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ABSTRACT The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs),
Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Depo-
sition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect
environmental pollutants data. While previous studies usually employed traditional statistical approaches to
analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs,
PESTs, and PAHs (which is referred to as

∑
PCBs,

∑
PEST s and

∑
PAHs orderly) in 1990-2016 samples

by using a machine learning algorithm combined with data-driven research method, which lets the model
fit the data, so as to change the model to achieve the effect. The main results of this article are as follows,
1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great
Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor)
and STP(Sturgeon Point) sampling sites, via which we estimated their

∑
PCBs,

∑
PESTs, and

∑
PAHs in

the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The
important role which IoT played in smart environmental protection was pointed out.

INDEX TERMS Atmospheric environment, data-driven, great lakes, Internet of Things, intelligent model,
persistent organic pollutants, machine learning.

I. INTRODUCTION
The North American Great Lakes (Lakes Superior, Michigan,
Huron, Erie, and Ontario) have been subjected to elevated
pollutions due to intensive human activities [1], [2]. There-
fore, the United States Environmental Protection Agency
(U.S. EPA) implemented the Integrated Atmospheric Depo-
sition Network (IADN) program to monitor air pollution
over the Great Lakes. They applied the Internet of Things
technology to the field of environment, widely collect data,
and use intelligent technologies such as data mining to screen
and refine the collected data, so as to provide researchers
and decision makers with safe, reliable and effective data
information. The IADN team has been measuring Persistent
Organic Pollutants (POPs) in the Great Lakes atmosphere
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and precipitation since 1990. Venier et al. reported that the
residues of POPs in the Great Lakes air would not be removed
promptly, and they mainly arose from human activities [3].
Though the concentrations of various contaminants have
declined in the IADN samples since the implementation of
the Stockholm convention in 2004, the decreasing trends in
atmospheric levels of PCB-11 were not significant [4], [5].

Previous studies usually employed traditional statistical
approaches without prediction to analyze the IADN results.
A. Salamova et al. presented their measurements of several
halogenated and non-halogenated Ops (Organophosphate
esters) in particle samples collected as part of the Integrated
Network(IADN), and Some statistical analysis results are
given for the data [6]. R.A. Hites separated the analytical error
from the sampling error for the target compounds by using
surrogate (recovery) standards [7]. The precision of atmo-
spheric concentration measurements of POPs was discussed
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by D.C. Lehman et al. [8]. In the present study, we revisited
these data and analyzed them in terms of machine learning
combined with data-driven research methods, which lets the
model fit the data, so as to change the model to achieve
the effect. The input factors of the time series model, such
as model fixed order and differential orders, are adjusted to
make the model fit the data and get better prediction effect
in this article. The temporal and spatial trends of POPs was
more accurately analyzed, and some predictions were made
about future concentration data.

Machine learning, a branch of artificial intelligence, has
received mounting attention from numerous research fields,
including environmental, epidemiological, and pharmaceuti-
cal studies, among others [9]. Its algorithms include super-
vised learning, unsupervised learning, and reinforcement
learning. These models can efficiently visualize complex
data in terms of multiple techniques (e.g., data sorting and
reduction of data-dimensions), enabling researchers to extract
valuable information from large datasets [10]. Additionally,
machine learning facilitates the use of existing data to per-
form predictions scientifically, which can be of great com-
mercial and social values [11].

Machine learning has a wide range of research. Intel-
ligent model design of complex system becomes a key
issue for organization responsiveness to uncertainties.
J. Li and N. Xiong et al. provided a novel framework and
approach to design cluster supply chain without across-chain
horizontal cooperation [12]. M.M. Hassan and H. Liao et al.
applied machine learning to the IIoT (Industrial Inter-
net of Things) environment and achieved some good
results [13], [14]. Importing heuristic algorithm, F. Long et al.
improved the virtual topology strategy to satisfy the require-
ments of users [15], [16]. Y. Yang et al. proposed a decen-
tralized flocking algorithm to achieve the goal of collision
avoidance [17]. Z. Zhou applied machine learning algo-
rithm to IoHT (Internet of Health Things), proposed a new
scheme, and verified its effectiveness and reliability [18].
An increasing number of environmental researchers have
starting incorporating machine learning to evaluate their data.
For example, Knoll et al. and Nourani et al. used machine
learning technique to predict the groundwater levels and the
concentrations of nitrate, and compared the prediction perfor-
mance among various models [19], [20]. Machine learning
algorithm and model have great practicability [21], [22].
To estimate the potential threats by groundwater to public
health, a previous study integratedNeural Networks (NN) and
Support Vector Machines (SVM) into a Geographic Informa-
tion System (GIS) to identify contaminated wells, and used
logistic regression and feature selection methods to prioritize
variables [23], [24]. Machine learning was also successfully
adopted to predict the dissociation energy of carbon-fluorine
bonds [25], as well as to predict the biological activity
of per- and polyfluoroalkyl substances [26]. Specially, the
application and research of time series model are very exten-
sive. T. Shen et al. proposed 3D Augmented Convolutional
Network (3DACN) to extract time series information and

FIGURE 1. Map of the IADN sampling sites around the Great Lakes.

solve the serious imbalanced data problem [27]. Based on
machine learning, Y. Zhang and J.C. Sun et al. Put forward
improved time series analysis methods, which all owed the
information in the time series to be extracted by analyzing the
associated complex network [28]. R.J. Zhou proposed Flex-
ible Multi-Scale Entropy (FMSE) to increases the reliability
and stability of measuring time series complexity [29]. These
studies showed the great advantage of employing themachine
learning.

The rest of this article is organized as follows. Section II
describes the sources of research data and the research meth-
ods. Section III presents detailed data analysis and visu-
alization of experimental outcomes. And the models were
evaluated. Section IV gives environment-related conclusions
based on the results obtained in the previous two sections.
Section V summarizes the findings of this study and makes
the prospects for future research.

II. MATERIALS AND METHODS
A. RESEARCH AREA
The Great Lakes located in the east-central North America,
between the United States and Canada, is the largest group
of freshwater lakes in the world; The total area of these five
lakes is 245,660 square kilometers [30]. The IADN, a long-
term atmospheric monitoring program, which is run by the
office of the Great Lakes’ national program of the U.S. EPA,
has been measuring Polychlorinated Biphenyls (PCBs), Pes-
ticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs),
and flame retardants in the Great Lakes atmosphere and
precipitation since 1990 by Indiana University. The sampling
sites were Brule River (BR), Chicago (CHIC), Cleveland
(CLEV), Eagle Harbor (EH), Point Petre (PP), Sleeping Bear
Dunes (SBD), and Sturgeon Point (STP) (see Figure 1) [31].

Based on Internet of Things technology, a set of atmo-
spheric sample (both vapor and particle phases) was collected
every 12 days with a bulk-active air sampler for 24 hours at
each site (except at PP, where the sampling frequency was
every 24 or 36 days). The sampling periods were 1996-2002
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FIGURE 2. Flow chart of modeling.

at BR, 1996-2016 at CHIC, 2003-2016 at CLEV, 1990-2016
at EH, 1998-2016 at PP, 1991-2016 at SBD, and 1991-2016
at STP. A detailed list of targeted contaminants can be found
at the IADN Data Viz. The data discussed in this article were
also downloaded from that website [29].

B. INTRODUCTION TO MODELING WORKFLOW
In this study, we analyzed the total concentrations of PCBs,
PESTs, and PAHs (

∑
PCBs,

∑
PESTs, and

∑
PAHs) in the

IADN vapor phase samples for their spatiotemporal trends
and made some predictions by building the right model.
The modeling workflow are shown in Figure 2. The entire
modeling process consists of three stages. The stage I, prepa-
ration before modeling. This stage mainly includes mission
understanding, data importing, data understanding, and data
preparation. Data preparing refers to the process of making
a series of operations on the original data into experimental
data. The stage II, modeling. The main steps in the modeling
stage include model type selection and super parameter set-
ting, specificmodel training and statistics viewing, evaluating
goodness of fit, and modeling assumptions and discussion.
In addition, we need do model optimizing and reselection if
the obtained results do not meet the requirements. The stage
III, application of the model. The corresponding function of
the model is implemented according to the model type in
this stage. The prediction function was realized by the model
constructed in this article. The details can be obtained from
the figure below.

C. DATA PRE-PROCESSING
There would be missing values and outliers in the original
dataset for various reasons, so data preprocessing is required
prior to Modeling. After investigating the original dataset,
we detected a number of missing values and outliers. Gen-
erally speaking, there are three main processing methods for
processing data missing: 1) using the attribute which contains
the missing value directly without any processing; 2) deleting
the attribute which contains a large number of missing values;
and 3) missing value replacement. In this article, we adopted
the second and third approaches. As themajority of

∑
PESTs

data were missing for the BR sampling site, we deleted the
corresponding attribute directly, while for the rest attributes,
their missing values were substituted with the corresponding
group mean. POPs at EH and STP sampling sites were taken
as examples, the data distributions after the missing value
processing were shown in Figure 3.

As can be seen in Figure 3 (a), the trend graphs of
∑

PCBs,∑
PESTs, and

∑
PAHs at EH sampling points are continu-

ous, indicating that the missing values have been completed.
In addition, we found that there were some anomalous data
points in the trend charts. The values of these data points,
which needed to be removed in the next step, were quite
different from those of most data points. the similar situation
can be seen in Figure 3 (b).

Then, the Python box graph was used to identify outliers.
The structure of box figure is shown in Figure 4. After calcu-
lating the first quartile (Q1, at 25% position), the median and
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FIGURE 3. Trend charts of POPs concentrations in the Great Lakes atmosphere after the missing data processing.

FIGURE 4. Structure of box plot.

the third quartile (Q3, at 75% position), we defined the inter-
quartile range (IQR) as (Q3-Q1), and considered the values
outside the range between (Q1− 1.5× IQR; the lower limit)
and (Q3+ 1.5× IQR; the upper limit) as outliers. Similarly,
POPs at EH and STP sampling sites were taken as examples,
the box plots for POPs levels in the Great Lakes atmospheric
samples are shown in Figure 5, where the outliers clearly
stand out and are excluded from the subsequent elucidation
of the POPs’ environmental behaviors.

In Figure 5 (a), the sampling time of EH is from 1990 to
2016, which is the longest sampling period among the seven
sampling points. At EH sampling site, the number of abnor-
mal data points per year is within the acceptable range, which
can be counted on one’s fingers. In Figure 5 (b), the sampling
period span of STP is from 1991 to 2016. Compared to other
sampling sites, the data volume collected in STP was also
larger. The situations about abnormal data points were similar
to the EH sampling site.

D. PRE-ANALYSIS OF EXPERIMENTAL DATA
The annual median concentrations (i.e., experimental data;
after data preprocessing) of

∑
PCBs,

∑
PESTs, and

∑
PAHs for the individual IADN sites are presented in Table 1.
The sample sizes for BR CHIC, CLEV, EH, PP, SBD, and

STP were 172, 526, 336, 670, 234, 628, and 634 respectively.
The main distribution space of

∑
PCBs was CHIC, followed

by CLEV, STP and PP, while the median
∑

PCBs in the
SBD and EH samples were only two digits in most years.
The spatial distribution patterns of

∑
PESTs at CHIC, CLEV,

STP, PP, SBD, and EH were not obvious in the early years.
However, the median

∑
PCBs at STP, PP, SBD, and EH has

dropped to two digits recently, whereas both CHIC andCLEV
have remained at three digits. The median

∑
PAHs were

much higher than those of
∑

PCBs and
∑

PESTs, and the
highest levels were observed at CHIC and CLEV, followed
by STP, PP, SBD, and EH. The BR data were not discussed
due to its small sample and the missing of

∑
PESTs data.

Taking the average value of the above experimental data,
the spatial distribution of the three kinds of POPs at the seven
sampling points is shown in Figure 6, from which we can
get a clear understanding of the spatial distribution of PCBs,
PESTs, PAHs. Since BR sampling points are completely
missing from the sum of PESTs data, so the BR case is not
considered in Figure 6 (b). The situation shown in this figure
is consistent with the data analysis result in Table 1.

E. MODEL INTRODUCTION
To predict the future trends of POPs’ concentration based
on the existing IADN data, the Time Series Prediction
Method (TSPM), a machine learning algorithm, was uti-
lized. Autoregressive moving average (ARMA) model was
one of TSPM [32]. ARMA, the most commonly model for
fitting a stationary sequence, can be subdivided into three
categories: AR model (auto regression model), MA model
(moving average model), and ARMAmodel (auto regression
moving average model). When the time series itself is not
stationary, if its increment, that is, a difference, is stable near
zero, it can be regarded as a stationary sequence. In practical
problems, most of the non-stationary sequences encountered
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TABLE 1. Annual median concentrations of POPs in the great lakers atmosphere (after data preprocessing; pg/m3).

can become stationary time series after one or more differ-
ences [33].

The data sequence formed by the prediction index over
time is regarded as a random sequence, and the dependence of
this group of random variables reflects the continuity of the
original data in time. On the one hand, the influence of the
influencing factors, on the other hand, it has its own rule of
change, assuming that the influencing factors are X1, X2, . . .,
Xk,, βi(i= 0, 1, 2, . . . ) are coefficients, by regression analysis,
as shown below.

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + e, (1)

where Y is the observed value of the predicted object, and
e is the error. As the predicted object, Yt is affected by its
own changes, and its law can be reflected by the following
formula:

Yt = β0 + β1Xt−1 + β2Xt−2 + . . .+ βpXt−p + et , (2)

The error term is dependent in different periods, which is
expressed by the following formula, αi(i = 0, 1, 2, . . .) are

coefficients, µt are random term to test the co-integration
relationship.

et = α0 + α1et−1+α2et−2+ . . .+ αqet−q+µt , (3)

Thus, the ARMA model expression can be obtained:

Yt = β0 + β1Xt−1 + . . .+ βpXt−p + α0 + α1et−1
. . .+ αqet−q + µt . (4)

The ARMAmodel building algorithm is seen in Figure 7 (p
refers to the autoregression order, and q refers to the moving
average order). Firstly, inputting the processed time series.
Then, judging its stationarity. If the time series is stable, mov-
ing to the next step; otherwise, make a differential operation
to make the time series keep stable. Next, determining the
orders of model. Finally, parameter estimating is performed
to evaluate the model performance. If the performance of the
model is good, the model can be determined for prediction;
otherwise, the orders of the model needs to be determined
again.
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TABLE 1. (Continued.) Annual median concentrations of POPs in the great lakers atmosphere (after data preprocessing; pg/m3).

III. RESULTS AND DISCUSSION
A. DATA TREND OVERVIEWING
The temporal trends of median

∑
PCBs,

∑
PESTs and

∑
PAHs at the seven IADN sampling sites are demonstrated in
Figure 8. At BR sampling site, the

∑
PAHs were higher than

that of
∑

PCBs. While the
∑

PCBs leveled off at relatively
low levels, the

∑
PAHs tended to decrease. Similar trends

were observed for CHIC, CLEV, EH, PP, SBD, and STP
where

∑
PAHs were significantly greater than the

∑
PCBs,

while
∑

PESTs were the lowest. Additionally, although the
median concentrations of these POPs fluctuated, the overall
trends were all downward.

B. ANALYSIS OF VISUALIZED RESULT
In this study, by constantly optimizing the parameters to
better fit of data, an data-driven intelligent environmental
model based on ARMA algorithm was constructed to predict
POPs concentrations in the next few years. Given that EH and
STP have the largest sample sizes, in addition, STP stands
for rural site and EH stands for remote site, which makes the

sampled data rich and representative. So we used their data to
predict the

∑
PCBs,

∑
PESTs, and

∑
PAHs in the following

4-5 years (see Figure 9).
According to Figure 9 (a), in the EH atmosphere, there will

be a slight increase in
∑

PCBs, but such fluctuations will not
be considerable in general, and the overall temporal trend will
remain declining. The

∑
PESTs will continue dropping in a

few years after 2016. The
∑

PAHs will fluctuate to some
extent, showing a zigzag pattern. Regrading the STP atmo-
sphere (see Figure 9 (b)), its

∑
PCBs will decline with fluc-

tuations. The
∑

PESTs will gain right after 2016, and then
level off, and the

∑
PAHs will fluctuate slightly. The concen-

trations of pops at EH and STP sampling sites have slight fluc-
tuations, but on the whole, they showed a downward trend.

C. MODEL EVALUTION
This article intends to evaluate the ARMA model which
was constructed from the following two aspects: feasibility
analysis and sensitivity analysis.
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FIGURE 5. Box plots of POPs concentrations in the Great Lakes atmosphere.

1) FEASIBILITY ANALYSIS
The feasibility analysis of ARMA model was coducted from
two aspects: 1) testing whether the residuals were normally
distributed using the QQ plot(Quantile-Quantile plot); and
2) assessing autocorrelation of residuals in terms of the
D-W(Durbin-Watson) statistics (when the value of D-W is
significantly close to 0 or 4, there is autocorrelation; when it
is close to 2, there is no autocorrelation). Figure 10 shows the
QQ plots for the ARMA modelling of median

∑
PCBs,

∑
PESTs, and

∑
PAHs in the EH and STP samples.

Figure 10 (a) is the QQ plot of the ARMA model for the
median

∑
PCBs,

∑
PESTs and

∑
PAHs in the EH atmo-

sphere. Virtually all the data points were on a straight line
and equally distribute on both sides of the line, indicating that
the residuals satisfactorily met the normal distribution. The
corresponding D-W values for

∑
PCBs,

∑
PESTs and

∑
PAHs were, respectively, 1.85, 1.47, 1.97, all were closer to 2,
suggestive of insignificant autocorrelation. Similar residual
distribution patterns and D-W values were also found for STP
samples (see Figure 10 (b)). Therefore, our model prediction
should be robust and reliable.

2) SENSITIVITY ANALYSIS
Sensitivity Analysis (SA) investigates how the variation in the
output of a numerical model can be attributed to variations of

its input factors [34]. Figure 11 shows input factors and output
definition for the SA of the model. As we can see from the
figure, the main input factors included processed time series,
model parameters, differential orders and model fixed orders.
These input factors all have certain influence on the predicted
value of the model.

Based on the model type, we used correlation methods to
preform sensitivity analysis of this model. We can define the
sensitivity of the model as follows:

SA = correlation (Xi,Y ) (5)

whereXi represents input factors and Y represents output. The
sensitivity of model can be analyzed by means of comparing
RMSE, the error between the predicted data and the real data.
Its mathematical expression is shown as (6).

RMSE =

√∑n
i=1 (Ypredict,i − Yreal,i)

n

2

(6)

where Ypredict,i is the predicted value of the model, Yreal,i is
the true value of the model, and n is the number of data points.
RMSE can well reflect the fitting status of model data. Within
a certain range, the smaller RMSE, the higher the Fitting
degree [35], [36]. There are two most important parameters
p and q in this model, p refers to the autoregression order,
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TABLE 2. Comparison of RMSE values corresponding to different p and q valuess.

FIGURE 6. Pie charts of three kinds of POPs spatial distribution
proportion at seven sampling points.

and q refers to the moving average order, that is, the fixed
order of the model(main input factors), which can be adjusted
to better fit the data mainly. By changing the p and q value,
calculating the corresponding RMSE value and comparing,
the sensitivity of the model can be analyzed. We changed the
value of p, q for many times and found that the RMSE value
changed a lot (See Table 2). In Table 2, RMSE in the best
fitting case was highlighted, and its corresponding p and q
values were selected to build the model. Further analysis of
the data in Table 2 showed that RMSE values changed to a
large extent with the change of input factors p and q, which
means that the change of input factors has a significant impact
on the output of this model, namely, the model is highly
sensitive.

FIGURE 7. The algorithm of ARMA model building.

IV. ENVIRONMENTAL SIGNIFICANCE
PCBs have been widely used as insulation oil, heat carrier,
and lubricating oil. They can also be used as additive in many
industrial products (such as various resins, rubber, binders,
coatings, carbon paper, ceramic glaze, fire retardant, pesticide
extender and dye dispersant) [37]. PCBs are carcinogens that
tend to accumulate in fatty tissue, it can cause diseases of
the brain, skin and internal organs, and it also affects the ner-
vous, reproductive, and immune system [38]. Thus, they were
added to the Stockholm convention and have been banned in
most countries (including the United States and Canada) for
decades, which consistent with the downward trend we found
and predicted.

PESTs, which can also accumulate in tissues, such as
heart, liver and kidney, and enter human and animal bodies
through the food chain [39]. The pesticides which accumu-
late in bodies can also be excreted through the mother’s
milk, or into the egg, ultimately affecting the offspring [40].
Therefore, countries strictly control the residues of PESTs in
food. For example, Germany, the United States, Japan, and
many other countries do not allow cyclopentadienyls PESTs
to be detected in food. In the 1960s, China began to ban
the use of DDT and 666 on tobacco, vegetables, tea, and
other crops [41]. Though the

∑
PESTs decreased in the

Great Lakes atmosphere, the IADN team measured legacy
PESTs only. The environmental concentration of emerging
pesticides is expected to increase due to the phase-out of
traditional PESTs and the introduction of many alternatives
to them because of the market demand.
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FIGURE 8. Broken line diagrams for median
∑

PCBs,
∑

PESTs, and
∑

PAHs in the Great Lakes atmosphere.

PAHs are ubiquitous in the environment, andmainly comes
from the burning of coal and oil, but also from garbage incin-
eration or forest fires. Their production volumes are closely
related to combustion equipment and combustion tempera-

ture [42]. PAHs are found in the exhaust of diesel and gasoline
engines, as well as in the waste gas and water from refineries,
coal tar processing plants and asphalt processing plants [43].
The decreasing trend of

∑
PAHs in the Great Lakes
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FIGURE 8. (Continued.) Broken line diagrams for median
∑

PCBs,
∑

PESTs, and
∑

PAHs in the Great
Lakes atmosphere.

FIGURE 9. ARMA model prediction of median
∑

PCBs,
∑

PESTs, and
∑

PAHs in the EH (a) and STP (b) atmosphere.

atmosphere indicates that the elevated energy efficiency and
the vehicle emission control in North America have alleviated
the PAH formation in recent years [44], [45].

These three classes of POPs not only have posed risks
to the environment but also have adversely affected human
health. Therefore, they should be used with caution. Our
results illustrate that the

∑
PCBs,

∑
PESTs, and

∑
PAHs

have been decreasing on the whole, consistent with the
fact that many countries have released policies to limit

their use and emission [46] due to their recognized toxic
potentials.

IoT, by using local network or Internet and other com-
munication technologies, sensors, controllers and machines,
people and objects can be connected together in new ways
to form people-and-objects, and objects-and-objects links,
so as to realize information-based remote management con-
trol and intelligent network [47]. IoT was widely used in
environmental protection and plays a very important role.
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FIGURE 10. QQ plots of ARMA prediction model for median
∑

PCBs,
∑

PESTs, and
∑

PAHs in the EH (a) and STP (b) atmosphere.

FIGURE 11. Input factors and output definition for the SA of ARMA model.

The researches of this topic is carried out in the the Internet
of Things environments. Firstly, Environment-related data
are collected based on the technology of the Internet of
Things. Secondly, required data are obtained from the Inter-
net. Thirdly, Machine learning and data analysis technologies
are used for research. The last one, the research results can be
uploaded and shared. IoT has played a great role in intelligent
environmental protection.

V. CONCLUSION AND FUTURE WORK
We analyzed

∑
PCBs,

∑
PAHs,

∑
PESTs in the Great

Lakes atmospheric samples (vapor phase) collected from
seven sampling sites by the IADN team at Indiana Univer-
sity. By constructing an data-driven intelligent environmental
model,

∑
PCBs,

∑
PESTs, and

∑
PAHs in the EH and STP

samples were predicted for the following 4-5 years, We also
presented the detailed processes of modeling workflow, and
used the Python development language and tools to visualize
our results. The result showed concentrations would continue
declining with slight fluctuations and the model is feasible

and highly sensitive. In addition, we pointed out the important
role of the IoT in the smart environmental protection.

The future research in this field can be carried out from
the following three aspects. Firstly, studying the relationship
between each persistent organic pollutant particle-phase con-
centration percentage and temperature by constructing appro-
priate regression model. The IADN collected concentrations
of persistent organic pollutants in vapor and particle phases.
Physical phenomena shows that matter changes from solid
to gas as the temperature rises. Calculating the persistent
organic pollutant particle phase percentage, that is P/(P+V)
(where P and V are the particle- and vapor-phase concen-
trations) and obtain the corresponding temperature. Taking
temperature as independent variable and persistent organic
pollutant particle phase percentage as dependent variable,
an appropriate regressionmodel can be tried to be established.
The effect of temperature on the state change of POPs can
be clearly understood. Secondly, studying the composition of
POPs in the Great Lakes by constructing an appropriate clas-
sification model. POPs such as Poly-chlorinated Biphenyls
(PCBs), Pesticides (PESTs), and Polycyclic Aromatic Hydro-
carbons (PAHs) are composed of a variety of different molec-
ular weight substances. The IADN website also recorded
concentrations of these substances. We can calculate the
proportion of the concentration of these substances and then
determine the main components and secondary components
of POPs by constructing a classification model. Finally, IoT
system for environmental protection can be built to realize
data real-time collection, upload-ing and sharing of research
results, so as to realize information and digitization of
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environmental protecting and make environmental manage-
ment more scientific and efficient.
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