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ABSTRACT The physical function model has been effectively used for model-based development (MBD)
of automobile systems. This research demonstrates a novel application of this modeling method to the state
estimation of nonlinear mechanical systems based on the Kalman filtering theory. The physical function
model is a block diagram that describes each engineering field by a common rule, which focuses on the
energy flow. Compared to traditional modeling approaches, this model has the flexibility to incorporate a
wide range of nonlinear characteristics and the know-how accumulated by the manufacturers. Hence, it has
a quite high affinity with the industrial world. The purpose of this research is to pioneer a new application of
the physical function model beyond simulation analysis. In particular, physical function modeling offers a
model of a systemwithmultiple nonlinearities in the form of a time-varying linear state equation. By focusing
on this feature, this study applies it to the Kalman filtering theory. The proposed approach is applicable to
a wide range of nonlinearities, reduces the calculation load, and considers the background of the current
MBD. Finally, verifications using an experimental apparatus, which simplifies an automotive drivetrain with
backlash, demonstrate the effectiveness of the proposed approach.

INDEX TERMS Automotive drivetrain, backlash, block diagram, modeling, nonlinear mechanical system,
physical function model, state estimation.

I. INTRODUCTION
In recent years, model-based development (MBD), which
builds models of products and advances the development
process by simulation analysis, has become indispensable
for efficiency and high performance in industry, especially
automobile manufacturing. Although modeling that satis-
fies the following requirements [1] is crucial for successful
MBD, realizing these requirements is difficult by traditional
approaches [2]–[5] such as CAD models and the finite
element method:

1. A model that can describe and integrate the theories
and laws by common principles and rules is neces-
sary because mechanical systems such as automobiles
are multi-sectoral complex systems that include many
different engineering fields ranging from mechanics,
electrical engineering, fluid mechanics, and thermal
engineering. This is difficult for traditional models
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because they employ different approaches to different
engineering fields.

2. A model that addresses multiple nonlinearities col-
lectively while utilizing the accumulated resources
in each manufacturer flexibly and universally is nec-
essary. Mechanical systems are affected by multiple
nonlinear characteristics, and each manufacturer has
accumulated its own knowledge and database about the
nonlinearities through experiments and so on in the pro-
cess of MBD. Since traditional modeling approaches
are based on linear theory, they cannot handle charac-
teristic diagrams, experimental formulas, and statistical
data acquired in actual development sites.

3. It is necessary to combine traditional approaches with
a new method of modeling products according to
the required functions without being restricted by the
structure and shape at the planning stage. In traditional
approaches, models are completed and their perfor-
mances can be analyzed only after the mechanical
structures, shapes, and dimensions of all parts have
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been determined. Hence, they cannot handle sudden
changes in planning and design. This leads to low
development efficiency due to model changes.

For example, finite element (FE)modeling is well-known as a
quite useful modeling method in structural engineering. Even
when the FE model has some unknown parameters, it can be
calibrated based on global optimization [6]. However, it is
difficult to realize all of the above requirements 1, 2, and 3 by
FE modeling.

On the other hand, the physical function model [7]–[9],
[11], [12] has been developed to satisfy requirements 1–3.
The physical function model is a block diagram where each
engineering filed such as mechanics and electricity is mod-
eled by the common description rule from the viewpoint
of energy balance. By focusing on the energy flow, which
is converted and transferred between the forms of heat,
fluid, kinetics, and strain, this approach integrates models
of different engineering fields into a common description.
Specifically, two kinds of state quantities that are common
to all fields are introduced: extensive quantity and intensive
quantity. In the block diagram, the unified definitions of the
characteristics, coefficients, and operators that are familiar
to engineering fields such as an integrator are employed.
Since each diagram model is standardized by the common
rule, diagram models can be connected easily via the two
state quantities. In addition, the model structure is roughly
divided into two parts: the linear block diagram and the
mechanismmodel. The former describes the energy flow. The
latter is inserted into the linear block diagram to manipulate
the numerical values of the characteristics and coefficients.
The mechanism model adds the nonlinear characteristics by
calculating the characteristic values from the related state
quantities and substituting them in the diagram. The linear
block diagram is fixed. However, the mechanism model is
created independently and separately. It is subsequently inte-
grated into the block diagram as a nesting structure. Since
the mechanism model does not need to be a formulated
or predetermined form, it can incorporate a wide range of
multiple nonlinear characteristics into the model. This means
that many different kinds of resources such as characteris-
tic diagrams and experimental data, which are accumulated
by each manufacturer, can be flexibly introduced. Another
advantage of the physical function model is that it is con-
structed according to the required functions at the planning
stage, but not its shapes and dimensions. This realizes a more
general model structure. Hence, as demonstrated in the design
example of a planetary gear [10], the same model diagram
can be used if the functions of the product do not change
regardless of design changes in its shapes or dimensions.
Even when changing the functions, nonlinear characteristics,
or simulation purposes, only the specific parts need to be
changed. These parts can be easily replaced without affecting
the functions of the other parts because the block diagram
and mechanism model are formed as a nesting structure cor-
responding to the real parts configuration. Due to the above
advantages, the physical function model has been effectively

utilized mainly for MBD of automobiles. Examples include
windshield wiper systems and powertrain of a passenger
car [9], nonlinear mechanical systems [11], and hydraulic
clutch with multiple plates, clutch with vibration absorbing
mechanism, and disc brakes [12], [13]. Additionally, basic
hierarchical models have been created for an engine [14]
and a drivetrain [15]. In the latest application [16], the time
history response and its variation of a mechanical system
were analyzed based on the physical function modeling. This
study [16] demonstrated the relationship between variations
in the time response and the physical function model in which
its each component was converted into time constant.

However, except for [17], studies on the physical function
model mainly focus on simulation analysis of MBD. Few
attempts to apply it to feedback control have been made.
In mechanical systems, feedback control is indispensable to
achieve the required functions and performances. While state
quantities of a plant are necessary for closed-loop control,
they are actually estimated by observers due to the limited
number of measurement sensors. Because an observer is gen-
erally designed based on the plant model, this fact suggests
the effective use of the physical functionmodel, which has the
affinity with the industrial world. However, few studies have
investigated the applications to state estimations of mechani-
cal systems.

Although various state estimation approaches exist, the lin-
ear Kalman filter proposed by Rudolf Kalman is the most
well-known estimation method [18]–[20]. Its algorithms
must be modified to apply it to nonlinear systems. These
modifications include typical nonlinear Kalman filtering,
the extended Kalman filter (EKF) [21], and the unscented
Kalman filter (UKF) [22]. For example, the combination of
EKF and recursive least square (RLS) can improve accuracy
of parameter estimations for dynamical systems [23]. The
application focuses on simultaneously estimating the vehicle
mass and road grade for hybrid electric bus. For the develop-
ment of advanced driver assistance systems, EKF and UKF
enable cost-effective tracking algorithms of moving objects
around road vehicles [24]. In recent years, with the rapid
development of AI, machine learning-based approaches have
attracted much attention for the combination with existing
model-based feedback systems. As one example of such pow-
erful approaches, a recurrent neural network (RNN) can offer
an optimal predictor of the nonlinear model that can be used
in the framework of UKF [25]. In addition, a fuzzy mod-
eling approach can be combined with the EKF [26]. Other
applications of EKF include mechatronic powertrains [27],
a wave energy converter (WEC) [28], and positioning sys-
tems [29]. Even though both stochastic nonlinearities and
multiple missing measurements are often induced in actual
systems simultaneously, the novel extended Kalman filter
proposed by [30] can compensate for the effects due to them,
resulting in well state estimation performance. Therefore, this
is an innovative observer that will cover comprehensive appli-
cation situations of nonlinear mechanical systems. In general,
as shown in [30], the nonlinear system needs to be linearized
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by using the Taylor series expansion around the state vector
to apply EKF to it. Furthermore, some comparison studies
between EKF and UKF have been conducted [31], [32].
Unfortunately, EKF induces heavy calculation load when
deriving the Jacobian, which is the partial differentiation
of nonlinear functions with respect to states. Additionally,
EKF cannot be applied to non-smooth functions such as the
backlash of gears. In spite of an approach where multiple
piece-wise linear systems are switched depending on the
contact states in backlash [33], its application range is limited,
and how to handle multiple nonlinearities is not considered.
According to [31], EKF cannot also be applied for large-scale
systems because of the complicated Jacobian matrix cal-
culation. On the other hand, UKF, in which a probability
density function is approximated by a Gaussian distribution,
can be used to a wide range of nonlinear characteristics. The
application examples include backlash systems [34], an esti-
mation of the vehicle sideslip angle [35], robot localization
approach [36], attitude determination of a spacecraft [37],
and an estimation for a servo-hydraulic actuator system [38].
Although UKF has the above advantage, the calculation load
tends to increase because the estimation algorithm is based
on a statistical sampling method. According to [31], the cal-
culation efficiency of UKF decreases dramatically with the
increase of system scale. Additionally, since both EKF and
UKF do not consider requirements 1. - 3. with respect to plant
modeling, they are not always suitable estimationmethods for
MBD of manufacturing development sites.

The research challenges and contributions of this paper are
indicated below.
• Although the physical function model has been effec-
tively used forMBD of vehicle systems due to its useful-
ness, a range of the application is limited to simulation
analysis. Hence, there are few investigations to apply the
physical function modeling to feedback systems such
as the state estimation of actual mechanical systems.
Consequently, this study presents a novel application
that is a combination of the physical function modeling
and the Kalman filtering theory to estimate the state
vector of nonlinear mechanical systems.

• EKF, which is a well-known traditional nonlinear
Kalman filter, cannot be used for non-smooth (not ana-
lytic) nonlinear functions such as backlash because the
Taylor expansion (Jacobian) cannot be mathematically
defined. On the other hand, the Kalman filtering based
on the physical functionmodel, which is proposed in this
study, can be applied to backlash systems. For a wider
range of nonlinear mechanical systems, this approach
allows their state quantity to be estimated. This is due to
the fact that the physical function modeling expresses
all of various different nonlinear systems as a time-
varying linear state equation including some switching
parameters.

• It is necessary to perform the experimental verifi-
cations to prove the effectiveness of the proposed
method. In particular, the practicability for actual

mechanical systems such as a backlash system must be
demonstrated.

Considering the high affinity of the physical function
model with the industrial world, the main contribution of
this study is to present an application example of it to state
estimations of nonlinear mechanical systems as a pioneering
novel applicable field. In the proposed method, modeling
of various nonlinear mechanical systems by the physical
function model allows the state quantities to be estimated
by a time-varying linear Kalman filter. The physical function
model updates the parameters in the linear block diagram in
real time by mechanism models, which are constructed from
physical laws, experimental formulas, mapping, etc. in each
engineering field. In other words, physical function modeling
gives a model of a system with multiple nonlinearities in the
form of a time-varying linear state equation. This is supe-
rior to traditional modeling approaches [2]–[5]. Compared to
EKF, involving no calculations of the partial differentiation
of the Jacobian reduces the calculation load in the proposed
observer. Furthermore, the proposed approach, which can
be applied to a wide range of nonlinear characteristics and
can effectively utilize the manufacturer’s resources regarding
them flexibly, is in line with the current trends of product
development.

This study experimentally investigates the proposed
observer using a basic experimental device. The target appli-
cation is a drivetrain with backlash (a dead-zone character-
istic) as the main nonlinearity. In addition to the backlash,
the nonlinearity of a spring force, which changes contin-
uously, and Coulomb friction are defined as other nonlin-
ear characteristics in the experimental device. Although the
experimental device was developed considering only basic
components and oscillation phenomena due to the backlash
of an automobile drive system [39], [40], its structure is
simplified so that a real vehicle can be abstracted. This paper
regards this device as a general nonlinear mechanical system,
and the effectiveness of the proposed approach is verified by
the experiments.

II. BASIC EXPERIMENTAL DEVICE
A. MECHANICAL STRUCTURE
The proposed estimation method is applicable to mechanical
systems with multiple nonlinearities. Figs. 1 and 2 show the
basic experimental device and its dynamic model, respec-
tively. To focus on the influence due to backlash,this device
was developed so that an actual vehicle is simplified while
reproducing only the basic structure of the automotive drive
system [39], [40].

This model can be regarded as a three degree-of-freedom
system, where the three mass points MB, mG, and ME are
connected with each other through stiffness and damping.
Force is transferred in the one-dimensional direction upon
applying the actuator thrust uLM , which excites the displace-
ment oscillations XB, xG, and XE at each mass point. The
nonlinear characteristic that gives the maximal influence on
the oscillation is the dead-zone band of backlash created
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FIGURE 1. Basic experimental device.

FIGURE 2. Dynamical model of the experimental device.

betweenME and mG. This increases the vibration amplitude.
In addition, it is determined that the experimental device
can include other nonlinear characteristics. These are the
nonlinearity of the spring constant KC and dynamic friction
force Fr generated by the translational motion of the device.

B. EXPERIMENTAL DEVICE
In the experimental device, a linear motor is used as an
actuator, and the massMB moves on the linear guide installed
in parallel with the motor (Fig. 1). MB is connected to the
walls on both sides via coil springs. Some rigid elements
are reproduced by leaf springs with a damping material.
The dead-zone characteristic of the backlash is created by
adjusting the gap between the leaf springs KG on both sides
of the mass mG. In this study, the motor is driven by the
step thrust uLM , which suddenly changes from negative to
positive values. The induced oscillations (displacements and
velocities) are subsequently estimated. Table 1 shows the
device specifications.

TABLE 1. Parameters of the experimental device.

III. MODELING
A. PHYSICAL FUNCTION MODEL
This study introduces physical function modeling into the
state estimation of mechanical systems. Fig. 3 shows the
configuration where the basic experimental device is mod-
eled based on physical function modeling. Table 2 shows
the mathematical symbols defined in physical function
model [9], [11], [12], [17]. For example, the solid black circle
in Table 2 means that the signal branches in two directions in
the block diagram of the physical function model. The input
signal A is exactly the same physical quantity as the output
signals B and C which branch from the black circle.

TABLE 2. Symbols of physical function model.

The physical function model is a block diagram where
each engineering field such as mechanics and electricity is
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FIGURE 3. Physical function model of the nonlinear experimental device.

modeled by the common description rule focusing on energy
flow. The arrows in the horizontal direction at the top and
bottom of the block diagram represent two kinds of state
quantities, namely ‘‘extensive quantity’’ and ‘‘intensive quan-
tity,’’ respectively. For example, they are velocity (top) and
force (bottom) in Fig. 3. That is, they are a pair of physical
quantities that produce power when multiplied by each other,
and the block diagram describes the balance between the
energy stored in the model and the energy transferred by the
input/output from the outside.

See [9], [11], [12] for more details on the description of
the physical function model and the meanings of each charac-
teristic in the block diagram. The upper and lower diagrams
in Fig. 3 demonstrate the motor circuit of the experimental
device as an electric system and the mechanical structure
shown in Fig. 1, respectively. However, because the electrical
time constant of the motor is sufficiently small, the effect
due to a delay is negligible [39]. Hereafter, we consider only
the mechanical structure model shown in the lower diagram
and omit the electric system. Since this paper demonstrates
an application example of it to the Kalman filtering theory,
the model should be simplified to be as low-dimensional as

possible to reduce the calculation load in the digital signal
processor.

In particular, this paper focuses on the feature that the
physical function modeling gives a model of a system with
multiple nonlinearities in the form of a time-varying linear
state equation. Specifically, switching the parameters in coef-
ficient matrices of the linear state equation expresses the
nonlinear characteristics at each time step. Fig. 3 shows the
two parts of the model: the block diagram described by linear
equations and the mechanism model (yellow blocks) inserted
to calculate the nonlinear characteristics. The mechanism
model defines the nonlinearities of systems into equivalent
switching parameters and calculates them in real time based
on physical laws, experimental formulas, data mapping, etc.
from each engineering field. Thus, the parameters are updated
at each time step in the linear block diagram using methods
such as substitution, addition, and multiplication.

Because the mechanism model does not need to be a for-
mulated or predetermined form, various kinds of nonlinear
characteristics can be incorporated into the model. In addi-
tion, the resources with respect to them, which are accumu-
lated by each manufacturer, can be flexibly introduced. In the
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experimental device shown in Fig. 3, the nonlinear switching
parameters are Sw, OKG, err , Oer and Fr explained later.

B. TIME-VARYING LINEAR STATE EQUATION
The following equations of motion are obtained from the
physical function model shown in Fig. 3.

ẌB =
1
MB

{
KD (xG − XB)+ CD

(
ẋG − ẊB

)
− errKCXB

−Oer − CC ẊB + Fr
}

(1)

ẍG =
1
mG

{
SwKG (XE − xG)+ OKG+ SwCG

(
ẊE − ẋG

)
+KD (XB − xG)+ CD(ẊB − ẋG)

}
(2)

ẌE =
1
ME

{
uLM − Ccl ẊE − SwCG

(
ẊE − ẋG

)
− SwKG (XE − xG)− OKG} (3)

Thus, the time-varying linear state equation and output equa-
tion of the system are constructed as

ẋp = Apxp + Bp1wp + Bp2u (4)

yp = Cpxp (5)

The observed output is composed of the displacements XB
and XE . Each coefficient matrix is written in (6), as shown at
the bottom of the page.

The output equation (5) depends on the parameter Sw. The
state quantities to be estimated and the external inputs in (4)
are expressed as

xp =
[
XB xG XE ẊB ẋG ẊE

]T (7)

wp =

OKGOer
Fr

 , u = uLM (8)

Here, (4) and (5) are time-varying systems that include
the nonlinear parameters Sw, OKG, err , Oer and Fr in the

coefficient matrices or the external input. Depending on the
state quantities of the system, these are switched in real time.
The calculation for each nonlinear parameter is described in
the next section. It is determined that the experimental device
can include the three nonlinear characteristics: dead-zone
band due to the backlash (Sw and OKG), nonlinearity of the
spring KC (err and Oer), and dynamic friction force such as
that existing on the linear guide (Fr).

C. MECHANISM MODEL AND NONLINEAR SWITCHING
PARAMETERS
The physical function model shown in Fig. 3 contains three
mechanism models to describe the nonlinear characteristics.

The nonlinearity due to backlash in the experimen-
tal device is represented by switching the parameters Sw
and OKG. Backlash produces the dead-zone characteristics.
Assuming that the relative displacement between mass points
ME andmG is1X , the switching rule of the nonlinear param-
eters and the spring force F to be transmitted are written by
the following equations in the mechanism model [41], [42].

1X = XE − xG
F = Sw · KG ·1X + OKG

= Sw · KG · (XE − xG)+ OKG

Sw =


1, XE − xG > |δ| region(i)
1, XE − xG < − |δ| region(ii)
0, |XE − xG| ≤ |δ| region(iii)

OKG =


− |KG × |δ|| , XE − xG > |δ| region(i)
|KG × |δ|| , XE − xG < − |δ| region(ii)
0, |XE − xG| ≤ |δ| region(iii)

(9)

Note that equation (9) is not an equation obtained by some
experimental measurements. According to [41], [42], this is
the theoretical equation which is typically used to express

Ap =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
(KD + errKC )

MB

KD
MB

0 −
(CD + CC )

MB

CD
MB

0

KD
mG

−
(SwKG + KD)

mG

SwKG
mG

CD
mG

−
(SwCG + CD)

mG

SwCG
mG

0
SwKG
ME

−
SwKG
ME

0
SwCG
ME

−
(SwCG + Ccl)

ME



Bp1 =



0 0 0
0 0 0
0 0 0

0 −
1
MB

1
MB

1
mG

0 0

−
1
ME

0 0


, Bp2 =



0
0
0
0
0
1
ME


, Cp =


[
1 0 0 0 0 0

][
1 0 0 0 0 0
0 0 1 0 0 0

] (Sw = 1)
(Sw = 0)

(6)
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the dead-zone characteristic of backlash. Specifically, equa-
tion (9) expresses the nonlinear spring force due to the
dead-zone characteristic of backlash shown in Fig. 4. As one
example, the blue line in Fig. 4 indicates the relationship
between the relative displacement 1X and the force trans-
mitted via spring KG when the dead-zone width |δ| is set as
30 mm. Consequently, equation (9) can be clearly defined so
that it can reproduce the non-smooth function by expressing
the piecewise linear spring force for each region in Fig. 4.

FIGURE 4. The relationship between 1X and F .

When the relative displacement is within the dead-zone
width |δ|, the force is not transferred because the two mass
points are not in contact with each other. On the other hand,
when the relative displacement exceeds the dead-zone width,
mechanical contact via the rigidity KG occurs. Sw is a switch-
ing parameter to identify the mechanical contact, andOKG is
the offset term of the spring force.

We determined that the spring rigidity KC (nominal value:
660 N/m) of the experimental system may not be perfectly
constant, and a slight (small) nonlinearity, which depends on
the displacement XB, may be included in it. Hence, the spring
force due toKC with respect to XB is approximated by a cubic
equation. In real time, the slope err and intercept Oer , which
are obtained by linearizing it, are handled as the time-varying
parameters from the mechanism model.

FKc = a3X3
B + a2X

2
B + a1XB + a0

a0 = 0.0303, a1 = 642.1525,

a2 = 889.0531, a3 = 1.1883× 104 (10)

By linearizing (10), the spring force FKc can be described
as

FKc =
err
660
· XB + Oer (11)

err = 660 · (3a3X2
B + 2a2XB + a1) (12)

Oer = −2a3X3
B − a2X

2
B + a0 (13)

Through repeated a lot of the open-loop experiments in
which the motor was driven by step thrust, the relational
expression (10) was empirically obtained by observing their
responses. In other words, the expression using the cubic
equation was determined by the comparison between the
response of the vehicle body displacement measured in the

actual experiment and the response obtained from the simu-
lation using the model.

The approximation using a polynomial expression is useful
because of its simple form. To reduce the number of adjusting
parameters (i.e. polynomial coefficients), the cubic polyno-
mial is sufficient to retain the accuracy with the minimum
coefficients.

An approach that expresses the nonlinearity of a spring
force through a cubic polynomial has already been inves-
tigated in the previous research [43]. Therefore, this is a
reasonable approximation method.

In the experimental device, dynamic friction force such as
the seal resistance may be included on the linear guide and
so on. In (14), this is theoretically modeled as the Coulomb
frictional force Fr , which occurs in the opposite direction
as the velocity ẊB. It is approximately used in the physical
function model.{

Fr = |Crr · (MB × 9.8)+ fseal | , ẊB < 0
Fr = − |Crr · (MB × 9.8)+ fseal | , ẊB > 0

(14)

The values of Crr and fseal are 0.002 and 0.01, respectively.
Through the comparison between the response from the

model in simulation and the responsemeasured in experiment
where the motor was driven by step thrust command, the non-
linear model parameters were determined by trial-and-error
manual adjustments. The experimental device was developed
to focus on the effect due to backlash. Therefore, when
comparing the response calculated in the simulation with that
observed in the experiment, those parameters were deter-
mined with more emphasis on whether the transient response
induced after the backlash is traversed can be roughly
reproduced.

IV. FUNCTION MODEL-BASED TIME-VARYING LINEAR
KALMAN FILTER
A. EXTENDED KALMAN FILTER
To estimate the state quantities, the Kalman filtering theory is
applied to the physical function models of nonlinear systems.
First, a general EKF estimation algorithm is described [20].
Nonlinear functions, which are the estimation objects, are
defined as

xpd [k + 1] = fpd
(
xpd [k]

)
+ Bpd [k] u [k]+ Bpd [k] v [k]

(15)

ypd [k] = hpd
(
xpd [k]

)
+ w[k] k = 1, 2, 3, · · · (16)

Here, v[k] ∈ Rr is a system noise vector with a mean value
of 0 and the covariance matrixQ.w[k] ∈ Rp is an observation
noise vector with a mean value of 0 and the covariance
matrixR. These are normal white noises, which do not depend
on each other. In this study, we assumed that v[k] is directly
applied to the control input port. For (15) and (16), the state
vector xpd [k] ∈ Rn is estimated based on the observed output
ypd [k] ∈ Rp.
In EKF, a linear approximation by a Taylor expansion

around the estimated state vector is performed for the
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nonlinear system. The typical linear Kalman filtering the-
ory is subsequently applied. For the linearization, Jacobian,
which is a partial differentiation of the nonlinear functions
with respect to the states, must be derived. The estimation
algorithm is composed of a predictive step using the model
(15) and (16) and a filtering step to modify its predicted state
vector based on the observed output ypd [k].
• Predictive step

(A priori estimate)

x̂−pd [k] = fpd
(
x̂pd [k − 1]

)
+ Bpd [k − 1] u[k − 1] (17)

(Jacobian calculations for linearization)

∂fpd
∂xpd

∣∣∣∣
xpd=x̂pd [k−1]

= Apd [k − 1] (18)

∂hpd
∂xpd

∣∣∣∣
xpd=x̂

−

pd [k]
= Cpd [k] (19)

(A priori covariance matrix)

P− [k] = Apd [k − 1]P [k − 1]ATpd [k − 1]

+Bpd [k − 1]QBTpd [k − 1] (20)

• Filtering step
(Kalman gain)

g [k]=P− [k]CT
pd [k]

(
Cpd [k]P− [k]CT

pd [k]+ R
)−1

(21)

(Estimated state quantity)

x̂pd [k] = x̂−pd [k]+ g [k]
{
ypd [k]− hpd (x̂

−

pd [k])
}

(22)

(A posteriori covariance matrix)

P [k] =
{
I − g[k]Cpd [k]

}
P−[k] (23)

The linearization using the Taylor expansion cannot be
directly applied to the nonlinearity in this paper. Because
the backlash characteristic of the experimental device is a
non-smooth function (i.e. not continuously differentiable),
the Taylor expansion (18) and (19) cannot be directly calcu-
lated. In other words, this study includes the nonlinearity that
is not analytic.

Consequently, this study does not apply EKF, which is
shown above for just comparison with the approach proposed
in the next section, to the experimental device.

B. TIME-VARYING LINEAR KALMAN FILTER BASED ON
THE PHYSICAL FUNCTION MODEL
Unlike EKF, this study proposes the time-varying linear
Kalman filter which is derived from the physical function
model. As demonstrated in the experimental results later, this
approach can be applied to the nonlinearity that is not ana-
lytic. From the physical function model, nonlinear systems
are modeled in the form of a time-varying linear state equa-
tion ((4) and (5)). Using the coefficient matrices of the state
equation allows the linear Kalman filter to be directly applied
to a nonstationary time series. That is, physical function

modeling enables the time-varying linear Kalman filter. Com-
pared to EKF, because partial differentiation for the Jacobian
is unnecessary, the proposed approach can be used for various
kinds of nonlinearities including non-smooth functions such
as backlash and can reduce the calculation load in real time.
From the viewpoint of modeling, the advantage is that the
observer can be designed considering the backgrounds 1,
2, and 3 mentioned in the Introduction. This increases the
affinity with MBD in the actual industrial world.

As shown in (4) and (5), since the state equation derived
from the physical function model is in the continuous-time
domain, it needs to be discretized to be handled in the Kalman
filter in real time. The discretization method affects the esti-
mation accuracy and computational complexity of the pro-
posed observer. In this study, two kinds of methods, the Euler
method and zeroth order hold, are employed. Instead of the
Taylor expansion of the nonlinear functions (i.e. Jacobian),
the online calculations are given by using the coefficient
matrices of the time-varying linear state equation as

Apd [k − 1] =

{
I +1TsAp((k − 1)1Ts) (euler method)
eAp((k−1)1Ts)·1Ts (0th order hold)

(24)

Cpd [k] =

{
Cp(k1Ts) (euler method)
Cp(k1Ts) (0th order hold)

(25)

The sampling period is written as1Ts. Regardless of whether
the Taylor expansion of the nonlinear system can be com-
puted or not, the physical function modeling transforms it
into a time-varying linear state equation. At each sampling
time step, discrete numerical values of the nonlinear functions
are given as switching parameters in the linear state equation.
These are updated in real time. Therefore, under the condition
that the sampling period is sufficiently short, the non-smooth
nonlinearity such as backlash can be reproduced with suffi-
cient good accuracy in practical use. The matrix exponen-
tial included in (24) is computed by the command ‘expm
(expmdemo1)’ prepared in MATLAB [44]. In the case of
the time-varying system (4) and (5), its nonlinear switching
parameters are calculated from each estimated state quantity
as

Sw = Sw(X̂E , x̂G)

OKG = OKG(X̂E , x̂G)

err = err (X̂B)

Oer = Oer(X̂B)

Fr = Fr(V̂B) (26)

Thus, the A-matrix in (24) and the offset term in (8) are
determined. (25) depends on the nonlinear parameter Sw but
not on the discretization method, and is given as

Cp (k1Ts) =


[
1 0 0 0 0 0

][
1 0 0 0 0 0
0 0 1 0 0 0

] (Sw = 1)
(Sw = 0)

(27)
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Consequently, the estimation algorithm is written as
(A priori estimate): Euler method

x̂−pd [k] =
{
I +1TsAp ((k − 1)1Ts)

}
x̂pd [k − 1]

+1Ts ·
[
Bp1 ((k − 1)1Ts) Bp2 ((k − 1)1Ts)

]
·

[
wp [k − 1]
u [k − 1]

]
(28)

(A priori estimate): 0th order hold

x̂−pd [k] =
{
eAp((k−1)1Ts)·1Ts

}
x̂pd [k − 1]

+

(
eAp((k−1)1Ts)·1Ts − I

)
Ap ((k − 1)1Ts)−1

·
[
Bp1 ((k − 1)1Ts) Bp2((k − 1)1Ts

]
·

[
wp [k − 1]
u [k − 1]

]
(29)

(A priori covariance matrix): Euler method

P− [k] =
{
I +1TsAp ((k − 1)1Ts)

}
P [k − 1]

·
{
I +1TsAp ((k − 1)1Ts)

}T
+ (1Ts)2 ·

[
Bp1((k−1)1Ts) Bp2((k−1)1Ts)

]
·Q

[
BTp1((k − 1)1Ts)
BTp2((k − 1)1Ts)

]
(30)

(A priori covariance matrix): 0th order hold

P− [k] =
{
eAp((k−1)1Ts)·1Ts

}
P [k−1]

{
eAp((k−1)1Ts)·1Ts

}T
+

(
eAp((k−1)1Ts)·1Ts − I

)
Ap ((k − 1)1Ts)−1

·
[
Bp1 ((k − 1)1Ts) Bp2 ((k − 1)1Ts)

]
·Q

[
BTp1 ((k − 1)1Ts)
BTp2 ((k − 1)1Ts)

]
·

{(
eAp((k−1)1Ts)·1Ts − I

)
Ap ((k − 1)1Ts)−1

}T
(31)

(Kalman gain)

g [k] = P− [k]CT
pd [k]

(
Cpd [k]P− [k]CT

pd [k]+ R
)−1

= P− [k]CT
p (k1Ts)

×

(
Cp(k1Ts)P− [k]CT

p (k1Ts)+ R
)−1

(32)

(Estimated state quantity)

x̂pd [k] = x̂−pd [k]+ g [k]
{
ypd [k]− Cp(k1Ts)x̂

−

pd [k]
}

(33)

(A posteriori covariance matrix)

P [k] =
{
I − g [k]Cpd [k]

}
P− [k]

=
{
I − g [k]Cp(k1Ts)

}
P− [k] (34)

Here, the covariance matrix of observation noise R and the
observed output ypd [k] are defined as

R =

{
r × I1×1 (Sw = 1)
r × I2×2 (Sw = 0)

(35)

ypd [k] =


XB (n1Ts) (Sw = 1)[
XB(n1Ts)
XE (n1Ts)

]
(Sw = 0)

(36)

corresponding to (27). In the experiments below, the covari-
ance matrices were adjusted asQ = q× I4×4 = 108× I4×4 ∼
109 × I4×4 and r = 100 ∼ 101. Sampling periods of the
experimental verifications with zeroth order hold and Euler
method were 0.42 ms and 0.34 ms, respectively.

V. EXPERIMENTS
A. VERIFICATION CONTENTS
This study verifies the proposed method experimentally. Two
kinds of Kalman filters are investigated depending on the
discretization method for the physical function model. One
involves the Euler method and the other involves the zeroth
order hold. Moreover, additional verifications give a uni-
formly distributed noise of 10% to the observed output to
confirm the robustness of the proposed method. In summary,
a total of four verifications (two kinds of discretization ×
the presence or absence of noise) were performed. All of the
experimental results are shown in a table in the form of mean
square error (MSE) [38] with respect to each state quantity.
These performances can be quantitatively evaluated.

B. EXPERIMENTAL SYSTEM
Figure 5 shows the experimental system. Figure 5 (a) is the
configuration of the feedback system (conceptual scheme).
Figure 5 (b) overviews the real experimental system.
In Fig. 5 (a), the motor is driven by the thrust command

signal, which is amplified by the servo amplifier. To clearly
evaluate the effects due to backlash, a step signal, which
suddenly changes from negative to positive values at 2.0 s,
is given as the thrust command. The three displacements
in (7) are measured by laser displacement sensors (LDS:
KEYENCE, IL-300). The velocities, which are the state vari-
ables in (7), are obtained by differentiating the sensor signals.
The observed output (36) of the measured displacements by
the sensors is fed back to the digital signal processor (DSP:
mtt, iBIS, DSP7101A). According to this observed output,
the Kalman filter in DSP estimates the state variables. As the
observation noise, random number values are added to the
sensor signal in DSP.

C. VERIFICATION RESULTS
Figs. 6 - 11 show the experimental results without the obser-
vation noise. Figs. 6, 7, and 8 show the three displacements
XB, xG, and XE , respectively. Figs. 9, 10, and 11 show the
three velocities VB, vG, and VE , respectively.
Next, the results obtained by the experimental verifications

in which a uniformly distributed noise of 10% was given to
the observed output (sensor signal) are demonstrated below.
Figs. 12 - 17 show the verification results obtained by the

experiments with the observation noise. Figs. 12, 13, and 14
show the three displacements XB, xG, and XE , respectively.

12010 VOLUME 9, 2021



H. Yonezawa et al.: Application of Physical Function Model to State Estimations of Nonlinear Mechanical Systems

FIGURE 5. Experimental system. (a) System diagram and (b) overview of
the real experimental system.

FIGURE 6. Measured and estimated displacements of the mass MB to
experimentally verify the estimation accuracy. The blue line shows the
signal obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

Figs. 15, 16, and 17 show the three velocities VB, vG, and VE ,
respectively.

In each graph, the red (Estimated-Z) and green
(Estimated-E) lines show the results estimated by the Kalman
filters with the zeroth-order hold and the Euler method,
respectively. The blue line indicates the true value obtained
from the sensor. Table 3 shows the MSEs with respect to each
estimated state quantity.

FIGURE 7. Measured and estimated displacements of the mass mG to
experimentally verify the estimation accuracy. The blue line shows the
signal obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

FIGURE 8. Measured and estimated displacements of the mass ME to
experimentally verify the estimation accuracy. The blue line shows the
signal obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

FIGURE 9. Velocities of the mass MB demonstrating the estimation
accuracy via experimental verifications. The blue line shows the value
obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

D. DISCUSSION
The time history responses of the displacement and velocity
demonstrate the excellent estimation accuracy of the pro-
posed method (Figs. 6 - 11). The overall trend indicates
that the estimated values are almost the same as the mea-
sured (true) ones, meaning that the state quantities were
properly estimated. Moreover, the remarkably small values of
mean square errors (MSE) with respect to each state quantity
shown in Table 3 confirm the effectiveness of the proposed
approach.

Figs. 12-17 indicate that each state variable was success-
fully estimated even though the observation noise was given
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FIGURE 10. Velocities of the mass mG demonstrating the estimation
accuracy via experimental verifications. The blue line shows the value
obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

FIGURE 11. Velocities of the mass ME demonstrating the estimation
accuracy via experimental verifications. The blue line shows the value
obtained from the sensor. The red and green lines show the results
estimated by the proposed Kalman filters with the zeroth-order hold and
the Euler method, respectively.

TABLE 3. Experimental results of the mean squared errors on each state
variable.

in DSP. Although the effects due to the observation noise
appear in some detailed parts of the velocity responses shown
in Figs. 15 and 16, the macro behavior is reproduced in
both the red and green lines. In the application presented in
this study, while the nonlinearity of the system is addressed
by the physical function modeling, the robustness against
observation noise can be due to the linear Kalman filtering.

In particular, the responses from 2.0 s to 2.5 s in the
displacements shown in Figs. 6, 7, 12, and 13 and the veloc-
ities shown in Figs. 9, 10, 15, and 16 confirm the validity

FIGURE 12. Displacements of the mass MB obtained by the experiments
with observation noise 10%. The blue line shows the signal obtained
from the sensor. The red and green lines show the results estimated by
the proposed Kalman filters with the zeroth-order hold and the Euler
method, respectively.

FIGURE 13. Displacements of the mass mG obtained by the experiments
with observation noise 10%. The blue line shows the signal obtained
from the sensor. The red and green lines show the results estimated by
the proposed Kalman filters with the zeroth-order hold and the Euler
method, respectively.

FIGURE 14. Displacements of the mass ME obtained by the experiments
with observation noise 10%. The blue line shows the signal obtained
from the sensor. The red and green lines show the results estimated by
the proposed Kalman filters with the zeroth-order hold and the Euler
method, respectively.

of the mechanism model included in the physical function
model presented in Fig. 3. Specifically, the nonlinearity due
to backlash described by the mechanism model is clearly
observed in those figures. As the motor is driven by the thrust,
which suddenly changes at 2.0 s, there is a time zone in which
the upstream side (mass point ME ) and the downstream side
(mass points mG and MB) are not in contact with each other
in the backlash. In other words, the experimental device is in
a state of free vibration. The black circles in Figs. 6, 7, 9, 10,
12, 13, 15, and 16 indicate the nonlinear behavior induced by
backlash.
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FIGURE 15. Velocities of the mass MB obtained by the experiments with
observation noise 10%. The blue line shows the value obtained from the
sensor. The red and green lines show the results estimated by the
proposed Kalman filters with the zeroth-order hold and the Euler method,
respectively.

FIGURE 16. Velocities of the mass mG obtained by the experiments with
observation noise 10%. The blue line shows the value obtained from the
sensor. The red and green lines show the results estimated by the
proposed Kalman filters with the zeroth-order hold and the Euler method,
respectively.

FIGURE 17. Velocities of the mass ME obtained by the experiments with
observation noise 10%. The blue line shows the value obtained from the
sensor. The red and green lines show the results estimated by the
proposed Kalman filters with the zeroth-order hold and the Euler method,
respectively.

Figs. 18 and 19 show zooming in the curves in the key inter-
val. Figs. 18(a), 18(b), 19(a), and 19(b) are enlarged views
of Figs. 6, 7, 9, and 10, respectively, indicating the backlash
characteristics estimated by the time-varying linear Kalman
filter. Similarly, Figs. 20(a), 20(b), 21(a), and 21(b), which
are enlarged views of Figs. 12, 13, 15, and 16, respectively,
demonstrate zooming in the curves in the key interval. The
arrow in Figs. 18 (a) and 20 (a) indicates the moment when
the experimental device switches from a free vibration state
to a forced vibration state.

Figs. 18, 19, 20, 21 show the non-smooth displacement
responses and the velocity oscillations in the high-frequency

FIGURE 18. Enlarged graphs of Figs. 6 and 7, demonstrating nonlinear
characteristics due to backlash.

modes. These are due to the nonlinear characteristic when the
backlash condition switches from disconnected to coupled.
The red and green lines of the estimated values also reproduce
these responses. Consequently, the mechanism model plays
an important role in the high estimation accuracy of the
responses due to nonlinear characteristics when employing
Kalman filtering. It is revealed from the experimental results
that the proposed method is absolutely effective to estimate
the states of the nonlinear system even though EKF can-
not be applied to such a system including the non-smooth
nonlinearity.

In this study, as indicated by the red or green line, the state
equation from the physical function model is discretized
by Euler method or zeroth order hold. The discretization
method affects the estimation accuracy and calculation load
of the proposed approach. Comparing the values of MSE
in the second and third columns of Table 3, the approach
with the zeroth order hold exhibits a bit higher estimation
accuracy over the Euler method with respect to the two
velocities ˆ̇XB and ˆ̇xG. Moreover, when including observation
noise, comparing MSEs in the fourth and fifth columns,
the zeroth-order hold takes the smaller values with respect

VOLUME 9, 2021 12013



H. Yonezawa et al.: Application of Physical Function Model to State Estimations of Nonlinear Mechanical Systems

FIGURE 19. Enlarged graphs of Figs. 9 and 10, demonstrating nonlinear
characteristics due to backlash.

to ˆ̇XB and ˆ̇xG, in which the effect due to backlash appears
directly. The overall trend of the experimental result shown
in the figure on each state variable indicates that there is little
difference between the two discretization methods. However,
the clear performance difference between the Euler method
and the zeroth-order hold can be observed from Figs. 19(b)
and 21(a)(b), which demonstrate zooming in the curves in
the key interval. Specifically, the green waveform obtained
by the Euler method fluctuates more intensely from 2.0 s to
2.5 s. Because Figs. 18, 19, 20, and 21 show the backlash
characteristics, they are regarded as the curves in the key
interval. Considering practical use in the industrial world,
there is a possibility that the performance differences such
as those in Figs. 19(b) and 21(b) will affect the estima-
tion accuracy of the backlash characteristics. These results
imply that a higher estimation accuracy may be obtained by
application of the model discretized by zeroth order hold
to the Kalman filter. One of the reasons may be the differ-
ence in the calculation method between zeroth-order hold
and the Euler method. Regarding the computation of the
matrix exponential in (24) [44], the Euler method employs an

FIGURE 20. Enlarged graphs of Figs. 12 and 13, demonstrating nonlinear
characteristics due to backlash.

approximation, which neglects terms of orders higher than or
equal to two in the Taylor expansion. Because the oscillations
in the high-frequency modes occur immediately after the
backlash is traversed, the effects due to the terms with higher
orders in the Taylor series may not be negligible. This may
attribute to the deteriorated estimation accuracy of the Euler
method. From Fig. 21(b), we can see that the time-varying
linear Kalman filter with the Euler method is susceptible to
the observation noise. This is because the above negative
effect regarding the computation of the matrix exponential is
promoted by the observation noise.

On the other hand, the Euler method is superior to the
zeroth-order hold from the viewpoint of calculation load in
the Kalman filter. Table 4 shows the time required to execute
simulations to verify the proposed approach using different
discretization methods. These results were obtained by exe-
cuting a simulation program of m-file (MATLAB R2016a),
which includes the commands ’tic’, ‘toc’ for time measuring.
As PC for the analysis, DELL Precision 3630 Tower (Dell
Inc.; CPU; Xeon E-2124, Memory; 16GB DDR4) was used.
In the simulations, sampling period 1Ts is 0.02 ms.
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FIGURE 21. Enlarged graphs of Figs. 15 and 16, demonstrating nonlinear
characteristics due to backlash.

TABLE 4. Simulation time of each discretization method measured to
compare their calculation loads with each other.

As shown in Table 4, it is meaningful to compare the two
discretization methods because there is the great difference
in their calculation loads. Comparing the two results shown
in Table 4, the simulation is finished by the Euler method
in less than half of the time required for that by the zeroth
order hold. Hence, the approach with the Euler method has
a smaller calculation load. This can also be attributed to the
difference in the approximation method used to calculate the
matrix exponential. Consequently, the results of this study
suggest that there is a trade-off relationship between estima-
tion accuracy and calculation load with respect to the dis-
cretization methods. Hence, it is necessary to appropriately

select the discretization methods for the physical function
model according to which feature (estimation accuracy or
calculation load) is more important.

As discussed above, the major difficulty is that the physical
function model needs to be discretized in real time in order
to be applied to the Kalman filtering. This is due to the fact
that the physical function model is always constructed in the
continuous-time domain, which has the physical meanings
explicitly. The real-time discretization sometimes makes it
difficult to implement the Kalman filter on digital control sys-
tems. Therefore, the following two approaches will be impor-
tant in the future. First, the discretization method itself needs
to be improved. In particular, a novel discretization method,
which can achieve both high calculation efficiency and good
accuracy simultaneously, should be useful for the proposed
estimation method. Second, the modification, which can
directly offer a discrete-time-varying linear state equation
without losing physical meanings in each engineering field
and parts configuration in product systems, is required for the
current physical function modeling.

E. ADDITIONAL EXPERIMENTS TO VERIFY THE
PROPOSED ESTIMATION APPROACH WITH ONLINE
SWITCHING OF DISCRETIZATION METHODS
With respect to the discretization methods for the phys-
ical function model, Table 4 suggests that the Euler
method should be chosen when the high calculation effi-
ciency online is more important. On the other hand, from
Figs. 19(b) and 21(b), we can see that the zeroth-order hold
provides a higher estimation accuracy of the response due to
backlash.

Based on the above results, some additional experimental
results are presented in this section. These additional results
were obtained by the proposed estimation approach which
is further modified to switch the two discretization methods
in real time according to coupling conditions in backlash.
Specifically, while ME and mG are not in contact with each
other in the backlash (i.e. during the disconnecting state),
the zeroth-order hold is used because the estimation accu-
racy of the backlash characteristic becomes more important.
On the other hand, at other times, the Euler method is always
applied to reduce the calculation loads. Therefore, the pur-
pose of switching the discretization methods online in the
time-varying linear Kalman filter is to utilize both the good
accuracy of the zeroth-order hold and the high calculation
efficiency of the Euler method.

Figs. 22-27 show the additional verification results
obtained by the experiment in which the two discretiza-
tion methods were switched online in the proposed estima-
tion algorithm. Figs. 22, 23, and 24 demonstrate the time
responses of the displacements XB, xG, and XE , respectively.
Figs. 25, 26, and 27 are the time responses of the velocities
ẊB, ẋG, and ẊE , respectively.

In each graph, the red line indicates the result estimated
by the time-varying linear Kalman filter including online
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FIGURE 22. Displacement of the mass MB obtained by the experiment in
which the two discretization methods were switched in real time. The
blue line shows the signal obtained from the sensor. The red line shows
the result estimated by the proposed Kalman filter.

FIGURE 23. Displacement of the mass mG obtained by the experiment in
which the two discretization methods were switched in real time. The
blue line shows the signal obtained from the sensor. The red line shows
the result estimated by the proposed Kalman filter.

FIGURE 24. Displacement of the mass ME obtained by the experiment in
which the two discretization methods were switched in real time. The
blue line shows the signal obtained from the sensor. The red line shows
the result estimated by the proposed Kalman filter.

switching of the discretization methods. The true value
obtained from the sensor is shown in the blue line.

Figs. 22-27 demonstrate that each state variable was suc-
cessfully estimated by the time-varying linear Kalman filter
even when the discretization methods for the physical func-
tion model were changed online. In each figure, the red line
reproduces not only the macro behavior such as the primary
vibration mode at the first natural frequency 4 Hz, but also
the backlash characteristic occurring from 2.0 s to 2.5 s.

Note that online calculation loads induced in the exper-
iments of Figs. 22-27 should be less than those required
for the Kalman filter employing only the zeroth-order hold.
Consequently, Figs. 22-27 further verified the effectiveness

FIGURE 25. Velocity of the mass MB obtained by the experiment in which
the two discretization methods were switched in real time. The blue line
shows the value obtained from the sensor. The red line shows the result
estimated by the proposed Kalman filter.

FIGURE 26. Velocity of the mass mG obtained by the experiment in which
the two discretization methods were switched in real time. The blue line
shows the value obtained from the sensor. The red line shows the result
estimated by the proposed Kalman filter.

FIGURE 27. Velocity of the mass ME obtained by the experiment in which
the two discretization methods were switched in real time. The blue line
shows the value obtained from the sensor. The red line shows the result
estimated by the proposed Kalman filter.

of the proposed estimation approach based on the physical
function model.

Despite the well performances by the modified estima-
tion approach shown above, online switching of the dis-
cretization methods is considered to be effective for only
backlash systems. This is because backlash has only two
coupling conditions, leading to small number of switching
the discretization methods. Therefore, as described in the end
of Section 5.D., a novel discretization method, which can
achieve both high calculation efficiency and good accuracy
simultaneously, should be necessary for a wider range of
nonlinear systems.
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VI. CONCLUSION
The physical function model, which has been effectively used
for MBD of vehicle systems, can be applied to the Kalman
filtering theory to estimate the state of nonlinear mechani-
cal systems. Compared to traditional modeling approaches,
physical function modeling has many advantages such as the
ability to flexibly express a wide range of nonlinear character-
istics and to integrate models in different engineering fields.
These features result in a high affinity with the industrial
world. The main contribution of this study is to pioneer
novel application areas of the physical function model other
than simulation analysis. By focusing on the feature where
nonlinear systems are modeled as a time-varying linear state
equation, we present an approach for applying it to Kalman
filtering. The proposed observer is applicable not only to vari-
ous kinds of nonlinearities and the reduction in the calculation
load, but also aligns with the background and trends of the
current MBD. Finally, the high estimation performances of
the present method were experimentally verified.

In the future, we plan to investigate nonlinear feedback
control systems using state estimations based on the proposed
approach. In addition, to more efficiently identify the param-
eters of the physical function model, a more theoretical and
quantitative method using optimization techniques such as
genetic algorithm (GA) will be necessary. This improvement
of the identification method will be included in future tasks
of this study.
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