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ABSTRACT One of the vital processes that should be monitored and analyzed continuously in the oil-
gas and petroleum-related industries is the multi-phase flow inside pipes. Multi-phase flow means flowing
two or more phases of gas, liquid, or solid inside a pipe. Electrical Capacitance Tomography (ECT)
is a feasible and economical solution for monitoring dynamic applications. The ECT system offers the
benefits of no radiation, non-intrusive, and non-invasive. Despite its potential, ECT systems deployment’s
major limitation is the crucial need to develop rapid image reconstruction algorithms. In this paper, a
Local Ensemble Transform Kalman Filter (LETKF) is developed as a non-linear system estimator for
reconstructing images in the ECT system. This method manages each node of the model independently
by assimilating only the observations at a predefined distance. The localized approach of the LETKF gives
it high computational efficiency allowing it to be applied to large dynamic systems. A quantitative analysis
using Image Error (IE) and Coefficient Correlation (CC)measures has been applied to prove the effectiveness
of the proposed algorithm. Indeed, the IE has been significantly decreased (around 62%), and the CC greatly
increased (around 58%). Then, the influence of the noise was discussed. The results are promising and prove
the algorithm feasibility.

INDEX TERMS ECT, image reconstruction, Kalman filter, multi-phase flow.

I. INTRODUCTION
Recently, the level of interest in the multi-phase flow
measurements used in the oil-gas and petroleum-related
industries is rapidly growing. Themulti-phase flow is amove-
ment of some materials inside a pipe such as gas or solid
in liquid [1]–[4]. According to the process conditions, there
is a distinct need to know the multi-phase flow parameters
such as mass, velocity to increase effectiveness, quality, and
decreasing processing expenses. In Particular, petrochemical
companies in Saudi Arabia are mainly interested in knowing
the flow types (annular, stratified, bubble flows, etc.) at a
particular time of their process [5], [6]. It is essential to
state that the visualization process is an excitingmeasurement
process and has recently achieved substantial advances in
hardware and software technologies [7], [8].
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Visualization techniques of computed tomography span
a wide range of sensing modalities. Some interesting tech-
niques are Ultrasound Tomography (UT), and Optical Coher-
ence Tomography (OCT). In fact, UT technique, sensitive to
variations in the acoustic impedance of objects, has been used
for the detection of the multi-phase flow [9]–[11]. In [12],
the principle and technical realization of OCT technique are
explained.

This research will focus on electrical tomography methods
[13], [14]. The electrical tomography systems, such as the
Electrical Resistivity Tomography (ERT) [15], [16], Mag-
netic Induction Tomography (MIT) [17]–[19], and Electrical
Capacitance Tomography (ECT) [20]–[24] are interesting.
These modalities are real-time imaging, safe, suitable for
different vessel sizes, and inexpensive. ECT technology, as a
non-subversive and non-parasitic well-established imaging
method, is capable of inducing a cross-sectional image rep-
resenting the inner distribution of permittivity based on outer
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FIGURE 1. The ECT system components.

capacitance measurements. Typically, the basic components
of the ECT system are an array of capacitance sensors, a data
acquisition system, and a computer for building and dis-
playing images. Fig. 1 shows these main components of the
ECT system [25]. The electrical tomography process usually
starts by collecting the data from the sensors, reconstructs the
distribution images, and displays the results [26].

The ECT sensor is composed of multiple exciting elec-
trodes, which are evenly mounted around the non-conductive
dielectric medium of the material inside the vessel to be
imaged. There is an earthed screen positioned outside the
electrodes to depress the exterior interference noise to accom-
plish such a process. The functioning of the ECT system
depends on gauging the change in capacitance measurement
of a multi-electrode ECT sensor. This process is carried out
by the variations in the distribution and/or condensation of
dielectric materials inside the vessels. The outcome is the
reconstruction of cross-sectional images representing the per-
mittivity distribution obtained from the measured data [27].

There are two computational problems associated with
the tomography system, forward and inverse problems. For-
ward problem solves partial differential equations governing
the sensing domain, usually using Finite Element Methods
(FEM) to calculate the capacitance measurements. While
the inverse problem generates distribution images from
known capacitance measurements using image reconstruc-
tion algorithms [8]. The image pixels’ number (Unknown)
is larger than the measurement number (Known); therefore,
the inverse problem is ill-posed. Another challenge is that the
nonlinear relationship between material distribution and the
measurements [28].

To obtain more accurate and sharper images of the materi-
als distribution, iterative image reconstruction algorithms are
crucial [29], [30]. In the iterative techniques, the inverse and
forward problems are solved in a continuous loop until an
acceptable measurement error rate is reached. The Iterative
Linear Back Projection (ILBP) is a standard procedure for
building the images [31], [32]. Nevertheless, when a sharp
transition exists between the different materials, the obtained
images are blurred and suffer from a smoothing effect.

The image reconstruction techniques used in the electrical
tomography can be classified into Algebraic Reconstruc-
tion Techniques (ART) and Optimization Reconstruction

Techniques (ORT) [25], [33]. In the first class, the system
responses to density variations in the imaging domain can be
modeled as a set of algebraic equations. Next, a sensitivity
map describing the tomography sensor response is generated
using the measured signal. Afterward, the set of independent
equations is solved based on matrix manipulation. While
in optimization techniques, a set of objective functions are
optimized to obtain the most expected image associated with
the measured signal. Usually, the nonlinearity level between
the detected signal and the density distribution dramatically
affects each reconstruction approach’s performance when
applied to different tomography modalities. For instance,
ECT and ERT are two electrical tomography techniques
where the density distribution is non-linearly related to the
electric field distribution inside the imaging domain. The
optimization techniques in these two examples provide better
imaging results compared to algebraic techniques.

One of the main challenges of this research is the extreme
nonlinear response of the tomography system. Therefore,
building a precise and fast algorithm for creating the images
and overcome these limitations is essential. Iterative algo-
rithms, compared to non-iterative algorithms, are more sig-
nificant in avoiding the nonlinearity problem and building
more detailed images [34]. However, the time required for
the iterative ones is longer since it regularly needs two steps
to solve the forward and inverse problems. The implemen-
tation of most iterative methods requires high computations
since these algorithms are based on complex mathematical
models and run iteratively to obtain the best image. There-
fore, we introduce an efficient Local Ensemble Transform
Kalman Filter (LETKF) to estimate the dynamic multi-phase
flow using ECT system with high accuracy and considerably
reduces the computation time.

After recalling the components of the ECT system in
section II and how the sensitivity analysis is carried out,
the different theoretical and practical steps that led to the
development of the LETKF algorithm are presented and
explained in section III. Numerical results presented in
section IV show good performances achieved by applying the
proposed LETKF algorithm. The final section V concludes
the proposed work.

II. ELECTRICAL CAPACITANCE TOMOGRAPHY (ECT)
Typically, a capacitance sensor, a data acquisition system, and
a computer system are three main components formed the
ECT system [35]. The distribution of an array of electrodes
around the vessel required to be imaged is shown in Fig. 2a.
The outside earthed screen filters any external noises and
disturbances. Consecutively, all independent capacitive mea-
surements are captured by firing one electrode to work as
transmitter, and the rest of the electrodes as receivers in the
ECT sensor [36]. The measurements’ change is proportional
to the permittivity change inside the imaging area.

Reconstructing the ECT images involves solving forward
and inverse problems [2]. Equation 1 solves the forward prob-
lem by estimating the electrical response u corresponding to
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FIGURE 2. ECT system with 12 electrodes.

known permittivity distribution ε, and the boundary electrical
potential.

∇ · (ε ∇u) = 0 on �

u = b on � (1)

where � is the imaging area, and b is the electric potential.
The capacitance measurements are calculated in the for-

ward problem with respect to each pixel’s perturbation in the
imaging area from the low permittivity value to the high value
to compute the jacobian. The jacobin is called the sensitivity
matrix S, which is applied in the solution of the inverse
problem to reconstruct the corresponding image as shown in
Eq. 2:

G = ST · C (2)

where G is the permittivity distribution, and C is the capaci-
tance [37].

Finite Element Model (FEM) is applied to model the for-
ward problem in the ECT system and calculate the sensitivity
matrix [38]. Fig. 2b represents the FEM with 4112 nodes
for ECT sensor consisting of 12 electrodes. The sensitivity
matrix is calculated according to Eq. 3:

Si =
CF
i − C

j
i

CF
i − C

E
i

(j = 1, 2, . . . , e) (3)

where Si(i = 1, 2, . . . , 66) represents the sensitivity matrix
for electrode pair i, e is the number of nodes, CF is the
measurements vector when all nodes have high permittivity
value, C j are measurements when just node j assigned high
permittivity value, CE are the measurements when the nodes
have the low permittivity value. Fig. 3 shows the different
sensitivity matrix between electrodes 1-3, 1-5, and 1-7.

III. TIME-VARYING MODEL
We suppose that the time-based estimation of the materials
distribution xk is linear over the domain ω:

xk+1 = Bkxk + zk (4)

where Bk is the state transition matrix at time tk . Without
loss of generality, we suppose that Bk = I (i.e. identity
matrix) for all tk (k = 1, 2, 3, . . . ), zk is represented as a white
Gaussian noise and its covariance matrix 0zk ≡ E[zk zTk ].
Wk represents the measurements produced by the kth applied
voltage. The measurements are represented by a nonlinear
relation with the error of the measurement:

Wk = Uk (xk )+ rk (5)

where rk is a white Gaussian noise with the covariance matrix
0rk ≡ E[rk rTk ].

The linearization of equation (5) around the nominal value
x0 gives:

Wk = Uk (x0)+ Jk (x0).(xk − x0)+ H .O.Ts+ rk (6)

where Jk is the Jacobian matrix defined by

Jk (x0) =
∂Uk
∂xk

∣∣∣∣
xk=x0

(7)

and H.O.Ts represent the higher order terms assumed to be
additional white Gaussian noise. Let us define an artificial
measurement (pseudo-measurement) by:

yk ≡ Wk − Uk (x0)+ JK (x0) · x0 (8)

then the linearization of the measurement equation gives:

yk = Jk (x0).xk + w̄K (9)

where w̄k represents the measurement and linearization errors
with the known covariance matrix 0̄vk = E[w̄k w̄Tk ].

A. INVERSE PROBLEM SOLVER BASED ON Extended
Kalman Filter (EKF)
The use of Kalman filter allow us to estimate the vector
xk using the precedent measurements taken up to tk . The
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FIGURE 3. Sensitivity patterns for electrode separation by 1, 3, and 5 electrodes.

estimation is performed by minimizing the following cost
functional:

4(xk ) =
1
2

{∥∥xk − xk|k−1∥∥2c−1k|k−1 + ‖yk − Jk (x0)‖20−1k
}

+

{
β
∥∥V (xk − x∗)∥∥2} (10)

where β and V denotes the regularization parameter and the
regularizationmatrix, respectively, x∗ is the previous data and
Rk|k−1 represents the error covariance matrix given as:

Rk|k−1 = E
[
(xk − xk|k−1)(xk − xk|k−1)T

]
(11)

The augmented pseudo-measurement and Jacobian matrices
are given by:

ȳk =
[

yk√
β · V · x∗

]
(12)

Hk =
[
Jk (x0)√
β · V

]
(13)

Then we can rewrite the precedent cost functional as:

4(xk ) =
1
2

{
‖xk − xk|k−1‖2R−1k|k−1

+ ‖ȳk − Hk .xk )‖2
0−1k

}
(14)

where 0k is the following block diagonal matrix

0k ≡ Blockdiag
[
0̄vk , I

]
(15)

Then, the recursive EKF obtained by minimizing the cost
functional (equation (10)) consists of two steps [39]:

Step 1. Correction Filter:

Lk = Rk|k−1 HT
k

[
Hk Rk|k−1 HT

k + 0k

]−1
(16)

Rk|k = [IN − Lk Hk ]Rk|k−1 (17)

xk|k = xk|k−1 + Lk
[
ȳk − Hkxk|k−1

]
(18)

Step 2. Prediction Process:

Rk+1|k = BkRk|kBTk + 0
w
k (19)

xk+1|k = Bkxk|k (20)

However, the use of EKFmay notmeet users’ expectations,
especially when dealing with large-scale dynamics or real-
time implementation. Indeed, storage and computation time

requirements arise quickly when using an EKF on a real-
time or high dimensional system. Considering a model with
a state vector composed of m unknowns, then the error
covariance matrix Rk will have m2 unknowns. For large sys-
tems or real-time implementation, computing and updating
the error covariance matrix will require a very high compu-
tational cost. As a result, EKF is not suitable for this kind
of system. Therefore, it is necessary for real-time or high
dimensional problems to find a better way to update the
covariance equation.

B. ENSEMBLE KALMAN FILTER (EnKF)
This section aims to allow Kalman filtering, performed in
real-time, on large dimension dynamic systems. The main
idea that led to the Ensemble Kalman Filter (EnKF) is to
provide an estimator that can be applied to large scale sys-
tems. In the EnKF, ensemble statistics are used to predict and
analyze the covariance matrix (Rk ).

G. Evensen introduced the EnKF in 1994 [40] in order to
deal with large-scale ocean models. Subsequently, the EnKF
has been further developed for different applications in sev-
eral articles. The different EnKF development stages can be
found and explained in [41]. Other important and promising
results have come to show the interest of EnKF, we can
cite its application to the marine ecosystem presented by
M. Eknes and G. Evensen [42] and J. I. Allen et. Al. [43].
Recently, the EnKF properties have shown exciting results
in oil reservoirs modeling. In this section, the theoretical
formulas of the EnKF will be presented. Further details on
the EnKF can be found in Evensen’s book [44].

1) EnKF ALGORITHM
The algorithm of the EnKF is as follows [41].

a. The initial estimation

• Generate the N-ensembles of the initial estimation

x̂1,i = [x̂1,1 x̂1,2 x̂1,3 . . . x̂1,n] with x̂1,i ∼ N (x−1 ,P1)
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• Compute mean of the initial estimation

x̂1 =
1
n

N∑
i=1

x̂1,i (21)

b. The prediction step

• Generate N-ensemble for the state variable in the predic-
tion step as follows

x̂−k+1,i = Bk x̂k,i + ςk,i (22)

with ςk,i ∼ N (1,Q0k ) is the ensemble of the noise
system.

• Mean of prediction step estimation

x̂−k+1 =
1
n

N∑
i=1

x̂−k+1,i (23)

• Compute Error covariance of the prediction step estima-
tion

R−k+1=
1

N − 1

N∑
i=1

(
x̂−k+1,i−x̂

−

k+1

) (
x̂−k+1,i − x̂

−

k+1

)T
(24)

c. The correction step

• Generate the ensemble of the measurement data

ȳk+1,i = ȳk+1 + ζk,i (25)

with ζk,i ∼ N (1,Rk0) is the ensemble of measurement
noise.

• Kalman gain is then defined as

Lk = R−k+1H
T
k
(
HkR

−

k+1 + 0k
)−1

(26)

• Estimation of the correction step is

x̂k+1,i = x̂−k+1,i + Lk
(
ȳk+1,i − Hk x̂

−

k+1,i

)
(27)

• Mean of the correction step estimation

x̂k+1 =
1
N

N∑
i=1

x̂k+1,i (28)

with the error covariance

Rk+1 = [1− LkHk ]R
−

k+1 (29)

d. Substitute (28) into the prediction step (22).
e. Repeat and continue step (b) and step (c) until we

get mean of the correction step estimation as the result of
estimation.

2) CHALLENGES WITH THE EnKF
The EnKF schemes provide a computational methodology
for the computation and propagation of a flux-dependent
predictive covariance matrix, R−k−1. Unfortunately, R

−

k−1 is of
rank k − 1 at most, and can therefore only take into account
the estimation uncertainty in at most k − 1 directions.
Indeed, computational limitations limit the ensemble size

to be much smaller than the state size, which leads to a
very serious rank-deficiency approximation of the actual
covariance matrix of the estimated global state. This rank of
deficiency can cause a poor analysis quality due to sampling
errors. Due to practical limitations, a larger ensemble may not
be an option; therefore, we must look to other approaches to
correct the sampling errors.

C. LOCALIZED ESTIMATION
1) COVARIANCE LOCALIZATION
Covariance localization allows removing the correlations
between the model variables whose spatial distance exceeds
a certain prescribed distance from a given node. The update
state at that node will depend only on observations and model
variables inside a finite distance. This is a desirable approach
because the nearby observations and model variables have a
stronger correlation with the quantities defined at the given
node because their covariance is best represented with a rea-
sonably sized ensemble. Localization helps avoid the influ-
ence of distant observations, which, although not having
physically significant correlations with the given node, can
have spurious correlations resulting from sampling errors of
the undersized ensemble. A too-small localization radius can
degrade the analysis, as it can remove correlations that are
physically and temporally significant and, therefore, benefi-
cial for the analysis accuracy. A small localization radius can
also cause imbalances or unwanted small-scale noise into the
analysis.

To avoid these adverse effects, the typical approach is
to multiply the EnKF estimated error sample covariances
by a weighting factor that will gradually decrease until it
reaches zero at a finite distance. The influence of observations
gradually decreases to zero. The localization radius should
ideally be large enough to take account of physically signif-
icant correlations and small enough to exclude long distance
spurious correlation.

2) COVARIANCE INFLATION
Suppose the EnKF is applied to large nonlinear models.
In that case, the model covariance matrix may be several
orders of magnitude larger than the ensemble size, which
does not allow the ensemble to represent the global model
dynamics statistically and will probably distort long-range
correlations.

By applying covariance localization, the sampling errors
can be compensated, but the ensemble may locally distort
the model covariance in some regions due to nonlinearities
in the model. Covariance inflation has the advantage of being
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FIGURE 4. The flow chart of the LETKF algorithm.

an ad hoc approach that compensates for these drawbacks.
It consists of multiplying the disturbance matrix, Xb by a
constant factor ρ > 1 to increase its ensemble spread, which
reduces the confidence of the EnKF diagram on the model
variable N-ensemble.

3) LOCAL ENSEMBLE TRANSFORM KALMAN FILTER (LETKF)
LETKF is a local ensemble square-root filter which trans-
forms the ensembles at a fixed time, {xb(i)}, i = 1; 2; . . . .;K
(K is the ensemble members number), into an analysis
ensemble, {xa(i)}, i = 1; 2; . . . .;K . This method handles
each node independently, assimilating only the observations
located within a defined distance, to obtain an ensemble of
analyzed local state vectors as is described hereafter. Finally,
we assemble the local analyzed ensembles to build a set of
global analyzed states.

Each local analysis only considers the uncertainty of pre-
diction at the local level, whose dimension is usually much
less than the overall uncertainty. Therefore, the global analy-
sis can be computed accurately by using only an ensemble
of average size. The LETKF is a naturally parallel algo-
rithm since each node is updated independently. Furthermore,
the computation operations are based on the ensemble size
and the number of observations and not the state size. Fig. 4
shows the flow chart of the proposed LETKF image recon-
struction algorithm.

Let x be a state vector of the time variant dynamic model
representing materials distribution. As initial conditions for
generating the ensembles xb(i), i = 1; 2; . . .K (K is the
ensemble members number), we use the analysis ensembles
in the previous analysis step. Let Xb be the matrix whose
columns contain the start from each ensemble xb(i) from the

ensemble mean x̄b where the i-th column of Xb is xb(i) −
x̄b. In order to transform the estimated state from the state
space to the observation space, the observation operator Hk
is applied to the ensemble xb(i), to obtain yb(i) = H (xb(i)).
Consider Y b = yb(i)− ȳb as the estimated disturbances in the
observation space. Then, the basic information is ready to be
compared with observations in the same space.

The LETKF assimilates only the observations at a certain
distance from each node, in order to update the analysis states
at each node. The index (l) is used to denote a quantity defined
on such a local region centered on an analysis node. The
analysis mean x̄a(l), is given by

x̄a(l) = x̄b(l) + X
b
(l)w̄(l) (30)

where w̄(l) is the mean weighting vector given by

w̄(l) = P̃a(l)
(
Y b(l)
)T

R−1(l)

(
yo(l) − y

b
(l)

)
(31)

where

P̃a(l) =
[(
Y b(l)
)T

R−1(l)

(
Y b(l)
)
+ (k − 1)I/ρ

]−1
(32)

is the analysis error covariance in the ensemble space, R is
the observation error covariance matrix, yo is the observation
vector, and ρ is the multiplicative inflation factor.

Inside a local region, spatial localization is performed by
multiplying the inverse observation error covariance matrix
by a factor that decreases from one to zero when the distance
of the observations to the node of analysis increases.

Therefore, the ensemble perturbations of the analysis are
given by

Xa(l) = Xb(l)
[
(K − 1)P̃a(l)

]1/2
(33)

which estimates the uncertainty of the analysis and the global
analysis ensemble xa(i) is deduced by gathering the values of
x̄a(l) and X

a
(l) at all nodes.

4) IMPLEMENTATION OF THE LETKF
In this section, we explain how the LETKF algorithm is
implemented for reconstructing images for ECT systems.

IV. RESULTS AND DISCUSSION
A. SIMULATION EXPERIMENT (NOISE-FREE
MEASUREMENTS)
Numerical simulations have been carried out to assess the
practicability of the proposed algorithm. Typically, the oil-
gas two-phase flowwas simulated, and 3 typical flow patterns
were tested. The relative permittivity of the oil and gas is set
to 4 and 1, respectively. A Matlab software package using
Gmesh FEM software is implemented to compute the solu-
tions of the ECT’s problems. The ECT consists of 12 elec-
trodes and its FEM has 4112 nodes, as shown in Fig. 2. The
radii of the outside screen and the pipe are 85mm, and 50mm,
respectively. The thickness of the pipewall equals 10mm. The
dimensions of each electrode are 62.5mm, 30mm, and 1mm.
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Algorithm 1 LETKF
Input: Capacitance Measurements
Output: Reconstructed Image
/* Initialization */

1 Generate the ensembles {xb(i)}
2 {yb(i)} ← Hk ({xb(i)}) // Hk is the nonlinear observation matrix

3 Y b(i)← yb(i) − ȳb // ȳb the ensemble mean of {yb(i)}

4 Xb(i)← xb(i) − x̄b // x̄b is the ensemble mean of {xb(i)}

5 for j = 1 : e do
// e is the number of image nodes

6 Update P̃a(l) by (32)
7 Update Xa(l) by (33)
8 Update w̄(l) by (31)
9 Update x̄a(l) by (30)

10 Collect the results of Step 9 to form the global analysis ensemble {xa(i)}

Several two-phase flow patterns as annular, core, bubble,
and Stratified flows are simulated and illustrated in the 1st

column in Fig. 5. The circular bubbles in all the simula-
tions have a radius equals to 15.85mm. The accuracy of
the proposed image reconstruction algorithm LETKF is veri-
fied using different material distributions and compared with
well-known algorithms such as Linear Back Projection (LBP)
and Tikhonov algorithms.

To evaluate the image reconstruction algorithm quantita-
tively, the relative Image Error (IE) ( Eq. (34) and Correlation
Coefficient (CC) (Eq. 35) are applied.

IE =
‖G∗ − G‖
‖G‖

(34)

CC =

∑N
i=1(Gi − Ḡ)(G

∗
i − Ḡ

∗)√∑N
i=1(Gi − Ḡ)2 ·

∑N
i=1(G

∗
i − Ḡ

∗)2
(35)

where G is the actual permittivity distribution of the test
object, G∗ is the reconstructed permittivity distribution, and
Ḡ and Ḡ∗ are the mean values of G and G∗, respectively.
The first column Fig. 5 represents the distribution of the

real material, while the second, third, and fourth columns
containing the reconstructed images from the LBP, Tikhonov,
and LETKF algorithms, respectively. The Tikhonov iteration
number is 200 iterations. The results of the LETKF algorithm
have high quality and accuracy with sharp objects’ bound-
aries compared with the reconstructed images from the LBP
and Tikhonov algorithms. The number of ensemble members
has been practically chosen equal to 25. Also, the covariance
inflation factor ρ has been empirically selected to be equal to
1.25 for nodes located within a radius of 100 nodes; in the
next 50 nodes, the value of ρ decreases linearly to 1.15; it
decreases again until reaching 1.1 for the next 50 nodes, and
is equal zero beyond the circle of radius of 200 nodes.

The LETKF algorithm is fast as well as the accuracy of its
reconstructed images are high. The reconstruction time of the
three algorithms are shown in Table 1. The Simulations are

TABLE 1. Reconstruction time in sec.

TABLE 2. IE for noise-free measurements.

carried out using a PC with an i9 CPU (3.6 GHz) and 32 GB
memory.

As shown in Eqs. (34) and (35), better reconstructed
images should have smaller IE and larger CC. Tables 2, and 3
contain IE, and CC, respectively of the reconstructed images
showed in Fig. 5. The proposed LETKF algorithm generates
better images with low relative error and high correlation. The
third phantom two objects are separated after applying the
LETKF algorithm, while the results from LBP or Tikhonov
algorithms have artifices. For instance, the IE index of the
annular, and core flows have been improved by around 64%,
61%, respectively when compared to the Tikhonov algo-
rithm. Also, the CC index of the annular, and three objects
flows have been improved by around 14%, 58%, respectively
when compared to the Tikhonov algorithm. The LETKF’s a
reconstructed image of the Stratified phantom is significantly
enhanced and has better fidelity.

B. SIMULATION EXPERIMENT (NOISE-CONTAMINATED
MEASUREMENTS)
The performance of the LETKF algorithm is tested by apply-
ing noise-contaminated simulated capacitance measurements
with an SNR of 45dB. Fig. 6 represents the reconstructed
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FIGURE 5. Reconstructed images of noise-free measurements.

TABLE 3. CC for noise-free measurements.

images from LBP, Tikhonov, and LETKF algorithms. The
numerical values of the IE, and CC are stated in the
Tables 4-5. The reconstructed images quality of the LBP and
Tikhonov algorithms, shown in Fig. 6, is low compared with
the reconstructed images from the LETKF algorithm.

TABLE 4. IE for noise-contaminated measurements.

C. IMAGE RECONSTRUCTION FROM EXPERIMENTAL DATA
The digital Electrical Capacitance Volume Tomography
(ECVT) system developed by Tech4Imaging [45] is used to
run the experiment. The ECVT has 36 channels, which can
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FIGURE 6. Reconstructed images of noise-contaminated measurements.

TABLE 5. CC for noise-contaminated measurements.

measure the capacitance between 3 levels of 12 electrodes
each. The system can generate 120 images/s.

The experiment is carried out by placing static phantoms
in an imaging area with a radius of 63mm and measuring

the capacitance of the 12 electrodes in the lower level. The
stratified flow is tested by placing a plastic plate to split
the pipe into two sections. One section is filled with plastic
particles (ε = 3.6). Two plastic rods (r = 8mm) were placed
inside the imaging area to experiment with the bubble flow.

Fig. 7 demonstrates the real distributions and the gener-
ated images from LBP, Tikhonov, and LETKF algorithms.
The created images from the LETKF algorithm have high
accuracy and particular boundaries between the empty and
filled sections compared with the other two algorithms. Also,
the LETKF reconstructed two rods and annular distribution
images have fewer artifacts. Tables 6, and 7 contain IE, and
CC, respectively of the reconstructed images of real experi-
mental setup shown in Fig. 7.
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FIGURE 7. Experimental setup and reconstructed frames.

TABLE 6. IE for experimental measurements.

TABLE 7. CC for experimental measurements.

V. CONCLUSION
In this work, LETKF algorithm for reconstructing the images
in the ECT is introduced. The proposed algorithm overcomes
the nonlinearity constraints associated with the ECT systems.
The inputs and outputs of the LETKF are the measured
capacitance values, and material permittivity value in each
node, respectively. Its localized approach allows LETKF to
overcome the challenges encountered in previous Kalman
filtering schemes, as well as to have high computational
efficiency allowing it to be applied to large dynamic systems.
Matlab implementations were carried out to solve the forward
and inverse problems. The results demonstrate the feasibility
of the proposed LETKF algorithm to reconstruct the material
distribution inside the imaging area.

LIST OF NOMENCLATURE AND ABBREVIATION
UT Ultrasound Tomography
OCT Optical Coherence Tomography
ECT Electrical Capacitance Tomography
ERT Electrical Resistivity Tomography
MIT Magnetic Induction Tomography
ILBP Iterative Linear Back Projection
ART Algebraic Reconstruction Techniques

ORT Optimization Reconstruction Techniques
FEM Finite Element Model
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
LBP Linear Back Projection
IE Image Error
CC Correlation Coefficient
ECVT Electrical Capacitance Volume Tomography
LETKF Local Ensemble Transform Kalman Filter

LIST OF SYMBOLS
ELECTRICAL CAPACITANCE TOMOGRAPHY
G Permittivity distribution
C Capacitance measurements
S Sensitivity matrix
� Imaging area
b Electric potential

KALMAN FILTER
Bk State transition matrix
xk State vector representing the material distri-

bution
Wk Measurements vector
zk White Gaussian noise
yk Pseudo measurement vector
0zk State error covariance Matrix
0rk Measurement covariance matrix
Jk Jacobian Matrix
β Regularization parameter
V Regularization matrix
Hk Nonlinear observation matrix
Rk Observation error covariance matrix
Lk Kalman filter gain

ENSEMBLE KF
N number of ensembles
x̂ State estimation vector
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LOCAL ENSEMBLE TRANSFORM KF
K Ensemble members number
xa State analysis ensemble
xb Estimated State ensemble
ya Observation analysis ensemble
yb Estimated observation ensemble
x̂b Ensemble mean of xb(i)

ŷb Ensemble mean of yb(i)

P̃a Analysis error covariance matrix
ρ Multiplicative inflation factor
e Number of image nodes
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