test set. We also employ real-world snowy
images obtained from YouTube, was shown in Fig. 9.

1) QUANTITATIVE EVALUATION
Table 1 shows quantitative comparisons between our method
and other existing methods using the PSNR [39] and
SSIM [40] metrics, which are based on images in Fig. 8.
As shown in the table, compared with those of other methods,
the PSNR and SSIM values obtained by our method are
higher. This indicates that the snow-free image generated by
our method is closer to the real snow-free image than the
images generated by the other algorithms.

We also compare the network complexity and the run time
complexity of our method and the other methods. We utilize
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TABLE 1. Performance comparison of all competing methods on
synthetic snow videos in terms of the PSNR, and SSIM metrics in figure 8.

1% image 2" image 3 image
PSNR SSIM PSNR SSIM PSNR SSIM
Lietal [9] 23.95 0.9198 24.96 0.9214 28.05 0.9389
Chenetal. [17] 24.56 0.8834 26.19 0.8995 25.47 0.8847
Qian et al. [36] 25.36 0.9362 26.45 0.9366 28.24 0.9442
Yang et al. [38] 23.64 0.8633 24.85 0.8712 25.39 0.8381
Our 28.26 0.9780 29.71 0.9791 29.15 0.9597

TABLE 2. Performance comparison of loss function ablation experiments
in terms of the PSNR and SSIM metrics.

1% image 2" image
PSNR SSIM PSNR SSIM
c 28.5508 0.9091 27.6322 0.8864
d 20.6313 0.6771 21.6481 0.7012
e 24.2146 0.7879 23.9517 0.7956
f 29.8812 0.9493 28.5334 0.9233

TABLE 3. Processing time comparison.

Fig. 8 Fig. 9
1% image 2" image 3 image 1% image 2" image
Lietal. [9] 14.22s 14.56s 15.96s 14.61s 14.13s
Chenetal. [17] 91.19s 90.13s 94.01s 92.03s 91.34s
Qian et al. [36] 15.41s 15.48s 17.40s 15.98s 15.13s
Yang et al. [38] 3.81s 3.08s 3.62s 3.70s 3.95s
our 14.63s 14.54s 16.76s 14.83s 14.61s

processing time per image to present the run time complexity.
As shown in Table 3, the method of Yang et al. [38] has the
fastest processing time, while the method of Chen et al. [17]
has the slowest. Our method is slower than the methods of
Wang et al. [9] and Yang et al. [38], but faster than other
competing algorithms. To compute the network complex-
ity, we employ floating point operations (FLOPs), which
represents the calculated amount. In Table 4, we show the
FLOPs of our method and the methods of Wang et al. [9],
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FIGURE 10. Example results of the ablation study. (a) Ground truth, (b) snowy image.

TABLE 4. The network complexity of our method compared with
state-of-art methods in terms of flops.

FLOPs
Lietal. [9] 5.06E85
Qianetal. [36] 4.11E86
Yang et al. [38] 2.33E73
our 7.21E85

Qian et al. [36], Yang et al. [38]. As shown in the table, our
framework is less complex than that of Qian et al. [36] but
more so than the others.

2) QUALITATIVE EVALUATION

In this section, we show the qualitative evaluation of the
performances of the proposed method and the methods of
Wang et al. [9], Chen et al. [17], Qian et al. [36], and
Yang et al. [38]. We conduct experiments on both the syn-
thetic images and the real image to provide convincing
results. Fig. 8 shows the results obtained by the algorithms
of Wang et al. [9], Chen et al. [17], and Yang et al. [38]
in comparison with our results. As seen from Fig. 8, the
algorithm of Yang et al. [38] removes only a few snowflakes
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from the image, and it causes considerable blurring of the
image at the same time. By comparison, the method of
Wang et al. [9] removes more snow; however, distortion
is generated when the snowflake pixels are repaired. Some
snowflake pixels have not been completely fixed, as the sec-
ond group image shows. The algorithm of Chen et al. [17]
removes some snowflakes while some snow remains. Unfor-
tunately, images processed by the method of Chen et al. [17]
lose the details and produce some artifacts, which are obvious
in the third group image. The method of Qian et al. [36]
removes most of the snowflakes in the image, while some
still remained. In contrast, our method removes snowflakes
and produces a snow-free image that most closely resembles
the real background

Fig. 9 shows the resulting real-world snowy images gener-
ated by different methods. As shown in Fig. 9, the algorithm
of Yang et al. [38] only removes some of the snowflakes from
the image and loses background information while repairing
pixels covered by snowflakes. As shown in the first group
image, the method of Chen et al. [17] fails to remove snow
from the real-world image. A large number of snowflakes
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remained after the treatment. The algorithm of Qian ez al. [36]
removes some of the snowflakes and saves more background
information. However, there still some noticeable snowflakes
remain. As can been seen clearly in Fig. 9, the method of
Wang et al. [9] removes some of the snowflakes but causes
a substantial amount of blurring in the image. Compared
to the previous algorithm, our method removes snowflakes
thoroughly and preserves background information integrally.
By comparison, the images generated by our method are
clearer than the images generated by the other algorithms.

D. ABLATION STUDY

To study the effectiveness of each module and the loss func-
tion in our proposed network, we conducted an ablation study,
and the results are shown in Table. 2 and Fig. 10. Subfigures
(c), (d), and (e) represent the loss function without £y,
Lpr, and £yper, respectively. Subfigure (f) denotes the com-
pleted loss function. As seen from Fig. 10, without £447 ,the
attention map estimation module is not trained, so some
snowflakes will remain. Without £p;, there will be color
distortion in the images. The snow-free image generation
module is not well trained without £,.;, which causes blur-
ring in the generated images. The completed loss function
performs better than the partial loss function.

V. CONCLUSION

In this paper, we propose a single-image snow removal
model based on an attention mechanism and a GAN. We use
the attention mechanism to detect snowflakes in a single
image and make the snow-free image generation module pay
increased attention to the pixels covered by snowflakes when
repairing the image by using an attention map. To obtain
high-quality snow-free images, we improve U-Net to increase
the amount of available information. Experiments on syn-
thetic images and real-world images show that our method
has advantages over other snow removal methods. In future
work, we will focus on the problem of misjudgments of snow
and improve the ability of our model to deal with real-world
SNOW scenes.
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