
Received December 20, 2020, accepted January 3, 2021, date of publication January 13, 2021, date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051278

Joint Computational Offloading and Data-Content
Caching in NOMA-MEC Networks
LUAN N. T. HUYNH 1, QUOC-VIET PHAM 2, (Member, IEEE),
TRI D. T. NGUYEN 1, MD. DELOWAR HOSSAIN 1, YOUNG-ROK SHIN1,
AND EUI-NAM HUH 1, (Member, IEEE)
1Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, South Korea
2Research Institute of Computer, Information and Communication, Pusan National University, Busan 46241, South Korea

Corresponding author: Eui-Nam Huh (johnhuh@khu.ac.kr)

This work was supported by the Institute for Information and Communications Technology Planning and Evaluation (IITP) Grant funded
by the Korean Government (MSIT) (Service mobility support distributed cloud technology) under Grant 2017-0-00294.

ABSTRACT Multi-access edge computing (MEC) can improve the users’ computational capacity and
battery life by moving computing services to the network edge. In addition, data-content caching on a MEC
server improves the user quality of experience and decreases the backhaul network congestion. Moreover,
non-orthogonal multiple access (NOMA) has recently been implemented to increase network throughput
and capacity. Combining these techniques can improve the user performance and benefit the network. This
paper investigates a combined computational offloading and data-content caching problem for NOMA-MEC
systems. The aim was to achieve the minimum total completion latency of all users by jointly optimizing
the offloading decision, caching strategy, computational resource, and power allocation. This satisfies the
constraints within the scope of the potential violation for energy consumption, offloading decision, and the
computation and storage capacity of the MEC server. The formulated problem is a mixed-integer non-linear
programming and a non-convex problem. To solve this challenging problem, a block successive upper-bound
minimization method was implemented to obtain efficient solutions. Numerous simulation results were
presented to demonstrate the convergence and efficacy of the proposed algorithm. Compared with other
schemes of all-offloading, local-only, and equal resources, our proposed algorithm can approximately reduce
the total completion latency by 17.68%, 26.02%, and 70.98%.

INDEX TERMS Multi-access edge computing, non-orthogonal multiple access, block successive
upper-bound minimization, computational offloading, data-content caching.

I. INTRODUCTION
Data traffic is increasing astronomically due to the
explosive growth of smart mobile equipment and Inter-
net of Things (IoT) devices, which are driving the devel-
opment of many emerging applications, such as virtual
reality (VR)/augmented reality(AR), interactive gaming,
remote healthcare systems, surveillance, and autonomous
driving. These applications are typically computation-
intensive, latency-critical, and energy-consuming. On the
other hand, mobile devices often have limited computational
power and limited battery capacity [1], [2]. Handling the
computation-intensive demands on the consumer end is a
challenging task. Multi-access edge computing (MEC) was
proposed and developed by ETSI in 2014 to tackle these chal-
lenges [1], [2]. It has emerged as an innovative computation

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

paradigm designed to support the development of new com-
puter applications, which provides data, cloud computing
capabilities, and computation technology services from cen-
tralized cloud computing to the network edge [1]. In MEC
systems, the users can offload their computation-intensive
and delay-sensitive tasks to nearby MEC servers that are
attached at the base stations for remote task execution. This
scheme improves the computational capability and reduces
the delay execution of users [1]. On the other hand, a resource
allocation strategy at the MEC server should also be con-
sidered because the computational resources of the MEC
server are limited. The computational resource of a MEC
server is not always sufficient to support all users. Hence,
inefficient resource allocation techniques would increase
energy consumption and delay experienced by mobile users.

On the other hand, the benefits of edge caching (also
known as caching at the edge) in handling a significant
increase in mobile data traffic have been studied [2], [3].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12943

https://orcid.org/0000-0003-3423-0229
https://orcid.org/0000-0002-9485-9216
https://orcid.org/0000-0002-3862-5853
https://orcid.org/0000-0002-6080-9720
https://orcid.org/0000-0003-0184-6975
https://orcid.org/0000-0003-0810-1458

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

The data-content caching involves storing frequently used
content or a database/library related to services deployed
in MEC servers. Caching the requested data-content at the
network edge can reduce computational delay and improve
the quality-of-service (QoS) and the quality-of-experience
(QoE) of users. For example, there should be more associ-
ated data-content with some applications, such as VR, online
gaming, remote healthcare, autonomous driving, in addition
to the data or content needed for the computation-intensive
task [4], [5]. In museums, tourists prefer to use AR to feel a
better sense of reality. Consequently, more real-time services
can be provided if more data can be stored on the MEC
server in this area. Significant research on the advantages
of caching and computing offloading in MEC systems have
been performed [2]–[11]. Some requested data-content can be
downloaded from the MEC server for local execution. On the
other hand, the communication resources (i.e., bandwidth and
power budget) are typically limited. Therefore, the downlink
resource is also a key element in reducing the delay if the
data-content of a computational task needs to be downloaded
from the edge server.

Moreover, as the number of IoT devices is massive, the use
of multiple-access techniques will be needed to improve
the performance of MEC systems. Non-orthogonal multi-
ple access (NOMA) has more benefits for next-generation
wireless networks (i.e., 5G and 6G), which enhances the
system throughput and capacity [1], [12]–[15]. NOMA tech-
nology allows multiple users to use orthogonal resources
simultaneously compared to traditional orthogonal multiple
access (OMA) technologies. NOMA can handle more users
than the number of possible sub-carriers, resulting in numer-
ous potentials, including huge connectivity, reduced delay,
higher spectral performance, and relaxed channel feedback
[14]–[17]. Using the same frequency resources, multiple
users may offload their computational tasks to the MEC
server simultaneously. Therefore, integrating NOMA into
MEC systems can enhance the computation-offloading effi-
ciency and performance, i.e., reduce the delay and energy
consumed in computational offloading, increasing the num-
ber of offloading users [13]–[15], [17]. Several studies on
NOMA-MEC systems have centered on the issue of com-
putational offloading optimization. The majority of papers
attempted to minimize the latency and consumed energy [12],
[17]–[27]. On the other hand, most studies on NOMA-MEC
systems do not consider the benefits of edge caching.

Several studies focused on either computational offloading
with data-content caching in MEC systems or computa-
tional offloading in NOMA-MEC systems. Despite this,
most of those studies overlooked the benefits of incorpo-
rating NOMA-MEC into computing and caching systems
to increase the offloading efficiency. Different from exist-
ing works, we combined NOMA and MEC for computa-
tional offloading and data-content caching in this paper.
To decrease the latency of offloading and improve the per-
formance of the MEC system, we propose a joint com-
putational offloading policy, data-content caching strategy,

computational resource, and downlink and uplink resource
allocation in NOMA-MEC systems. An effective algorithm
was developed to minimize the total completion latency of
the users. The main contributions and features offered by our
work can be summarized as follow.
• First, this study considered a NOMA-MEC system and
edge caching network to achieve a minimum total com-
pletion latency for all users on this system. Mathemati-
cally, a joint problem of the offloading decision, caching
strategy, computational resource, and power allocation,
which applies to both the downlink and uplink NOMA
transmissions, was formulated. The algorithm met the
constraints within the scope of the energy consumption
efficiency, offloading decision, and computation and
storage capacity of the edge server.

• Second, the formulated problem is a mixed-integer non-
linear programming (MINLP) and a non-convex prob-
lem. Therefore, achieving the optimal solution in poly-
nomial time is a great challenge. To solve this chal-
lenging problem, the block successive upper-boundmin-
imization (BSUM) was used to develop an efficient
algorithm for a high-quality solution.

• Finally, based on the simulation results, the effectiveness
of the proposed algorithm was confirmed. The proposed
algorithms can reduce the total completion time com-
pared with other schemes. Furthermore, the proposed
algorithm can converge to the near-optimal solution at
a sub-linear convergence rate.

The remainder of this paper is structured as follows.
Section II summarizes the work involved, and Section III
presents the system model and problem formulation.
Section IV introduces the proposed algorithm to solve the
problem of optimization, and Section V discusses the out-
comes of the simulation. This paper is finally concluded in
Section VI.

II. RELATED WORKS
More recently, major research has been conducted to study
the advantages of caching and computing offloading in MEC
systems. Some studies examined the computational offload-
ing decision, caching strategy, and resource allocation in
MEC systems. Hao et al. [6] studied the joint design of
the offloading decision and task caching strategy to mini-
mize the total energy consumed by mobile users. This paper
introduces a new concept of task caching, in which the
computation-intensive tasks were cached on the edge net-
work. Task caching has been mentioned elsewhere [9], where
the authors considered jointly the task offload, task caching,
and security service to minimize the energy consumed and
security breach cost in MEC systems for IoT applications.
Bi et al. [10] investigated a single MEC server to assist
the user in processing a set of computational tasks. They
optimized task offloading, service caching, and resource allo-
cation to minimize the user’s latency and energy consump-
tion. Another study [3] designed an offloading policy by
caching the popular computational results in MEC networks

12944 VOLUME 9, 2021

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

to reduce the overall computing time of the users. Deep
reinforcement learning (DRL) was studied to minimize the
average latency of fog-enabled IoT services by optimizing
the offloading decision-making and content-caching strate-
gies [5]. Yang et al. [7] designed a collaborative offloading
decision and data caching policy to minimize the total delay
of mobile users in a hybrid mobile cloud/edge computing
system. This study assumed an equal allocation of resources,
such as computing resources and communication resources.
Wang et al. [8] integrated a computational offloading policy,
content caching strategy, computation resource allocation,
and radio spectrum allocation to maximize the revenue of
MEC systems. On the other hand, the proposals for optimiz-
ing the total latency or power consumption were inefficient.
The optimal offloading decision, caching policy, and alloca-
tion of bandwidth resources were also designed to minimize
the total latency of mobile users in the MEC system [4].
Nevertheless, they did not consider the requested content
download to users. A previous study [2] investigated the
combination of communication, computation, control, and
caching (4C) in big data MEC to minimize the total users’
latency and maximize the backhaul bandwidth. Wang et al.
[11] minimized the total cost in terms of the completion
latency and the charge based on optimizing computational
offloading decision and computation and downlink resource
allocation. In this article, the authors referred to the content
cache service on the BS to download to the users to perform
tasks, but they did not consider the content caching decisions
on the BS.

Numerous studies on NOMA-MEC systems integration
have centered on optimizing computational offloading and
resource allocation. A significant part of the current papers
has been proposed to minimize the completion latency and
consumed energy. Some researchers reduced the completion
latency ofMEC offloading in existing NOMA related studies.
Ding et al. [17] proposed a hybrid-NOMA scheme with
two mobile devices. The optimization problem was solved
using Dinkelbach’s method and Newton’s method. An effi-
cient workload, offloading, and downloading algorithm for
optimizing the duration was proposed [18]. Some studies
minimized the total power consumption of MEC offload-
ing. Wang et al. [19] solved the optimization problem of
local CPU-cycle frequency, transmit power, and MD rates
using the Lagrange dual method, branch-and-bound, greedy
method, and convex relaxation. On the other hand, the QoS
specifications of all users may not be adequate when the
number of users is increasing. A hybrid-NOMA strategy was
proposed [20] in which geometric programming was applied
to optimize the power and time allocation. Pan et al. [21]
optimized power allocation, time allocation, and task assign-
ment using the successive convex approximation algorithm.
Yang et al. [22] considered multiple users in different groups
and proposed an iterative algorithm with low complexity
to balance latency and power consumption. A coalition
game was developed to minimize the sum computation over-
head by optimizing the computational offloading decision

FIGURE 1. Computational offloading and data-content caching for
NOMA-MEC system model.

and sub-carrier assignment on multi-carrier NOMA-MEC
systems [23]. Diao et al. [24] examined the D2D-assisted
and NOMA-based MEC network to reduce the total
cost of users in terms of latency and energy consumed.
Nduwayezu et al. [25] proposed an algorithm using deep rein-
forcement learning to maximize the total computational rate
for multi-carrier NOMA-MEC systems by jointly optimizing
the computation offloading decision-making and sub-carrier
allocation. Fang et al. [26] minimized the overall task latency
of mobile users for NOMA-MEC systems. They optimized
the NOMA to support the decrease in latency in the MEC
system. Pham et al. [27] maximized task offloading gains
by jointly considering computational offloading, resource
allocation, sub-carrier assignment, and power control in
NOMA-MEC systems. Hao et al. [12] introduced a hybrid
NOMA-MEC system to enhance the computation service
for Sixth-Generation (6G) wireless networks. The multilevel
programming method was applied to minimize the energy
consumption by mutually optimizing the offloading strategy,
time slot scheduling, and power control.

This paper shows that important requirements were often
overlooked in previous studies and formulate a joint problem
of computation-intensive task offloading, caching strategy,
computational resource, and uplink and downlink resource
allocation in NOMA-MEC systems. In addition, the BSUM
algorithm was used to solve the proposed optimization
problem.

III. NETWORK MODEL AND PROBLEM FORMULATION
This section presents the system model and formulates the
process for optimizing offloading decision-making, caching
decision, allocation of communication resources, and allo-
cation of computing resource in NOMA-MEC system for
minimizing completion latency.

A. NETWORK SCENARIO
Fig. 1 presents the scenario considered in this work. This
NOMA-MEC network consists of a BS, a remote cloud,
and users. BS is co-located with a MEC server, which can
provide users with computational offloading. On the other
hand, the computational resources of MEC servers are lim-
ited. The MEC server also has finite-capability storage that
can be used to store a number of selected data-contents.
Consequently, the caching decision of the BS affects the user

VOLUME 9, 2021 12945

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

FIGURE 2. Illustration of a user execution.

performance significantly. The BS is connected to the remote
cloud using a wired network. The remote cloud has large
storage and computing capacities. Here, this study considered
that each user has a computation-intensive task, which is
inseparable. That is, the task can be performed using either
local computing or edge server processing. This study did
not consider performing the computational task on a remote
cloud because of the increased latency. Optimization of this
issue will be addressed in future work.

N = {1, 2, . . . ,N } is the set of users, with N being the
number of users. A computation-intensive task is represented
by the tuple In = {Un,Wn}, where Un is the input data size
of the computation-intensive task and Wn is the number of
CPU cycles needed to accomplish a computation-intensive
task. As mentioned above, user n requests data-content when
performing its computation-intensive task. The requested
data-content is stored in the remote cloud or cached at the BS
[4], [7]. Caching data-content at the network edge can avoid
frequent data-downloading over the backhaul networks and
reduce latency. On the other hand, only some data-content is
cached at the BS owing to the limited storage space of the BS.
The requested data-content for the computational task that is
not cached at the BS must be obtained from the remote cloud.
In particular, BS can distribute cached data to place when
computational data is required. In contrast, the uncached
requested data-content must be obtained to place from the
remote cloud via the backhaul link. Fig. 2 presents an illus-
tration of a user execution. Vn refers to the size of the data-
content. If user n performs locally, the requested data-content
Vn is downloaded to the user. If user n performs at the BS,
the input data size of the task Un is offloaded to the BS.

B. CACHING MODEL
In this model, cn ∈ {0, 1},∀n ∈ N is denoted as the
data-content caching decision, where cn = 1 and 0 if the
requested data-content by user n is cached at the BS and the
remote cloud, respectively. Unlike a large and diverse remote
cloud resource, limited storage and executing resource for
the BS allow only some data-contents to be cached. There-
fore, Ccache is maximum caching capability of the BS due to
limited caching space. Consequently, caching decisions are
constrained as follows:∑

n∈N
cnVn ≤ Ccache. (1)

The requested data-content by the user has different popu-
larity. Here, it was assumed that the data-content popularity is

designed as the Zipf distribution [4], [28]. Therefore, the pop-
ularity of the ith popular data-content demanded by user n can
be expressed as

pn (i) =
1/iκ∑Nv
i=1(1/i

κ)
, (2)

where Nv is the total types of data-content caching, and κ is
the parameter of the Zipf popularity distribution.

C. COMMUNICATION MODEL
This study considered single-carrier NOMA for joint com-
putation offloading and data caching at the network edge.
Uplink and downlink utilize the time division duplex (TDD).
In TDD mode, both the uplink and downlink transmissions
use the same frequency spectrum [21]. Moreover, there is
no interference between uplink and downlink transmission.
Similar to previous studies such as [29], we assumed perfect
channel state information (CSI) or the order of the instan-
taneous channel gain at the transmitter side, e.g., users at
the uplink stage and BS at the downlink stage. Moreover,
we also assume that the locations of users are fixed during
the offloading period, but the locations can change across
different periods.

Without loss of generality, users are ordered as h1 ≤
h2 . . . ≤ hn, where hn is channel gain from user n to
the BS. Power domain NOMA multiplexing was applied to
superimpose multiple signals. Successive interference can-
cellation (SIC) and power constraints for efficient SIC were
adapted to decode the superimposed signals at the receivers
[21], [23], [26]. According to [21], [23], [26], the decod-
ing order utilizes the increasing order of the channel gains
in the downlink NOMA. In contrast, the decoding order
in the uplink NOMA adopts the decreasing order of the
channel gains [21], [23]. With TDD, channels gain of the
uplink and downlink are the same. When user n offloads
the computation-intensive task to the BS for remote execu-
tion, the user’s uplink achievable data rate via the wireless
connection can be defined as

Ruln = B log2

1+
hnpuln

σ 2 +
∑

j∈N :hj<hn
hjpulj

 ,∀n ∈ N , (3)

where puln is the transmit power of user n for uplink transmis-
sion to the BS; B is the bandwidth, and σ 2 is the noise power
spectral.

The BS can deliver the required data-content to process a
task to the corresponding user. The downlink achievable data
rate between the user n and BS is calculated as

Rdln = B log2

1+
hnpdln

σ 2 +
∑

j∈N :hj>hn
hnpdlj

 ,∀n ∈ N , (4)

where pdln denotes the transmit power to be allocated by the
BS for downlink transmission to user n.

12946 VOLUME 9, 2021

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

For backhaul communication, rbh was denoted as the aver-
age data transmission rate of the backhaul link between the
remote cloud and the BS. If the requested data-content by
user n is cached in the BS, the systemwill be compensated for
by reducing the backhaul latency or alleviating the backhaul
bandwidth [4], [8]. According to (2), the reduced backhaul
bandwidth for caching the ith popular data-content demanded
by user n can be achieved as

rbhn = rbhpn (i) , n ∈ N . (5)

The transmission latency of the requested data-content trans-
mitting from the remote cloud to the BS (backhaul latency)
can be obtained as

T bhn =
Vn
rbhn
, n ∈ N . (6)

D. COMPUTATION MODEL
1) LOCAL EXECUTION
If user n executes its computational task locally, the total com-
pletion latency consists of a local processing time, downlink
transmission time and backhaul latency. Let f ln denotes the
local computing capability of user n. The local processing
time of task In of user n can be given as

T eln =
Wn

f ln
, n ∈ N . (7)

The downlink transmission time between user n and the BS
can be given as

T dln =
Vn
Rdln

, n ∈ N . (8)

From equations (6), (7), and (8), the total completion latency
experienced by the user can be written as

T ln = T dln + (1− cn)T bhn + T
el
n , n ∈ N . (9)

The corresponding energy consumption of user n for local
processing can be calculated as using equation (10):

E ln = ζWn(f ln)
2, n ∈ N , (10)

where ζ is the switching capacitance depending on the CPU’s
chip architecture, which is set to ζ = 5× 10−28.

2) EDGE OFFLOADING
Most computation tasks should be offloaded to the BS for
remote execution owing to the limited computing capability
of the user. When user n executes its computational task
in the BS, the total completion latency of the user consists
primarily of the uplink transmission time, processing time of
the MEC server, and backhaul delay. This study neglected the
downloading time and the energy consumed by computation
results from the BS to the user because its size is much
smaller than the size of the input computation data [6], [11].
In addition, our current work focuses on latency and energy
consumption from the user perspective, and the MEC server
is normally powered by electricity supplied from the grid.

Therefore, we ignore the energy computation at the MEC
server-side [6], [11].

Let fn denote the resource allocation of the MEC server to
the execution of computational task In. The edge processing
time for the computational task of user n can be obtained as
follows:

T ern =
Wn

fn
, n ∈ N . (11)

The uplink transmission time for transmitting input data Un
from user n to the BS is given as

T uln =
Un
Ruln

, n ∈ N . (12)

According to equations (6), (11), and (12), the total com-
pletion latency of user n when processing in the BS can be
expressed as

T rn = T uln + (1− cn)T bhn + T
er
n , n ∈ N . (13)

For task execution on the MEC server, the energy con-
sumption of user n is only calculated from by the trans-
mission energy consumed for offloading the task. Therefore,
the energy consumption of user n can be computed as

Ern = puln T
ul
n = puln

Un
Ruln

, n ∈ N . (14)

E. PROBLEM FORMULATION
an ∈ {0, 1},∀n ∈ N , was defined as the offloading decision
of user n, herein an = 1 if user n offloads its computational
task to the BS and an = 0 otherwise. From Eqs. (9) and
(13), the total completion latency experienced by user n can
be represented as

Tn = anT rn + (1− an)T ln, n ∈ N . (15)

This study aimed to achieve the minimum total completion
latency of all users in NOMA-MEC systems by optimizing
the binary offloading decision, caching decision, computa-
tional resource, and power allocation jointly. This problem
can be formulated mathematically as follows:

P : min
{a,c,f ,pul ,pdl }

N∑
n=1

Tn (16a)

subject to
∑
n∈N

fn ≤ f0, (16b)

fn ≥ 0, ∀n ∈ N , (16c)

0 ≤ puln ≤ p
max
n , ∀n ∈ N , (16d)∑

n∈N
pdln ≤ p0, (16e)

0 ≤ pdln ≤ p0, ∀n ∈ N , (16f)∑
n∈N

cnVn ≤ Ccache, (16g)

(1− an)E ln + anE
r
n ≤ E

max
n , ∀n ∈ N ,

(16h)

an, cn ∈ {0, 1}, ∀n ∈ N . (16i)

VOLUME 9, 2021 12947

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

In this formulation, a = {an} is the offloading decision
profile; c = {cn} indicates the set of the data-content caching
decision; f = {fn} refers to the computational resource
allocation policy; pul = {puln } defines the set of uplink
transmit power of users, and pdl = {pdln } denotes the set of
the downlink transmit power allocated by the BS. The set of
users whose tasks are offloaded to the MEC server is denoted
as Noff = {n ∈ N |an = 1}, and Nloc = {n ∈ N |an = 0}
denotes as the set of users performing their tasks locally,
respectively. If n /∈ Noff, fn = 0, i.e., user n executes the
task locally. p0 and pmax

n are the maximum downlink transmit
power provided by the BS and maximum uplink transmit
power of user n, respectively. Emax

n is the maximum allowable
energy consumption of user n. f0 is denoted as the maximum
computational resource of the MEC server. Constraints (16b)
and (16c) ensure that the computing resource for the compu-
tational offloading tasks is positive, and the total computing
resource assigned to all offloading users does not exceed
maximum computing capacity of the MEC server. Constraint
(16d) means that the power assigned to the task of each
user cannot exceed its maximum value. Constraints (16e) and
(16f) suggest that the total downlink power resource for the
users is limited by the overall transmission power budget
of the BS. Constraint (16g) states that the total data cache
on the BS cannot exceed its maximum caching capability.
Constraint (16h) guarantees the the energy consumption of
each user is limited. Constraint (16i) indicates the binary
offloading decision and data-content caching strategy.

IV. PROPOSED ALGORITHM
A. PROBLEM DECOMPOSITION
Problem state in (16) is a non-convex problem caused by
inter-cell interference and the variables (i.e., a, c, f , pul , and
pdl) are linked together in the objective function. In addition,
some constraints referred to (16b)− (16i) are non-linear and
combine the continuous variables (i.e., f , pul, and pdl) and
binary binary variables (i.e., a, and c). The aforementioned
optimization problem is a non-convex, mixed-integer non-
linear programming (MINLP) problem, which is typically an
NP-hard problem. Problem (16) is quite difficult to solve opti-
mally because of the complex combination of optimization
variables and composite compositing features.

To tackle this problem, the original problem was decom-
posed into two sub-problems and solved alternately. Firstly,
computing resource allocation f was solved using the
Karush–Kuhn–Tucker (KKT) optimality conditions. The
joint offloading decision, caching strategy, power uplink, and
downlink resource allocation (i.e., a, c, pul, and pdl) problem
was addressed using BSUMmethod [30]. Owing to its advan-
tages, BSUMhas been used to solve many complex optimiza-
tion problems [2], [28]. The results showed that BSUM is an
effective algorithm for achieving a high-quality solution.

B. COMPUTING RESOURCE ALLOCATION
Given the computational offloading decision, caching
decision, power uplink, and downlink resource allocation

(a, c, pul, and pdl), and after ignoring all parts of the objective
function and the condition unrelated f , the following opti-
mization problem (16) was obtained as follows:

P1 : min
f

∑
n∈Noff

Wn

fn
(17a)

s.t.
∑
n∈Noff

fn ≤ f0, (17b)

fn > 0, ∀n ∈ Noff. (17c)

h(f) is denoted as the objective function (17a). The Hessian
matrix of h(f) with respect to f consists of elements either
∂2h
∂f 2n
= (2Wn

f 3n
) > 0 or ∂2h

∂fn∂fm
= 0 (n 6= m). Thus, the Hessian

matrix is a semi-definite positive matrix. Moreover, the con-
straints (17b) is linear, and f is continuous variable. Hence,
the problem in (17) is convex problem.

In order to obtain solution for (17), we first derive the
Lagrangian function as follows:

L(f ,λ) =
∑
n∈Noff

Wn

fn
+ λ

 ∑
n∈Noff

fn − f0

 , (18)

We then take the partial derivative of (18) with respected to f
as follows:

∂L(f ,λ)
∂fn

= −
Wn

f 2n
+ λ. (19)

Based on the KKT conditions [31], with λ > 0, we can derive
the close-form solution for (17) as follows:

f ∗n =
f0
√
Wn∑

n∈Noff

√
Wn
. (20)

C. JOINT OFFLOADING DECISION, CACHING STRATEGY,
AND POWER RESOURCE ALLOCATION
Given f , there is the following problem of a, c, pul, and pdl .
When an = 0, fn = 0 and the objective function is not con-
tinuous. To solve this issue, when an = 0, fn = ε, where ε is
small enough and can approach 0 arbitrarily. Here, the BSUM
approach was used to tackle the proposed issue. BSUM is
a distributed algorithm that enables a parallel computation.
The BSUM method allows a non-convex problem to decom-
posed into small sub-problems that can be addressed inde-
pendently using convex optimization. The BSUM method
guarantees convergence to the fixed points of the non-convex
problem [30].

1) OVERVIEW OF BSUM APPROACH
The BSUM algorithm has advantages over centralized algo-
rithms in both the solution speed and problem decomposition
capability. An overview of the BSUM algorithm is first pre-
sented for more clarification. The following block-structured
optimization problem [30] was examined:

min
y

h(y1, y2, . . . , ym)

s.t. ym ∈Wm,

∀m ∈M, m = 1, 2, . . . ,M , (21)

12948 VOLUME 9, 2021

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

where h(.) is the continuous function; the feasible solution
set W :=W1 ×W2 × · · · ×Wm are a close convex set, and
ym is a block variable. A common method to solve problem
(21) is to apply the block coordinate descent (BCD) method;
a single block of variables is optimized by solving the optimal
problem at each iteration t:

y(t)m = argmin
ym∈Wm

h(ym, y
(t−1)
−m), (22)

where y(t−1)−m := (y(t−1)1 , . . . , y(t−1)m−1 , y
(t−1)
m+1 , . . . , y

(t−1)
m), y(t)j =

y(t−1)j for m 6= j.
Both problems (21) and (22) are difficult to solve, in partic-

ular (21)) is a non-convex function, and the convergence can-
not always be guaranteed using the BCDmethod. The BSUM
algorithm was introduced to overcome these issues [30].
In BSUM algorithm, fm(ym, z) is an upper-bound approxi-
mate function of the objective function h(ym, z−m) for the
block m at a given feasible point z ∈ W . To guarantee the
convergence, the upper-bound approximate function fm(ym, z)
satisfies the following conditions:
Assumption 1: 1) fm(ym, y) = h(y),

2) fm(ym, z) ≥ h(ym, z−m),
3) f ′m(ym, z; pm)|ym=zm = h′(z; p), zm + pm ∈Wm,

4) fm(ym, z) is continuous in (ym, z), ∀m.
The first and second assumptions (i.g., 1(1) and 1(2)) ensure
that the upper-bound approximate function is an upper-bound
function of the objective function h(x). Assumption 1(3)
suggests that the first-order derivative in the direction pm
of the approximate function is the same as the objective
function. Finally, Assumption 1 (4) then guarantees the
approximate function should be continuous for all block vari-
ables. In BSUM, the most widely used technique for select-
ing the upper-bound approximate function is the quadratic
upper bound, linear upper bound, and Jensen’s upper bound
[30]. For simplicity of introduction, the accompanying
upper-bound approximate function, which is described by
adding to the objective function a quadratic penalty, was used:

fm(ym, z) = h(ym, z−m)+
µ

2
‖(ym − zm)‖

2, (23)

where µ > 0 is a constant parameter. Let Mt denote a set
of indexes at iteration t . The BSUM algorithm tackles the
upper-bound approximate function in (23) with the following
update at iteration t:y

(t)
m = argmin

ym∈Wm

fm(ym, y
(t−1)), ∀m ∈Mt ,

y(t)j = y(t−1)j , ∀j /∈Mt .

(24)

The block indexes selected at each iteration can be applied
in various ways, such as random selection, cyclic rule, and
Gauss-Southwell [30]. Compared to the BCD algorithm,
the uniqueness of the solution in each iteration is not required
by BSUM. Algorithm 1 presents the standard BSUM algo-
rithm. Specifically, starting from a feasible point y(0), BSUM
algorithm generates a sequence of enhanced solutions and

Algorithm 1 A Pseudocode of the BSUM Algorithm
1: Initialization: Set the iteration index t = 0, stopping

criteria ε > 0, and find initial feasible solutions y(0).
2: repeat
3: t = t + 1;
4: Select index setMt .
5: Let y(t)m = argmin

ym∈Wm

fm(ym, y
(t−1)), ∀m ∈Mt

6: Set y(t)j = y(t−1)j ,∀j /∈Mt .

7: until ‖ f
(t)
m −f

(t−1)
m

f (t−1)m
‖ ≤ ε.

8: Then, consider y∗ = y(t) as a solution.

finally converges to a stationary point when the conver-
gence criterion ε is met. Based on [30], [32], BSUM algo-
rithm converges to the ε-optimal solution and takes at most
O (log(1/ε)) steps, i.e., a sub-linear convergence.

2) PROPOSED SOLUTION
Given f , to solve problem (16) using BSUM, the binary vari-
ables consisting of offloading decision and caching strategy
are first relaxed into continuous ones, i.e., 0 ≤ an ≤ 1 and
0 ≤ cn ≤ 1. Then, we can apply the BSUM algorithm to
solve (16), which is guaranteed to converge to the stationary
point by BSUM [30]. The optimizing problem (16) can be
reformulated as follows:

P2 : min
{a,c,pul ,pdl }

N∑
n=1

Tn (25a)

subject to (16d)− (16h), (25b)

an, cn ∈ [0, 1], ∀n ∈ N , (25c)

To simplify the notation, the optimization problem is written
concisely as

D(a, c, pul, pdl) ,
N∑
n=1

Tn. (26)

The constraints of both (25) and (26) are the same. Moreover,
A , {a : (1 − an)E ln + anE

r
n ≤ Emax

n , an ∈ [0, 1]}, C , {c :
cn ∈ [0, 1],

∑
n∈N

cnVn ≤ Ccache}, P , {pul : 0 ≤ puln ≤

pmax
n }, Q , {pdl : 0 ≤ pdln ,

∑
n∈N

pdln ≤ p0}, are defined as the

feasible sets of a, c, pul, and pdl , respectively.
For each iteration t , ∀m ∈ Mt , where M is the set of

indices, the upper-bound proximate functionDm of the objec-
tive function in (26) is defined. The quadratic penalty term
was added to the objective function of the convex guarantee.
The objective function can be approximated as

Dm(am; a(t), c(t), pul,(t), pdl,(t)) = D(am; ã, c̃, p̃ul, p̃dl)

+
µm

2
‖(am−ã)‖2, (27)

where µm > 0 is the penalty coefficient. The approxi-
mate function can be deployed to other vectors of variables,
cm, pulm , and p

dl
m , respectively. In addition, for each iteration

t , the approximate function has unique minimizer vectors

VOLUME 9, 2021 12949

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

Algorithm 2 The Proposed Algorithm for the Joint Prob-
lem of the Offloading Decision, Caching Strategy, Compu-
tational Resource, and Power Allocation
1: Initialization: Set the iteration index t = 0, stop-

ping criteria ε > 0, and set initial feasible solutions
(a(0), c(0), f (0), pul,(0), pdl,(0)).

2: repeat
3: t = t + 1.
4: According to (20), calculate f (t).
5: Select index setMt .
6: Let a(t)m = argmin

am∈M
Dm(am; a(t−1), c(t−1), pul,(t−1),

pdl,(t−1)).
7: Set a(t)j = a(t)j ,∀j /∈Mt .

8: Find c(t)m , pul,(t)m , and pdl,(t)m by solving the
sub-problem in (29), (30), and (31).

9: until ‖D
(t)
m −D(t−1)

m

D(t−1)
m

‖ ≤ ε.

10: Then, set a∗ = a(t), c∗ = c(t), f ∗ = f (t), pul,∗ =
pul,(t), pdl,∗ = pdl,(t) as the final solution.

ã, c̃, p̃ul, and p̃dl with respect to a, c, pul, and pdl , which is
regarded to be the solution of the previous step of (t − 1).
The solution for each iteration (t + 1) can then be modified
by solving the following sub-problems:

a(t+1)m = min
am∈A

Dm(am; a(t), c(t), pul,(t), pdl,(t)), (28)

c(t+1)m = min
cm∈C

Dm(cm; c(t), a(t+1), pul,(t), pdl,(t)), (29)

pul,(t+1)m = min
pulm∈P

Dm(pulm ; p
ul,(t), a(t+1), c(c+1), pdl,(t)), (30)

pdl,(t+1)m = min
pdlm∈Q

Dm(pdlm ; p
dl,(t), a(t+1), c(t+1), pul,(t+1)).

(31)

The sub-problems in (28)-(31) can be solved by using our
proposed BSUM method. Combined with (20), the proposed
algorithm can be obtained. Based on the above analysis,
Algorithm 2 provides the details of the proposed algorithm.
In the problem P1, we have shown the convexity based on
the Hessian matrix. We then obtain the closed-form solution
via KKT optimality conditions; thus, the sub-problem P1
is always guaranteed to converge at the optimal solution.
The second sub-problem P2 is obtained solution by BSUM
algorithm [30], [32]. Based on [30], [32], we can claim
that our proposed algorithm can converge to an ε-optimal
solution. We now analyze the computation complexity of
the proposed algorithm. Since P1 is a convex problem and
existed a closed-form solution, the complexity of P1 isO(1).
For the problem P2, BSUM has the computation complexity
O (log(1/ε)) [30], [32]. Thus, the total complexity of the
proposed algorithm is O (log(1/ε)).

V. NUMERICAL SIMULATION
This section provides the simulation results to evaluate the
performance of the proposed algorithm and compare it with

some schemes. The simulation settings are as follows unless
specified otherwise. A system setting with a BS located in
the center of a 200 × 200 m2 area was considered. All
users are then deployed at random within the BS cover-
age. The path-loss from user n to the BS can be calculated
as L(dn) = 128.1 + 37.6log10(dn), where dn denotes is
the distance between the nth user and the BS. The spec-
trum bandwidth was B = 1 MHz. The noise density was
set to σ 2

= −174 dBm/Hz. Here, the maximum uplink
transmit power of each user for performing the offloaded
task to the MEC server was pmax

n = 23 dBm, ∀n ∈ N
and the maximum downlink transmit power of the BS for
delivering the data-contents to the users was set to p0 =
48 dBm. For a computation-intensive task, the input data size
of the computation-intensive tasks are distributed randomly
with Un ∈ [1.2, 2] Mb and the corresponding number of
CPU of computation-intensive task are distributed randomly
with Wn ∈ [700, 1200] megacycles. The local computing
capacity of each user is f ln = 0.7 GHz, ∀n ∈ N , and
the maximum computing resource of the MEC server is
f max

= 30 GHz. The size of each requested data-content to
a computation-intensive task execution is Vn ∈ [0.5, 1] Mb,
in which total type of requested data-contents from remote
cloud isNv = 500. The average transmission rate of backhaul
between the MEC server and the remote cloud is rbh =
500 Mbps. The parameter of the Zipf popularity distribution
is κ = 0.56 [4], [8]. The maximum cache storage capability
of the BS is 50% of the total data-content size. This ensures
that some requested data-contents are not cached at the MEC
server. All the simulation plots were achieved from random
channel realizations on average.

Three benchmark schemes were introduced to illustrate the
advantages of the proposed algorithm in reducing the total
computing time:
• Local-only: In this scheme, all users execute their
computation-intensive tasks locally (i.e., an = 0,∀n ∈
N). The computing resource, communication resources
(i.e., power of uplink and downlink), and caching deci-
sion are obtained using the proposed algorithm.

• All-offloading: All users offload their computation-
intensive tasks to the MEC server at the BS (i.e., an =
1,∀n ∈ N). Similar to the case of local computing only,
other variables are optimized.

• Equal resource: The communication resources are
equally allocated to all users. In this case, computing
resource, offloading decision, and caching strategy are
solved using the proposed algorithm.

Fig. 3 compares the total completion latency versus the
number of users under various schemes. With increasing
number of users, the total completion latency of all schemes
also increases. The figure confirmed that the proposed algo-
rithm generates the lowest completion latency compared to
the other schemes. The total completion latency under the
proposed algorithm was 17.68%, 26.02%, and 70.98% lower
than that of all-offloading, local-only, and equal resources,
respectively. Fig. 4 presents the total energy consumed of the

12950 VOLUME 9, 2021

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

FIGURE 3. Comparison of the total completion latency as a function of
the number of users.

FIGURE 4. Comparison of the total energy consumed versus the number
of users.

users against the number of users. The energy computation of
all-offloading scheme is higher than in the other schemes. The
offloading is beneficial in terms of the completion latency but
requires a larger amount of energy consumed by the users.
This figure shows that the proposed algorithm is beneficial in
both the completion latency and energy consumption.

For more performance comparisons of total completion
latency, the number of users was set to 10. The relation-
ship between the total completion latency and the compu-
tational capability of the MEC server was then analyzed.
Fig. 5 shows that the completion latency in the local-only
case remains constant because all uses execute their com-
putational tasks locally, irrespective of fn,∀n ∈ N . The
total completion latency of the three schemes, such as the
proposed, all-offloading, and equal resource, decreases with
increasing computational capability of the MEC server, rang-
ing from 10 to 60 GHz. The all-offloading scheme perfor-
mance curve decreased the most with increasing computing
resources. This is reasonable because all tasks offloaded to

FIGURE 5. Comparison of the total completion latency different the
computational capability of the MEC server.

FIGURE 6. Comparison of the total completion latency different the
offloaded data size of the computation-intensive task.

the MEC server benefit, while the remaining two schemes
may have some tasks offloaded to the server. On the other
hand, the proposed algorithm still has better performance
in terms of total completion latency. Always offloading
over unfavorable wireless channels causes higher overhead
(energy and latency). As considered in this problem, joint
optimizing computational offloading and caching decisions
with resource allocation can exploit the benefits of both local
and remote computing to increase the system performance.

The offloading performance regarding the input size of
the data of the computational tasks for offloading Un was
analyzed, as shown in Fig. 6. When the size of the input data
Un increases, the total completion latency of the local-only
scheme is unaffected because there is no offloading. The
completion latency of the all-offloading scheme increases
significantly and becomes the worst compared to the other
schemes when the input data size is large enough. Therefore,
to achieve good performance, priority should be given to

VOLUME 9, 2021 12951

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

FIGURE 7. Effect of the caching storage capacity on the completion
latency of tasks.

FIGURE 8. Comparison of our proposed algorithm versus No-caching.

offloading tasks with smaller data sizes rather than offload-
ing tasks with larger data sizes. This is because by increas-
ing the input data size, the completion latency for the
offload computation-intensive tasks becomes higher. There-
fore, the proposed scheme achieves better performance than
the other schemes.

The next experiment, evaluated the effects of the MEC
server’s caching storage capacity on the completion latency.
Fig. 7 show the total completion latency of users when adjust-
ing the BS caching capacity (i.e., Ccache ∈ [20%; 50%] of
the total data-content size). The figure shows that the total
completion latency of all schemes decreases with increasing
cache storage capacity. The reason is that more data-content
can be cached in the BS when there is a greater cache storage
capacity. As a result, increasing the cache storage capacity
can lower the latency required to download data-content from
the remote cloud. Overall, the proposed algorithm has the
lowest latency and performs better than the other schemes.

Fig. 8 compares data-content caching efficiency on the
completion latency under various numbers of users. In the

FIGURE 9. Cache hit under different Zipf parameters.

FIGURE 10. Convergence of the proposed algorithm.

no-caching scheme, there is no requested data-content stored
at the BS (i.e., cn = 0). That is, all requested data-contents
of computation-intensive tasks must be downloaded from the
remote cloud. As a result, the backhaul latency is generated
for each computational task when the requested data-content
by the user is downloaded from the remote cloud. Further-
more, Fig. 8 shows the total completion latency when the
number of users is increased. On the other hand, the larger
the number of users, the larger the latency gap between
the proposed algorithm and no-caching scheme. This can
be explained by the large amount of data-content cached.
There are many data-contents that the user requests are taken
from the edge network. The delay is reduced by reducing the
data-content that has to download data from the remote cloud.
These analyses show that the completion latency of the users
can be decreased by implementing the caching storage and
storage of popularly requested BS data-content.

Fig. 9 presents the average cache hits on the MEC
server. The algorithm was run 1000 times to calculate the
cache hit. If the requested data-content is not cached on
the MEC server (cache missed), it will be retrieved from

12952 VOLUME 9, 2021

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

the remote cloud. Fig. 9 shows that the average cache hits
increase with increasing Zipf parameter (e.g., Zipf parameter
= 2.0, cache hit ratio = 91.80%). In other words, as the Zipf
parameter increases, more content becomes more popular,
resulting in a corresponding increase in cache hits and a
decrease in backhaul bandwidth.

Finally, the convergence rate of the proposed algorithmwas
evaluated, as shown in Fig. 10. The figure shows that the
proposed algorithm only requires fewer iterations to converge
to the optimal solution, indicating that the proposed approach
is efficient.

VI. CONCLUSION
This study examined the optimization of computational
offloading, data-content caching, and resource management
in NOMA-MEC systems considering both the uplink and
downlink transmissions. An efficient algorithm was devel-
oped to minimize the total latency of users. The simulation
results confirmed the convergence of the proposed scheme
within only a few iterations and demonstrated the supe-
riority of the proposed scheme in terms of delay reduc-
tion and energy saving. Future studies will consider joint
computational offloading, caching strategy, and communi-
cation and computing resource allocation in NOMA-MEC
heterogeneous networks.

REFERENCES
[1] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang,

and Z. Ding, ‘‘A survey of multi-access edge computing in 5G and beyond:
Fundamentals, technology integration, and state-of-the-art,’’ IEEE Access,
vol. 8, pp. 116974–117017, 2020.

[2] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, ‘‘Joint communication, computation, caching, and control in
big data multi-access edge computing,’’ IEEE Trans. Mobile Comput.,
vol. 19, no. 6, pp. 1359–1374, Jun. 2020.

[3] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, ‘‘Computation offloading
with data caching enhancement for mobile edge computing,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 11, pp. 11098–11112, Nov. 2018.

[4] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu,
and V. C. M. Leung, ‘‘Joint resource allocation for latency-sensitive ser-
vices over mobile edge computing networks with caching,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019.

[5] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor–
critic deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 2,
pp. 2061–2073, Apr. 2019.

[6] Y. Hao,M. Chen, L. Hu,M. S. Hossain, andA. Ghoneim, ‘‘Energy efficient
task caching and offloading for mobile edge computing,’’ IEEE Access,
vol. 6, pp. 11365–11373, 2018.

[7] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, ‘‘Joint multi-
user computation offloading and data caching for hybridmobile cloud/edge
computing,’’ IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11018–11030,
Nov. 2019.

[8] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, ‘‘Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[9] M. I. A. Zahed, I. Ahmad, D. Habibi, and Q. V. Phung, ‘‘Green and secure
computation offloading for cache-enabled IoT networks,’’ IEEE Access,
vol. 8, pp. 63840–63855, 2020.

[10] S. Bi, L. Huang, and Y.-J.-A. Zhang, ‘‘Joint optimization of service caching
placement and computation offloading in mobile edge computing sys-
tems,’’ IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4947–4963,
Jul. 2020.

[11] K. Wang, Z. Hu, Q. Ai, Y. Zhong, J. Yu, P. Zhou, L. Chen, and H. Shin,
‘‘Joint offloading and charge cost minimization in mobile edge comput-
ing,’’ IEEE Open J. Commun. Soc., vol. 1, pp. 205–216, 2020.

[12] H. Li, F. Fang, and Z. Ding, ‘‘Joint resource allocation for hybrid NOMA-
assisted MEC in 6G networks,’’ Digit. Commun. Netw., vol. 6, no. 3,
pp. 241–252, Aug. 2020.

[13] R. Ruby, S. Zhong, D. W. K. Ng, K. Wu, and V. C. M. Leung, ‘‘Enhanced
energy-efficient downlink resource allocation in green non-orthogonal
multiple access systems,’’ Comput. Commun., vol. 139, pp. 78–90,
May 2019.

[14] X. Liang, Y. Wu, D. W. K. Ng, S. Jin, Y. Yao, and T. Hong, ‘‘Outage
probability of cooperative NOMA networks under imperfect CSI with user
selection,’’ IEEE Access, vol. 8, pp. 117921–117931, 2020.

[15] Z.Wei, L. Yang, D.W. K. Ng, J. Yuan, and L. Hanzo, ‘‘On the performance
gain of NOMA over OMA in uplink communication systems,’’ IEEE
Trans. Commun., vol. 68, no. 1, pp. 536–568, Jan. 2020.

[16] Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, ‘‘Optimal joint power and
subcarrier allocation for full-duplex multicarrier non-orthogonal multiple
access systems,’’ IEEE Trans. Commun., vol. 65, no. 3, pp. 1077–1091,
Mar. 2017.

[17] Z. Ding, D. W. K. Ng, R. Schober, and H. V. Poor, ‘‘Delay minimization
for NOMA-MEC offloading,’’ IEEE Signal Process. Lett., vol. 25, no. 12,
pp. 1875–1879, Dec. 2018.

[18] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, ‘‘Delay-minimization
nonorthogonal multiple access enabled multi-user mobile edge compu-
tation offloading,’’ IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 392–407, Jun. 2019.

[19] F. Wang, J. Xu, and Z. Ding, ‘‘Multi-antenna NOMA for computation
offloading in multiuser mobile edge computing systems,’’ IEEE Trans.
Commun., vol. 67, no. 3, pp. 2450–2463, Mar. 2019.

[20] Z. Ding, J. Xu, O. A. Dobre, and H. V. Poor, ‘‘Joint power and time allo-
cation for NOMA–MEC offloading,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 6, pp. 6207–6211, Jun. 2019.

[21] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei, ‘‘Energy-
efficient NOMA-based mobile edge computing offloading,’’ IEEE Com-
mun. Lett., vol. 23, no. 2, pp. 310–313, Feb. 2019.

[22] Z. Yang, C. Pan, J. Hou, and M. Shikh-Bahaei, ‘‘Efficient resource allo-
cation for mobile-edge computing networks with NOMA: Completion
time and energy minimization,’’ IEEE Trans. Commun., vol. 67, no. 11,
pp. 7771–7784, Nov. 2019.

[23] Q.-V. Pham, H. T. Nguyen, Z. Han, and W.-J. Hwang, ‘‘Coalitional games
for computation offloading in NOMA-enabled multi-access edge comput-
ing,’’ IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1982–1993, Feb. 2020.

[24] X. Diao, J. Zheng, Y. Wu, and Y. Cai, ‘‘Joint computing resource, power,
and channel allocations for D2D-assisted and NOMA-based mobile edge
computing,’’ IEEE Access, vol. 7, pp. 9243–9257, 2019.

[25] M. Nduwayezu, Q.-V. Pham, and W.-J. Hwang, ‘‘Online computation
offloading in NOMA-based multi-access edge computing: A deep rein-
forcement learning approach,’’ IEEE Access, vol. 8, pp. 99098–99109,
2020.

[26] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K. Karagiannidis,
‘‘Optimal resource allocation for delay minimization in NOMA-MEC net-
works,’’ IEEE Trans. Commun., vol. 68, no. 12, pp. 7867–7881, Dec. 2020.

[27] H.-G.-T. Pham, Q.-V. Pham, A. T. Pham, and C. T. Nguyen, ‘‘Joint task
offloading and resource management in NOMA-based MEC systems: A
swarm intelligence approach,’’ IEEE Access, vol. 8, pp. 190463–190474,
2020.

[28] Y. K. Tun, A. Ndikumana, S. R. Pandey, Z. Han, and C. S. Hong,
‘‘Joint radio resource allocation and content caching in heterogeneous
virtualized wireless networks,’’ IEEE Access, vol. 8, pp. 36764–36775,
2020.

[29] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, ‘‘On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,’’ IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505,
Dec. 2014.

[30] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, ‘‘A unified algo-
rithmic framework for block-structured optimization involving big data:
With applications in machine learning and signal processing,’’ IEEE Signal
Process. Mag., vol. 33, no. 1, pp. 57–77, Jan. 2016.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[32] M. Razaviyayn, M. Hong, and Z.-Q. Luo, ‘‘A unified convergence analysis
of block successive minimization methods for nonsmooth optimization,’’
SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, Jan. 2013.

VOLUME 9, 2021 12953

L. N. T. Huynh et al.: Joint Computational Offloading and Data-Content Caching in NOMA-MEC Networks

LUAN N. T. HUYNH received the B.Sc. degree
in information technology from the Ho Chi Minh
City University of Transport, Vietnam, in 2009,
and the M.Sc. degree in data communication and
networking from the Posts and Telecommunica-
tions Institute of Technology, Vietnam, in 2012.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with Kyung Hee
University, South Korea. He is also a Lecturer with
the School of Engineering and Technology, Thu

Dau Mot University, Vietnam. His research interests include applying ana-
lytic techniques of optimization andmachine learning to optimize edge/cloud
computing and the Internet of Things.

QUOC-VIET PHAM (Member, IEEE) received
the B.S. degree in electronics and telecommuni-
cations engineering from the Hanoi University of
Science and Technology, Vietnam, in 2013, and the
Ph.D. degree in telecommunications engineering
from Inje University, South Korea, in 2017.

From September 2017 to December 2019,
he was with Kyung Hee University, Changwon
National University, and Inje University, on vari-
ous academic positions. He is currently a Research

Professor with the Research Institute of Computer, Information and Com-
munication, Pusan National University, South Korea. He has been granted
the Korea NRF Funding for outstanding young researchers for the term
2019–2023. His research interests include convex optimization, game theory,
andmachine learning to analyze and optimize edge/cloud computing systems
and beyond 5G networks. He received the Best Ph.D. Dissertation Award in
Engineering (rank#1) from InjeUniversity, in 2017. He is anAssociate Editor
of Journal of Network and Computer Applications (Elsevier).

TRI D. T. NGUYEN received the B.S. degree in
computer science and engineering from the Ho
Chi Minh City University of Technology, Ho Chi
Minh City, Vietnam, in 2012. He is currently pur-
suing the Ph.D. degree with the Department of
Computer Science and Engineering, Kyung Hee
University. His research interests include mobile
edge computing, vehicular edge computing, cloud
computing, the Internet of Things, and machine
learning.

MD. DELOWAR HOSSAIN received the B.Sc.
and M.Sc. degrees from the Department of Infor-
mation and Communication Engineering (ICE),
Islamic University, Bangladesh, in 2004 and 2005,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, Kyung Hee University, South
Korea. He was a Visiting Scholar with Infosys,
Bengaluru, India. He is also serving as an Asso-
ciate Professor with the Department of Computer

Science and Engineering, Hajee Mohammed Danesh Science and Technol-
ogyUniversity, Dinajpur, Bangladesh, where hewas the Chairman from 2011
to 2013. His current research interests include cloud/edge/fog computing, big
data, machine learning, and the Internet of Things. He was a recipient of Best
Paper Award in KSC 2018 and KSC 2019, South Korea.

YOUNG-ROK SHIN received the B.S. and mas-
ter’s degrees in computer engineering and the
Ph.D. degree in computer science and engineer-
ing from Kyung Hee University, South Korea,
in 2009, 2011, and 2017, respectively. He was a
Research Professor with the Department of Com-
puter Science and Engineering, Kyung Hee Uni-
versity, from November 2018 to October 2020.
He is currently working as a Research Direc-
tor with Happycom Company Ltd. His research

interests include cloud/edge computing and service-level agreements.

EUI-NAM HUH (Member, IEEE) received the
B.S. degree from Busan National University,
South Korea, the master’s degree in computer
science from The University of Texas, USA,
in 1995, and the Ph.D. degree from Ohio Univer-
sity, USA, in 2002. He is currently a Professor
with the Department of Computer Science and
Engineering, Kyung Hee University, South Korea.
His research interests include cloud computing,
the Internet of Things, future Internet, distributed

real-time systems, mobile computing, big data, and security. He is a member
of the Review Board of the National Research Foundation of Korea. He has
also served many community services for ICCSA, WPDRTS/IPDPS, APAN
Sensor Network Group, ICUIMC, ICONI, APIC-IST, ICUFN, and SoICT as
various types of chairs. He is also the Vice-Chairman of the Cloud/Bigdata
Special Technical Group of TTA and an Editor of ITU-T SG13 Q17.

12954 VOLUME 9, 2021

