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ABSTRACT Since Smart-Islands (SIs) with advanced cyber-infrastructure are incredibly vulnerable
to cyber-attacks, increasing attention needs to be applied to their cyber-security. False data injection
attacks (FDIAs) by manipulating measurements may cause wrong state estimation (SE) solutions or interfere
with the central control system performance. There is a possibility that conventional attack detectionmethods
do not detect many cyber-attacks; hence, system operation can interfere. Research works are more focused
on detecting cyber-attacks that target DC-SE; however, due to more widely uses of AC SIs, investigation on
cyber-attack detection in AC systems is more crucial. In these regards, a new mechanism to detect injection
of any false data in AC-SE based on signal processing technique is proposed in this paper. Malicious data
injection in the state vectors may cause deviation of their temporal and spatial data correlations from their
ordinary operation. The suggested detection method is based on analyzing temporally consecutive system
states via wavelet singular entropy (WSE). In this method, to adjust singular value matrices and wavelet
transforms’ detailed coefficients, switching surface based on sliding mode controller are decomposed; then,
by applying the stochastic process, expected entropy values are calculated. Indices are characterized based on
theWSE in switching level of current and voltage for cyber-attack detection. The proposed detection method
is applied to different case studies to detect cyber-attacks with various types of false data injection, such as
amplitude, and vector deviation signals. The simulation results confirm the high-performance capability of
the proposed FDIA detection method. This detection method’s significant characteristic is its ability in fast
detection (10 ms from the attack initiation); besides, this technique can achieve an accuracy rate of over
96.5%.

INDEX TERMS Cyber-attack detection, wavelet transform, wavelet singular entropy, smart-island, false
data injection attack, AC state.

NOMENCLATURES
J Jacobian matrix
x̂ Estimated state vector
z Measurement vector
Tr Threshold
za Injected manipulated data
x̂a Defective estimated state
ε Measurement noise
Ta Time period
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Js Sub matrix of the Jacobian matrix
Jji,: ji-th row of the Jacobian matrix
τ Non-negative constant
xi State of system
Wi Constant bias in the manipulated states
β i Constant coefficient
ϑ (t) Scaling function
αk Nonzero singular values
Q Diagonal matrix
Pk Probability
h(0) Utility’s information about the smart island grid
zt Real-time measurements
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u Controller’s input signal
VINV Inverter output voltage (V)
Vdc The voltage of the uninterruptible power

supply (V)
Vo Capacitor voltage (V)
IL Inductive current (A)
Ic The output current of the capacitor (A)
Io The output current of the filter (A)
Cf The capacitor of the filter (µF)
Lf Inductive of the filter (mH)
SV Switching surface of voltage
x Smart island voltage (V)
xbase The base voltage of Smart Island (V)
SI Switching surface of the current
y Smart island current (A)
ybase The measured base current of smart

island loads (A)
E An edge that links 2 nodes
xj Load node
xk Adjacent node
Zjn Exchanged data between two consequent nodes
L Laplacian matrix
deg(mj) Degree of jth node
M Total number of the system’s agents
µ Positive parameter
c Constant parameter

LIST OF ABBREVIATION
SIs Smart Islands
SE State estimation
WSE Wavelet singular entropy
MG Micro-Grid
SI Smart Island
DG Distributed generation
RESs Renewable energy resources
SCADA Supervisory Control and Data Acquisition
AESs All-electric ships
FDIA False data injection attack
DSE Dynamic state estimation
RCKF Robust Cubature Kalman Filter
CKF Cubature Kalman Filter
DNN Deep neural network
WT Wavelet transform
SVD Singular Value Decomposition
BDD Bad data detection
RTUs Remote Terminal Units
LASSO least absolute shrinkage and selection operator
UPS Uninterruptible Power Supply
Pos Positive
Neg Negative
CRR Correct Reject Rate
HR Hit Rate
FAR False Alarm Rate
MR Miss Rate
TP True positive
TN True negative

FP False-positive
FN False-negative
DSP Digital signal processing
FPGA Field-programmable gate array

I. INTRODUCTION
To deliver electricity to remote areas with isolated commu-
nication, transmitting electricity is not economically effi-
cient or having technical complications, supplying power in
a stand-alone mode microgrid (MG) is a reasonable solu-
tion. In the Smart Island (SI) configuration, voltage and
frequency control, as well as cyber-attack and fault detec-
tion and protection, are performed by distributed genera-
tion (DG) units [1], [2]. SI can solve integrate renewable
energy resources (RESs), modern controllable electric loads,
and storage devices into an islandedMG [3], [4]. Operating of
these units in theACparadigm is a practical choice to improve
its efficiency. Compared to the centralized communication
scheme, to avoid a single point of failure, applying dis-
tributed controllers’ approach is a technical way to enhance
MGs’ robustness and stability [5], [6]. The distributed control
method requires transmitting a lesser amount of data and
less traffic in communication links than the integrated com-
munication approach [7]. Cooperative secondary controllers
in MGs have been applied for purposes such as regulation
of average voltage, proportional load-sharing, and energy
balancing [8], [9]. High-level functions such as unit commit-
ment and global optimization algorithms can be performed in
conventional central approach with supervisory control and
data acquisition (SCADA) that offers an efficient integration
of crucial subsystems [10]–[13]. While there is full access
to system data, centralized control functions such as optimal
control are used to attain objectives like greenhouse gas
emission reduction for all-electric ships (AESs) and dynamic
power management under security contingencies [14], [15].
However, centralized control schemes can be subject to
single-point failure that may be attacked in physical and/or
cyber forms [16]. Due to the absence of reliable encryption
in communication protocols and lack of firewalls because
of latency concerns, the SCADA communication networks
are exposed to cyber-attacks [17]. As MGs employ control
systems with existing commercial computing platforms that
have been subjected to cyber-attacks and many of them are
far from land and require lengthy connection links, to avoid
these threats, they require serious attention [18].

A. BACKGROUND
Generally, the primary purpose of developing the protection
and security in a large-scale network is to improve the
performance of the individual sensors of the system. In the-
ory, employing an authentication process to sensor net-
works can be the central revocation of any compromised
node; but it would be challenging to implement due to
the computation and storage constraints [19]. Existing stud-
ies in this subject are mostly focused on the secure con-
trol theories based on state estimation methods, developed
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techniques to detect an abnormality and networking secu-
rity of cyber elements [20], [21]. In this way, a detailed
analysis of cyber-attack detection methods in power grids
has been presented in reference [22]. The most significant
challenge among cyber-attacks that destroys state estima-
tion is false data injection attack (FDIA) [23]. Unlike other
cyber-attacks (distributed rejection of service and clogging
attacks), FDIA can avoid the current detection methods that
are residual-based insufficient data [10]. Hence, obtaining
advanced detection mechanism is necessary to prevent mul-
tiple FDIA occurrences, that involve serious risks to the
grid [24]. A great deal of research effort is often concen-
trated on examining possible ways to build FDIA. These
works mainly focus on power systems that contain DC state
estimation under various situations because of the system’s
straightforward investigative models [23]. For example, one
frequently identified power system cyber-attack scenario is
that the opposition does not have enough configuration data
of the network, and thus, a partial set of variables can be
manipulated [25]. Conventional detection methods are not
adequate in preventing FDIA; therefore, the system is at risk
of malicious data injection. In recent years, FDIA targeting
AC state estimation has been a subject of research interest
and to construct such cyber-attacks, analytical studies are per-
formed. FDIA construction methods in AC state estimation
system where there is partial or complete knowledge of the
system have been presented in [26]. There are many tech-
niques with satisfactory performance such as statistical meth-
ods [23], [27], Kalman filter [28], [29], network theory [30],
state forecasting [21], sparse optimization [31], machine
learning [32] and time series simulation [33] applied for
FDIA inDC state estimation. However, as the FDIA detection
methods in DC state estimation do not detect AC FDIA, there
is a lack of research on the AC form paper [26]. The AC
FDIA detection scheme proposed in [28] was developed on
the Kullback-Leibler distance from the compromised system
states’ probability distribution from the nominal operating
conditions. The robustness of the suggested scheme in typical
power system incidents such as a change in load distribution
is undetermined. In new attack methods, the manipulated
system states still comply with Kirchhoff’s circuit laws to
pretend to be typical changes in operating condition that make
it harder to be detected [26]. To detect AC FDIA, a state
estimation scheme based on information network is proposed
in [31]. Assuming an AC FDIA attack with complete infor-
mation of power network, the transmission line parameters
are vigorously changed in reference [34] and the AC FDIA
detection is performed.

For having dynamic state estimation (DSE) of generator
units under cyber-attacks, A robust Cubature Kalman Fil-
ter (RCKF) method has been presented in reference [35].
At which the first stage, two different models of cyber-attacks
including FDIA and denial of service attacks (DSA) were
simulated and besides that presented into DSE of the gen-
erator with mixing the attack vectors by the measure-
ment information; and second, under having cyber-attacks

with various degrees of sophistication, the RCKF method
and the CKF method were adopted to the DSE; finally,
the performance of these presented methods have been com-
pared and analyzed. In reference [36] also other forms
of FDIA detection techniques for AC-SE were presented.
In this method, when the state vectors manipulated malicious
datum, their temporal and spatial data solidarities might stray
from those in common operational situations. The presented
approach could capture these inconsistencies by assessing
temporally sequential estimated system states by utilizing
wavelet transform (WT) and deep neural network (DNN)
algorithms.

B. MOTIVATION AND MAIN CONTRIBUTION
In this paper, considering recent AC-FDIA patterns, a novel
FDIA detection technique is developed. To detect attacks,
unlike previous FDIA detection methods which just imple-
ment the spatial data features in the state during a single
time interval, the proposed technique is based on wavelet
singular entropy (WSE) that uses WT data correlation that
is introduced in successive system states.

This proposed technique combines both benefits of sin-
gular value decomposition (SVD) [37], Haar wavelet trans-
forms [38] and spectrum entropy [39] to obtain the system
state elements in a period. This WSE technique shows decent
performance in cyber-attack detection in AC-SIs. Current and
voltage signals are gained at the relay point, then via sliding
mode controller scheme; the switching surface (error signals
based on the base signal) is calculated. Afterwards, it is
analyzed using Haar WT to retrieve the detailed coefficients.
Next, to estimate the singular value from the comprehensive
coefficient matrix, the SVD technique is applied and finally
to detect cyber-attack, WSE of the signals are computed.
WSE technique goal is to obtain the system state elements
in a time interval and define a threshold that can distinguish
between the normal power system operation incidents and
AC-FDIA. The key contributions of this paper are itemized
as:
• This study is one of the pioneering researches works for
applying WSE in FIDA detection.

• The presented technique goal is FDIA detection in AC
state estimation of the latest attack models by partial
power grid data [26].

• The WSE detection method is assessed with a recently
proposed FDIA pattern on SI test cases, and satisfactory
performance with acceptable precision and false alarm
rate is demonstrated in the simulation results.

• To assess the performance of the presented technique,
a parameter sensitivity analysis is presented.

C. PAPER STRUCTURE
The reminder of this research is arranged as follows.
Section II introduces the SE methods and their sensitivity to
FDIA. The proposed FDIA detection mechanism and WSE
are explained in Section III. Section IV illustrates the simu-
lation results on the examined SI with different case studies.
Finally, this research article is concluded in Section V.
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II. CONCEPTS OF FALSE DATA INJECTION ATTACKS AND
SE METHOD
Firstly, in the current section, a brief introduction of the
state estimation way via the utilities and the integrated bad
data detection (BDD) technique is given. After that, a typical
model of effective AC FDIA is described.

A. ATTACK STATEMENT
Conventionally, the state estimation procedure’s precision
through BDDmethods is validated via computing the L-norm
of measurement remnant [40].∥∥z− J x̂∥∥ > Tr (1)

where, J ∈ RN∗D is the Jacobian matrix, x̂ ∈ RD represents
the estimated state vector and z ∈ RN is the measurement
vector. To maintain state estimation accuracy, the threshold
Tr is defined. Beside their shortcoming of current BDD
techniques in cyber-attack detection, these approaches are
impractical for smart grid application due to the required
measurement redundancy. Intelligent cyber-attacks, particu-
larly FDIA attacks aim for controlling some of the actions and
altering the state variables randomly that may be performed
with a false data vector injection za∈RN to evade traditional
BDD schemes. Assume the meter readings by za are mali-
ciously attacked, so be manipulated so the attack suffered
measurement adjustment can be written as

z = J x̂ + za + ε = J
(
x̂ + ca

)
+ qa + ε, x̂a = x̂ + ca (2)

where, x̂a is the defective estimate state, te and ε represent the
measurement noise. The injected manipulated data (za) can
be decomposed into two elements a = Jca and qa is the only
term which is detectable and compromises the corresponding
space where: J (JT J )−1JT qa= 0.

Notably, the attack vectors (za) can be constructed even
though the rival can partially access the lines’ parameters
and network topology. Here, malicious attack construction
absolutely lies in (J), i.e., qa= 0, thus it can bypass the
available BDD schemes [41].

As in the power network context, it is not convincing to
assume simultaneous faulty measurements of all the sensors;
it is considered that the attacker has just partial supplies and
can balance some measurement values that can be for power
flow or power injection data for a period Ta ⊆ T .
Realistically, acquiring full information of the system is

not possible for an outsider and manipulating all the mea-
surement readings escalates the cost and effort for attackers.
Therefore, it is a working assumption that attackers have
limited information of the system topology attained by sta-
tistical analysis of the data that is physically captured from
the security information that is embedded in a node or by the
data transferred between remote terminal units (RTUs) and
the corresponding power control center.

To present the secure measurement, through the decom-
position of the Jacobian matrix (J) in a row-wise tactic,
a submatrix J s=(Jji,:, JjN−|S|,:), is created; Where Jji,: is the
ji-th row of J, which J sca= 0. Likewise, submatrix JA is

built for measuring the attack. Finally, the attack plan is
characterized as an optimization problem to find a solution ca
as follows

Minimize
∥∥∥JAca∥∥∥

0
Subject to J sca= 0,

‖ca‖∞ ≥ τ (3)

where τ is a non-negative constant τ≥ 0, the expressed
optimization problem in (3) is solved by applying the least
absolute shrinkage and selection operator (LASSO) and
Regressor Selection algorithms [42].

As mentioned earlier, attackers aim to hack into the com-
munication network to manipulate controller and sensor
through FDI attack. For the distributed generator i, ∀tεTa,
the FDI attack’s effect on the state of the system may be
stated as

xai (t) = xi (t)+ βixi (t)+Wi (4)

whereWi stands for a constant bias in the manipulated states
and the βi is a constant coefficient. In other word, attackers
intend to modify the system states by βi andWi in such a way
that the operator and existing BDD methods do not observe
the attack vector. In the experiments, we presume that there is
access to k measurements by attackers. Then k measurements
are arbitrarily selected to create a k-sparse attack vector.

III. PROPOSED TECHNIQUE FOR DETECTION OF FALSE
DATA INJECTION ATTACK
As expressed in Section II, due to the attackers’ strategy to
construct false data in such a way that satisfies Kirchhoff’s
circuit laws [26], well-built FDIA can avoid to be recognized
by the existing BDD mechanisms in AC state estimation.
Hence, distinguishing FDIA from regular SI incidents pro-
vided measurements from the identical sampling period is
impossible for the operators; however, FDIA is not entirely
unrecognizable. In SIs, over a time, synchro-phasor data is
studied as temporal-spatial matrix/tensor. This would be com-
monly assumed which the data obtain spatial dependencies,
were characterized by Kirchhoff’s Laws. There is a temporal
correlation among successive time slots in a power system,
particularly the dynamic operations caused by the system’s
inertia. Existing FDIA constructions concentrate on creating
attack vectors that satisfy the spatial correlation of AC power
flow equations and the system variables, i.e. (2) [26] while
the temporal dependence between successive states of the
system, or SI dynamics is ignored. Thus, to discover FDIA
occurrence while avoiding false alarms on regular incidents,
this correlation can be employed in the system states. These
methods are based on the proposed online FDIA detec-
tion technique that applies recent wavelet singular entropy
methodologies. Therefore, in this work, the configuration and
data of the suggested technique is elaborated, and then the
detailed execution is stated in the rest of this section. Finally,
the threshold of detection processes of the presented online
FDIA detection technique is discussed.
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A. WAVELET SINGULAR ENTROPY
1) WAVELET TRANSFORM THEORY
The proposed technique applies wavelets as practical tools in
analyzing a signal that chops data, and after that, it translates
and measures various versions of a signal function [43].
Harr wavelet that is the easiest wavelet tool, is characterized
as:

haar
(
2q + δ,∅

)
=


√
2q; δ/2q ≤ ∅ ≤ (δ + 0.5)/2q

−
√
2q; (δ + 0.5)/2q≤∅ ≤ (δ + 1)2q

0; otherwise

(5)

where q = 1, 2, . . . . and δ = 0, 1, . . . , 2q − 1
Next, if δ =0 and 2q = 1, then the Harr wavelet is

9 (∅) =


1 for 0 ≤ ∅ ≤ 0.5
−1 for 0.5 ≤ ∅ ≤ 1
0 otherwise

(6)

where ϑ (t) is the scaling function [44] as follows:

ϑ (∅) =

{
1 for 0 ≤ ∅ ≤ 1
0 otherwise

(7)

Typically, WT comprises band-pass filters series which
include consecutive couples of high-pass and also low-pass
filters. The specifications are high-frequency but low-scale
components for high-pass and low-pass filters, whereas
approximations can be low-frequency high-scale ones.
Approximations and aspects are taken from the matrix of the
WT coefficient are necessary.

B. SINGULAR VALUE DECOMPOSITION
Singular value decomposition (SVD) can be defined as a
matrix decomposition way that breaks a matrix to three matri-
ces. AssumeBRεCm∗n andαk (BR) (k = 1, . . . , r ≤ min{m, n}
become the nonzero singular values of BR, hence according
to [45], the SVD can be characterized as:

BR = UQVT (8)

where: UεCm∗r,VεCn∗r and QεCr∗r, which Q defines a
diagonal matrix as:

Q =


α1 0 . . . 0
0
...

αk

...

0
0 . . . 0 αr

 ;k= 1, .., (9)

Then in FεC1∗r . . .matrix ‘F’ has made by diagonal elements
‘Q’; so ‘Q’ is provided as:

F = diag[Q] = [α1α2. . .αr−1αr ] (10)

where α1 ≥ α2 ≥ . . .≥ αr−1 ≥ αr > 0 an. . .αk
(k= 1, . . . . . . ,r) represent the nonzero. . . singular values for
the matrix BR.

FIGURE 1. Suggested FDIA detector.

C. SHANNON ENTROPY
The concept of Shannon entropy in time domain defines a
crucial measurement of signal uncertainty employed to assess
patterns and structures of analyzed data. Hence, wavelet
entropy-based signal analysis can indicate the signal in both
time and frequency domains.

According to reference [46] and considering. ‘αk′,
the probability is stated as follows:

Pk =
αk∑r
j=1 αj

(11)

Finally, the entropy is planned as:

WSE = −10
r∑

k=1

(Pk ∗ ln Pk) (12)

D. MECHANISM OF PRESENTED FDIA DETECTION
The presented FDIA detection technique is displayed in
Figure 1. System states and measurements from consecu-
tive sampling intervals, for example, time samples when
performing standard state estimation, are considered in this
method. These time intervals length may be anywhere from
milliseconds to a few seconds. At an arbitrary sampling time
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FIGURE 2. Wavelet decomposition levels (d1. . . , d4) of switching surface according to the sliding mode
controller of voltage signals during cyber-attack conditions (cyber-attack has occurred at t = 1 s.)

interval t, the utility’s information of the SI grid h(0) and real-
time measurements zt are the inputs to the mechanism, and
the detection results are its output. First, the input data is
fed to an AC state estimator that calculates the estimations
of current and voltage system state as x̂t . Next, the esti-
mated state is examined by BDD to trim any measurements
manipulated by bad data. Then, as the bad data affected
by communication error and sampling do not comply with
the circuit laws and leave high residual values, they can be
effectively detected [40].

The next step after the SE process is to apply a new FDIA
detection procedure to provide additional analysis on the esti-
mated system states. As illustrated in Figure 1, the detector
comprises two data processing procedures. The estimated
states of the x̂t the system is taken from the prior state estima-
tor as input. Also, the system state is saved in a database of
state history. An attribute extractor determines the spatial data
solidarities (details) of the previous system states. Then the
following data implied by WSE is saved in a feature history
database. Next, through the defined threshold, the WSE of
the signals is applied FDIA attack detection. In the pro-
posed FDIA detector model, it is apparent that the detection
technique efficiency is affected by the attack detector and
feature extractor. Two parts of the detection procedure should
develop the state dynamics’ distinctive spatial-temporal fea-
tures and accurately classify attack incidents against others.
In this paper, extracting the attack features is performed by
WT algorithm that has excellent feature extraction capabil-
ity [42]. SVD components are adopted to build a nonzero
singular value to compute WSE then use a threshold to detect
attack models from the extracted features.

We can observe from equations (6) and (7) that various
wavelets and levels of decomposition ‘m’ could cause mul-
tiple factors of the decomposed signal. These factors will
have more impact on the element extraction sufficiency of
the feature extractor based on WT. So, they need an opti-
mal setting for ‘m’ values and wavelets; however, it is not
practical to examine all wavelets. Alternatively, they can
be picked according to the properties of data and strategi-
cally [47], [48]. In particular, suppose there are sufficient data

samples, because of their strength regardless of specific data
characteristics, db and sym families of wavelets are
influential.

Further, thewavelets, such as bior and coifmembers, strug-
gle with longer filter length that can cause low amounts of
decomposition and insufficient element extraction [47]. Thus,
in this paper, 4 different wavelets of db and sym members are
applied to decompose the input signal, including bus voltage
and current. Figure 2 shows the wavelets and their corre-
sponding M values. In general, the decomposed data series
are very lengthy to be applied in subsequent computations.
It has been illustrated that the crucial characteristics of the
input signal can be represented via the statistical features
of these data sequences [48]. Therefore, all factors’ mean
value and standard deviation are implemented to characterize
the input signal’s quality in our suggested feature extractor.
The efficiency and proficiency of these statistical features in
classified tasks are demonstrated in the literature [47], [48].
Subsequently, in an N bus SI and for each system state, coef-
ficients, bus voltage and current features are computed and
stored in the feature history database as a typical feature vec-
tor of the corresponding time interval (see Figure 1). In this
paper, the WSE algorithm input comprises 200 samples.
Besides, the WSE algorithm can be vulnerable to the magni-
tude altering frequency in the signal so that every alternation
due to a cyber-attack causes a change in the signal frequency
and can be detected by WSE. Figure 1 shows the wavelet
singular entropy mechanism. The proposed FDIA method
and SI are simulated in the MATLAB/Simulink environment,
demonstrating and performing the technique.

IV. CASE STUDIES
A. CYBER-PHYSICAL MODEL
An Islanded MG with m parallel connected generators is
shown in Figure 3. Some of the generation units in such
MG can be divided into voltage and frequency mode, also
can stabilize the MG voltage while other components are in
load sharing state and current control mode [8]. The power
electronic circuit of a 3-phase inverter connected to the MG
is illustrated in Figure 4. In this work, first, we consider
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FIGURE 3. Standard cyber-physical paradigm of an AC Smart-Island where Blue arrows correspond to the cyber layer and black lines
correspond to the physical circuit.

AC Bus

Local Loads or other units

FIGURE 4. Generic scheme of a 3-phase microgrid in front of cyber-attack.

the single-phase system; next, we generalize the formula-
tion to the 3-phase system where all phases have simi-
lar parameters. Figure 5 indicates the block diagram of a
single-phase inverter. As illustrated in Figure 5, the output
filter decreases the harmonics in the output voltage caused by
PWM inverter.

For the single-phase inverter demonstrated in Figure 5,
the state equations areas:

Lf
dIL
dt
+ Vo = VINV (13)

IL = Ic + Io, Ic = Cf
dV o

dt
(14)

where u is the controller’s input signal, and V INV = uVdc
is the inverter output voltage. Combining equations (13) and
(14) will result in:

d
dt

[
Vo
İL

]
=

[
0 1

Cf
−

1
Lf

0

][
Vo
IL

]
+

[
0
Vdc
Lf

]
u+

[
−

Io
Cf
0

]
(15)

FIGURE 5. A full-bridge, single-phase inverter.

where Vdc is the voltage of tUninterruptibleble Power Sup-
ply (UPS) and the state variables are the capacitor voltage
(Vo) and the inductive current (IL). The output current of the
capacitor and the filter are Ic and Io, respectively. Lf and Cf
are the inductive and capacitor of the filter, respectively.

According to reference [8], through the sliding mode
controller, the index of cyber-attack detection for FDIA in
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FIGURE 6. (a) Agent type and (b) Cyber-physical AC Smart-Island including 3 resources.

FIGURE 7. Instability caused by injecting an attack by altering the amplitude of the signal of voltage reference including a) Smart Island voltage, b)
Load current, c) Wavelet decomposition, d) WSE of voltage where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.

current and voltage parameters can be provided as:

SV = ˜̇x − λx̃, x̃ = x − xbase (16)

where SV (switching surface of voltage) represents the index
of voltage to detect cyber-attack which input of wavelet
transforms, and λ gives a positive number, x represents the SI
voltage and xbase is the base voltage of SI that has a constant
amplitude and frequency.

SI = y− ybase (17)

where SI (switching surface of current) represents the cur-
rent index to detect cyber-attack which input of wavelet

transforms, y is the SI current generated by each dis-
tributed generator and ybase is the measured base current of
SI loads.

Figure 3 shows the autonomous AC-SI considered in this
work. DC sources connected through DC/AC inverters are
inter-connected via tie-lines, thus comprising the SI physical
layer. Inverters are operated to sustain the output voltage
following the reference values produced through the local
initial and secondary controller. A cyber graph of the com-
munication network studied here transfer data to and from
adjoining networks. In each unit, loads are coupled at the
output of the converter.
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FIGURE 8. Instability caused by injecting an attack by altering the frequency of the signal of the voltage reference including a) Smart Island voltage, b)
Load current, c) Wavelet decomposition, d) WSE of voltage where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.

The communication network can be considered as digraph
via links and edges with the adjacency matrix A =[
ajk
]
εRM∗N , and every source becomes an agent. The

connection weights are:

ajk =

{
> 0, if

(
xj, xk

)
εE

0. else
(18)

In equation (18), E provides an edge that links 2 nodes, xj
represents the load node and xk is the adjacent node. The com-
munication weights only represent exchanged data between
two consequent nodes that are indicated by the matrix with
incoming data, Zjn =

∑
jεMajk .

Thus, these 2 matrices match up each other, thus the Lapla-
cian matrix L will be balanced, where L = Zjn − A and its
components are provided as:

ljk =


deg

(
mj
)
, j = k

−1, j 6= k
0, otherwise

(19)

In equation (19), L =
[
ljk
]
εRMxN and deg(mj) is the degree

of jth node.
Remark I: all the units will attain consensus using

x (i+ 1)− x (i) = −µLx(i) for a well-spanned matrix L that
xj(i) = c,∀jεM , where M provides the total number of the
system’s agents, µ is a positive parameter and c is constant.

V. NUMERICAL SIMULATION RESULTS
In this section, two systems are studied, and the simulation
results are obtained and presented. Figure 6 shows
two systems, including (a) agent type and (b) cyber-physical
AC-SI with 3 resources.

As illustrated in Figure 6 (a), Smart-Island comprises three
agents of the same capacities interconnected through resistive
lines. Each of the agents in Figure 6(a) includes a battery and
DC/AC inverters. As can be seen from Figure 6 (b), the cyber-
attack detection technique proposed in this paper is examined
on a cyber-physical AC SI withVref = 110sin(2∗pi∗60). The
performance of the presented cyber-attack detection proce-
dure in cooperative AC Smart-Island has examined applying
multiple disturbances like FDIA, attack in various sensors
that is likely to remain unrecognized by the distributed view-
ers, connection links to detect the distorted node so that the
action is performed to obtain security. The control and system
characteristics are given from the previous work [7]. To better
understand the study, each incident in the scenarios is split by
a specific time-gap.

A. CASE STUDY I
Here study, the attack is injected by changing the amplitude
of the signal of a voltage reference, then the performance
of WSE in FDIA detection is investigated by injecting the
abovementioned attack.
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FIGURE 9. Instability caused by injecting an attack by shifting the voltage reference signal including a) SI voltage, b) Load current, c) Wavelet
decomposition, d) WSE of voltage where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.

At time t=.4 s, FDIA is started, and at t=.6 s, FDIA
is cleared. It should be noted that under the attack influ-
ence, the reference voltage amplitude of the controller is
reduced by 10%. Figure 7 shows the results of a simulation.
Figure 7(a) and (b) demonstrate the SI’s voltage and the cur-
rent load, respectively. The wavelet transforms of the voltage
sliding surface signal, and wavelet decomposition at various
levels has been displayed in Figure 7(c). To get a practical
singular value applied to compute the WSE for cyber-attack
detection, the wavelet factors (d1. . . ,d4) have been employed
as shown in Figure 7(d), WSE of this scenario’s signal con-
sidering the threshold as 50 successfully indicates the attack.

B. CASE STUDY II
Here study, the attack is injected by changing the frequency
of the signal of the voltage reference and the performance of
the WSE in FDIA detection is investigated.

At time t=.4 s FDIA is started, and at t=.6 s, FDIA
is removed. It may be noted that the frequency of voltage
is changed from 60 Hz to 50 Hz by cyber-attack in the
controller reference signal. Figure 8 shows the simulation
result for this scenario. The voltage of the SI and the loads
current are displayed in Figure 8 (a) and (b), respectively.
Figure 8(c) illustrates the wavelet transform of the volt-
age sliding surface signal and the wavelet decomposition

at various levels. To acquiring practical singular values to
compute the WSE to detect an SI attack, the wavelet coeffi-
cients (d1. . . ,d4) are employed. Figure 8(d) shows WSE of
the signal, and by selecting the threshold as 50, it can be
viewed that the presented technique can successfully detect
the attack.

C. CASE STUDY III
Here study, the attack is injected by shifting the signal of
the voltage reference and the performance of the WSE in
FDIA detection is investigated. At time t=.4 s, FDIA is
started, and at t=.6 s, FDIA is cleared. Note that the cyber-
attack shifts the SI output voltage in the controller reference
signal. Figure 9 demonstrates the results of the simulation.
Figure 9(a) and (b) show the smart grid’s voltage and the
load’s current, respectively. Figure 9(c) illustrates the wavelet
transform of the voltage sliding surface signal and wavelet
decomposition at different levels. Figure 9(d) shows WSE of
the signal in this case study, and by selecting the threshold
as 50, the proposed technique successfully detects the men-
tioned cyber-attack.

D. CASE STUDY IV
Here, the attack is injected by adding white noise to sig-
nal voltage reference and the detection mechanism’s perfor-
mance. The attack is started at time t=.4 s and is cleared
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FIGURE 10. Instability caused by injecting an attack by plus noise with voltage reference signal including a) Smart Island voltage, b) Load current,
c) Wavelet decomposition, d) WSE of voltage where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.

at t=.6 s. Note that the white noise is added to the SI output
voltage in the controller reference signal. Figure 10 shows
the simulation results. In this scenario, Figure 10(a) and (b)
illustrate the smart grid’s voltage and the load’s current,
respectively. Figure 10(c) shows the wavelet transform of the
voltage sliding surface signal and the wavelet coefficients at
various levels. The wavelet coefficients (d1. . . d4) are applied
tomaintain efficient singular values employed to calculate the
WSE for attack detection. Figure 10 (d) showsWSE of signal
in this scenario, and by selecting the threshold as 50, it may be
noticed that the presented technique can successfully detect
the attack.

E. CASE STUDY V
In this scenario, the attack is on the voltage signal, and
the detection technique’s proficiency is examined. The
attack is started at time t=.4 s and is cleared at t=.6 s.
Figures 11 and 12 show the simulation results.

Here study, Figures 11(a) and 12 (a) show the voltage
of SI. Figures 11(b) and 12(b) show the loads current.
Figures 11(c) and 12(c) illustrate the wavelet transform of
voltage sliding surface signal and the wavelet coefficients at
various levels. The wavelet coefficients (d1. . . d4) are applied
tomaintain efficient singular values employed to calculate the
WSE for attack detection.

Figures 11 (d) and 12 (d) show the WSE of signal in
this scenario, and by selecting the threshold as 50, it can be
noticed that the suggested technique can successfully detect
the attack.

F. CASE STUDY VI
The performance and capability of the WSE in the attack
caused by altering the load reference current signal on agent
II and III are examined in this case study.

At t=.4 s, FDIA is started, and at t=0.6 s, FDIA is
cleared. Note that during this attack, the controller’s reference
current amplitude is increased by 20%. Figure 13 shows
the simulation result. Here, study, Figures 13(a) and 14(a)
show the SI voltage, Figures 13(b) and 14(b) show the
loads current, and Figures 13(c), (d) and (e) and 14(c), (d)
and (e) display the current of DG1, DG2 and DG3, respec-
tively. It can be seen that during the attack, the delivered
current by each DG is increased, but the load is constant.
Figures 13(f) and 14 (f) show the wavelet decompositions
at various levels. The wavelet coefficients (d1. . . d4) are
employed to maintain efficient singular values applied to cal-
culate the WSE for attack detection. Figures 13(g) and 14(g)
showWSE of this scenario signal, and by selecting the thresh-
old as 20, the proposed technique successfully detects the
cyberattack.
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FIGURE 11. Instability caused by injecting an attack on voltage sensor (Smart Island voltage reduced) including a) SI voltage, b)
Load current, c) Wavelet decomposition, d) WSE of voltage where cyber-attack is happening at t = 0.4 s and is removed at t=0.6 s.

FIGURE 12. Instability caused by injecting an attack on voltage sensor (SI voltage increased): a) Smart Island voltage, b) Load
current, c) Wavelet decomposition, d) WSE of voltage where cyber-attack is happening at t = 0.4 s and is removed at t=0.6 s.

G. CASE STUDY VII
Here study, the attack is injected into the current sensor to
deteriorate the current sharing profile on agent II and III.

At t=.4 s, FDIA is started, and at t=.6 s, FDIA is cleared.
Note that the measured current of the Smart-Island affected
by this kind of cyber-attack on its corresponding sensor has
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FIGURE 13. Instability caused by injecting an attack by altering the load current reference signal: Deteriorates current sharing profile on
agent 2 and 3 including a) Smart Island voltage, b) Load current, c) Current of DG1, d) Current of DG2, e) Current of DG3, f) Wavelet
decomposition, g) WSE of current where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.
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FIGURE 14. Instability caused by injecting an attack by altering the load current reference signal: Deteriorates current sharing profile on agent
2 including a) Smart Island voltage, b) Load current, c) Current of DG1, d) Current of DG2, e) Current of DG3, f) Wavelet decomposition, g) WSE of
current where cyber-attack is happened at t = 0.4 s and is removed at t=0.6 s.
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FIGURE 15. Instability caused by injecting an attack on the current sensor: Deteriorates current sharing profile on agent 2 and 3 including a) Smart Island
voltage, b) Load current, c) Current of DG1, d) Current of DG2, e) Current of DG3, f) Wavelet decomposition, g) WSE of current where cyber-attack is
happened at t = 0.4 s and is removed at t=0.6 s.
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FIGURE 16. Loads changing: a) Smart Island voltage, b) Load current, c) Current of DG1, d) Current of DG2, e)
Current of DG3, f) Wavelet decomposition of voltage, g) Wavelet decomposition of current, h) WSE of voltage, i)
WSE of current.
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less or more the real value. Figure 15 illustrates the results of
the simulation. In this scenario, Figures 15(a) and (b) show
the SI’s voltage and the current loads current, respectively.
Figures 15 (c), (d) and (e) show the DG1, DG2 & DG3 cur-
rent, respectively. During the attack, the production of current
DG2 increased while the load was constant and DG1 pro-
duced current in front of the attack current to eliminate the
further current produced by DG2. Figure 15(f) illustrates the
wavelet transform of the current sliding surface signal and
wavelet decomposition at various levels. Besides, the wavelet
factors (d1. . . d4) are employed to maintain efficient singular
values that are applied to calculate WSE for attack detection
in SI. Figure 15(g) shows WSE of the signal in this scenario
and by selecting the threshold as 20; the successful attack
detection effectiveness of the presented approach is shown.

H. CASE STUDY VIII: LOAD CHANGING
In this scenario, the proposed technique performance in
detecting FDIA and under multiple load scenarios including
resistive, inductive, balanced or unbalanced and nonlinear
load is examined. At t=.3 s, a resistive load is connected
to the system. Figure 16(a) indicates the voltage of the SI.
At t=.6 s, an inductive load is connected, and at t=.8 s, these
loads get disconnected, and a nonlinear load is connected
(Figure 16 (b)). Figure 16(c), (d) & (e) show the DG1, DG2&
DG3 current signals, respectively. Fig. 16(f) & (g) illustrate
the wavelet transform of voltage and current sliding surface
signals, respectively and wavelet decomposition at various
levels. Besides, the wavelet factors (d1. . . d4) are employed to
maintain efficient singular values that are applied to calculate
WSE for attack detection in SI. Fig. 15(h) & (i) show WSE
of voltage and current signals in this scenario, respectively.
As can be seen, the WSE method does not recognize loads
changes as cyber-attacks and has a good response in separat-
ing FDI attacks from loads changes.

As shown from Figure 7 (d) to Figure 12 (d), by selecting
the threshold as 50, the proposed procedure can identify the
FDIA in voltage. Also, as can be seen from Figure 13 (g) to
Figure 15(g), by selecting the threshold as 20, the proposed
procedure can identify the FDIA in the current. As can
be seen, the WSE technique can detect FDIA in various
scenarios and identify the attack from load changing.

I. RESPONSE TIME
The response time of the presented algorithm under FDIA
in the voltage and current signals are shown in figures 17(a)
and 17(b), respectively. As can be observed, the proposed
detection technique detects the attack in less than 10 ms from
the moment the attack is started. Figure 17(a) indicates the
response time of WSE of voltage. FDIA started at t=0.4s and
is detected at t=0.406 s (in 6 ms). Figure 17(b) illustrates the
response time of WSE of current. FDIA, in this case, begins
at t=0.4 s and is detected at t=0.404 s (in 4 ms).

VI. DISCUSSION ABOUT SIMULATION RESULTS
In general, it is considered that when an issue is investigated
as a cyber-activity, this will be a positive (Pos) decision.

FIGURE 17. Time response: a) WSE of voltage, b) WSE of current.

TABLE 1. Confusion rate matrix of the introduced detection scheme.

It will be a negative (Neg) decision when the type of anomaly
detection identifies as usual behaviour. The right decisionwill
be made whenever the specimen of uncommon diagnosing
is corrected. Therefore, an incorrect decision illustrates an
incorrect response from the cyber-attack diagnosing type.
According to this concept, it is concluded that a proper form
of detection anomalies will be a model with a low false
rate. Based on these definitions, four various types, namely
False Alarm Rate (FAR), Miss Rate (MR), Correct Reject
Rate (CRR) and Hit Rate (HR), are defined. To have a better
understanding of these concepts, Table 1 provides the confu-
sion matrix. Various test cases are applied to confirm the effi-
ciency and validation of the presented wavelet transform in
FDIA detection. The suggested detection plan’s performance
is evaluated by applying it into the FDIA layout, and the
evaluation outcomes are illustrated. The presented detection
plan’s execution is investigated using the FDIA scheme and
the evaluation outcomes shown in Table 2. To demonstrate the
suggested cyber-attack detection model’s sufficiency, it com-
pares with WT and DNN presented in the reference [36].
Table 2 can remark that the proposed technique can detect
the FDIAs with detection accuracy over 96.5 %.

The detection accuracy based on WT as the input of DNN
can detect FDIAs over 95 % and the DNN training time
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TABLE 2. Confusion result matrix of the introduced detection scheme.

is 2713.2 s where average detection time is 3.51 ms; but in the
suggested method, the average detection time is 5 ms without
the training time and complexity of DNN, so, it displays
the sufficiency of the introduced detection plan to detect the
FDIAs.

VII. CONCLUSION
A novel FDIA detection technique for the AC state estimation
has been proposed in this paper. Other research works on
FDIA detection were mostly concentrated on attacks and
attack detection inDC state estimation. Current FDIAmethod
focused on wavelet singular entropy technique. The wavelet
singular entropy approach comprises the wavelet transform,
singular value decomposition and Shannon entropy to obtain
a programmed trait to characterize cyber-attack detection.
Results find out wavelet singular entropy responds to unex-
pected alterations in signals and detect FDIA in various
conditions. The reliable and quick performance of the pre-
sented technique is illustrated through different scenarios.
The wavelet singular entropy can accurately detect FDIA in
current and voltage, and they can be distinguished from the
normal operating condition events.

In this paper, a series of comprehensive simulations on
3-bus Smart-Island have been performed. The proposed
detector has been applied, and its performance was exam-
ined. The proposed FDIA detection technique shows a more
reliable and accurate performance comparing to the existing
FDIA detectors. In this paper, in a Smart-Island configura-
tion and an extensive range of variations in the operating
conditions, it is shown that the proposed mechanism is a
reliable and fast FDIA detection method and the wavelet
singular entropy can successfully and accurately detect FDIA
under various types of attack. The suggested WSE-based
FDIA detection plan is more straightforward and can be
easily performed on the digital signal processing or field-
programmable gate array (DSP/FPGA) boards for enhanc-
ing the anti-cyber-attack modules. Considering the proposed
approach’s notable performance, applying this model on real-
time cyber-attack detection in an AC-SI hardware experimen-
tal setup can be a hot topic for future works.
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