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ABSTRACT Data about wind are usually available from different databases, for different locations.
In general, this information is the average of the wind speed over time. The wind reports are crucial for
designing wind turbine controllers. But when working with floating offshore wind turbines (FOWT), two
problems arise regarding the windmeasurement. On the one hand, there are no buoys at deep sea, but near the
coast where the wind is not so strong neither so stable; so the measurements do not fully correspond to reality.
On the other hand, these floating devices are subjected to extreme environmental conditions (waves, currents,
. . .) that produce disturbances and thus may distort wind measurements. To address this problem, this work
presents a novel pitch neuro-control architecture based on neuro-estimators of the effective wind. The control
system is composed of a proportional-integral-derivative (PID) controller, a lookup table, a neuro-estimator,
and a virtual sensor. The neuro-estimator is used to estimate the effective wind in the FOWT and to forecast
its future value. Both current and future wind signals are combined and power the controller. The virtual
sensor also provides a measure of the effective wind based on other available signals related to the wind
turbine, such as the pitch angle and the angular velocity of the generator. Neural networks are trained online
to adapt to changes in the environment. Intensive simulations are carried out to validate the effectiveness of
this neuro control approach. Controller performance is compared to a PID, obtaining better results. Indeed,
an improvement of 16% for sinusoidal wind and an average improvement of 8% are observed.

INDEX TERMS Floating offshore wind turbines (FOWTs), pitch control, neuro-estimator, neural network,
virtual sensor, wind energy.

I. INTRODUCTION
Achieving the Paris Climate Goals [1] requires significant
acceleration in a variety of sectors. Among renewable ener-
gies, wind and solar resources seem to be leading the trans-
formation of the global electricity grid. It is estimated that
onshore and offshore wind power will generate more than a
third (35%) of total electricity needed in the medium term,
becoming the main source of generation by 2050 [2]. For
these predictions to come true, some engineering challenges
related to wind turbines (WT) must be still addressed.

An area of new challenges related to wind energy is auto-
matic control. In addition to energy efficiency of the turbine
itself, other control objectives are key to the develop of this
wind technology: stabilization of the output power around
its nominal value, maximization of the energy, vibrations
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damping, reduction of fatigue in the structure, etc. Even
more, these objectives must be guaranteed in all operating
conditions, which in the case of floating offshore wind tur-
bines (FOWT) can be very demanding. Moreover, it has been
shown that the control system can affect the stability of the
floating device [3].

Different control actions have been proposed to achieve
these goals. Structural control may help to reduce vibra-
tions and thus, fatigue and maintenance. Pitch angle, gen-
erator speed, and yaw control are in charge of improving
the performance of the turbine. The pitch control modifies
the angle of attack of the wind and is generally used to
keep the output power at its nominal value, once the wind
exceeds certain wind speed threshold. Controlling the angular
velocity of the generator is typically used to track the optimal
rotor speed to maximize power when the wind is below that
cut-off speed. The yaw control modifies the orientation of the
nacelle to match the direction of the wind. The complexity of
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this system has led to exploring the usefulness of intelligent
control techniques such as fuzzy logic, neural networks and
reinforced learning, among others, to address WT control
problems [4], [5].

A. MOTIVATION AND MAIN CONTRIBUTIONS
Wind information is key to analyze the performance of a
wind turbine and improve its control. This knowledge is
usually available from different databases, for different loca-
tions. In general, this information is the average of the wind
speed over time. But this information may not be so reliable,
particularly in the case of floating offshore wind turbines.
This is due to the fact that, on the one hand, there are no
buoys at deep sea, but near the coast where the wind is
not so strong neither so stable; so the measurements do not
fully correspond to reality. In addition, these floating devices
are subjected to extreme environmental conditions (waves,
currents, . . . ) that produce disturbances and thus may distort
wind measurements.

Therefore, in this work the issue of how to handle the
disturbances in the wind measurements is addressed.

We propose a neuro control approach that is able to deal
with external and internal uncertainties. External uncertain-
ties are included in the model as external disturbances. For
instance, the ocean waves influence the inclination of the
floating wind turbine. This makes the wind that impacts the
rotor different from the one measured. That is why what
we called the effective wind is calculated using a neuro-
estimator. This way, the disturbance of the waves is included
and can be tackled. In fact, in this proposal we not only esti-
mate the current effective wind but the forecasting effective
wind. Both values, estimation and prediction, are combined
and used to compensate the mismatches of the wind measure-
ments.

On the other hand, internal uncertainties that may come
from the model are considered by the virtual sensor that is
part of the control scheme. These uncertainties are considered
as a bias in the effective wind estimation. Thus, they are also
handled by the lookup table of the control strategy when the
pitch reference is generated and are then compensated.

Hence, the main contributions of this work can be summa-
rized as follows.

• A neuro-estimator is designed to estimate the current
effective wind that impacts the turbine, in spite of exter-
nal disturbances. This neural network also forecasts the
future effective wind using online learning.

• A virtual sensor has been also implemented to measure
the effective wind based on internal measures of the
turbine.

• A pitch control architecture is proposed to stabilize the
power output around its nominal value. The control
strategy combines the neuro-estimator, a PID controller,
the virtual sensor and a lookup table.

• This control approach has been validated through inten-
sive simulations under the presence of disturbances that

affects the wind measurement. It has been compared
with simpler control configurations with satisfactory
results.

After this section, where the motivation and main contribu-
tions of the paper are stated, the rest of the paper is organized
as follows. Section II describes the related works. Section III
presents the mathematical model of the wind turbine used and
how the disturbances are represented. The neuro-controller,
the neuro-estimator and the virtual sensor are designed in
Section IV. Simulation results are discussed in Section V. The
paper ends with the conclusions and future works.

II. RELATED WORKS
The improvement in the efficiency of the wind turbines comes
from the hand of the automatic control. That is why there
are numerous papers in the literature that have addressed this
problem, with different approaches. Among them, intelligent
techniques have been proved to be useful for these complex
and non-linear systems. In [6], a review of applications of
artificial intelligent algorithms in wind farms is presented.
In this paper, several issues inwind farms are studied, namely:
wind farm controllers, Mach number, wind speed prediction,
wind power prediction and other problems of wind farms are
reviewed. Two future research directions are pointed out to
be developed by artificial intelligent algorithms: wind farm
control systems, and wind speed and power prediction. Both
topics are addressed in our paper.

Regarding wind turbine control, a good survey on the
application of expert systems in pitch control is found in [7].
It presents a review on expert systems developed in recent
years to offer control solutions that approximate the condi-
tions of different wind turbines. To develop an expert control
system is not only necessary to know the dynamic operation
of the system, but also to anticipate the control response to
each of the different likely but uncertain scenarios.

In [4], a neural controller based on radial basis function
neural networks is used for pitch control. An unsupervised
learning algorithm is implemented that allows the neural
network to adjust the proper control law to stabilize the output
power around the rated power and to reduce the mean squared
error over time. The neuro-control has been compared with a
traditional controller, giving better results. Rubio et al. [8]
present a fuzzy-logic based system for the pitch control of a
wind turbine installed on a semi-submersible platform. They
work with different wind speed and turbulences, but with
the same wind uniform profile. The intelligent controller
has been compared to results obtained by the PI that NREL
proposes as reference for the controller of the type of float-
ing wind turbine they are working with. The performance
obtained is clearly superior, particularly for winds above
the nominal value. In addition, the fuzzy control system
could take into account different operating conditions, such
as aspects related to the environment. In [9] a hierarchical
fuzzy logic controller is designed to solve the nonlinear
system effects produced by atypical winds. It proposes to
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install a wind speed measurement system at a calculated
distance where the movement of the mechanical system of
the pitch angle will anticipate the position of the setpoint
angle, in order to minimize the effects of the wind gust on the
rotation of the turbine. In [10], a novel fuzzy rule is proposed
to adopt a positive pitch strategy when the error between
the measured and rated generator speed becomes large and
continues to increase, and to adopt a negative pitch strategy
when the error is small. This intelligent fuzzy pitch control
not only reduces the power deviation but also decreases some
ultimate loads and fatigue of the tower base and the blade
root.

A specific challenge of wind turbines in general, and of
floating offshore wind turbines in particular, is the wind
forecasting and the disturbance in the measurement of wind
speed [11], [12]. As it is well known, the output power
generated by a wind turbine is directly related to the wind
speed. Therefore, the use of wind information can improve
the performance ofWT controllers. However,WTs, and espe-
cially FOWTs, can be subjected to harsh external conditions,
such as oscillations produced by ocean waves that distort the
wind measurement [3]. To face this problem, in the work
here presented the use of a neural network based estimator
is proposed to estimate the effective wind speed and forecast
the future wind velocity. Estimation of wind speed and dis-
turbances has received attention in other works. In the paper
by Asghar and Liu [11], an effective wind speed estimator is
proposed using an adaptive neuro-fuzzy algorithm (ANFIS).
Authors try to obtain the relationship of the wind speed with
the tip speed ratio (TSR), rotor speed and mechanical power.
The ANN trains the fuzzy membership functions of the
inputs using least square and apply back propagation gradient
descent to accurately estimate the effective wind speed with-
out using any mechanical wind speed sensor. Then, the esti-
mated effective wind speed and the optimal TSR are used
to design an optimal rotor speed estimator. These estimators
are implemented in simulation to verify their performance.
The results show the accuracy and reliability of both estima-
tors. In a similar paper by the same authors, [13], a hybrid
intelligent learning adaptive neuro-fuzzy inference system is
proposed to estimate the Weibull wind speed probability dis-
tribution. Results are compared with five well-known numer-
ical methods. Both papers address the problem of selecting
the most efficient and economically viable wind turbine,
and for this purpose, they analyse four small scale wind
turbines.

Deng et al. present an optimal rotor speed controller
that uses an observer-provided estimate of effective wind
speed [14]. This effective wind speed is estimated from
the measured rotor speed, the measured pitch angle,
and the observed aerodynamic torque by the disturbance
observer. Some simulation results validate the availability
of the improved effective wind speed estimation algorithm
and the control strategy for capturing maximum wind energy.
In a previous work [15], the same authors propose a sensor-
less effective wind speed estimation algorithm based on the

unknown input disturbance observer and the extreme learning
machine for the variable-speed wind turbine. The proposed
algorithm is validated by simulation studies on a medium size
variable-speed wind turbine and compared with the Kalman
filter-based method with satisfactory results.

In [16], an artificial neural network-based reinforcement
learning (RL) for WT yaw control is presented. As it is well
known, one of the main drawbacks of yaw angle control is
that it requires a correct measuring of the incoming wind
direction. Otherwise the positioning of the nacelle will be
incorrect and the system will not be able to maximize the
wind power. To solve this issue, authors apply RL to achieve
some knowledge of the yaw control system of the wind
turbine that ensures that, after some time, the best action in a
certain situation is taken in an automatic way.

Recently, deep learning has been used to estimate the
wind turbine angular velocity remotely [17]. In this paper
it is investigated how the forecast/prediction models of the
existing wind farms can be adapted to generate a prediction
model for new stations.

Not so closely related but focused on an interesting topic,
a recent paper by Dhiman and Deb (2020) deals with wind
forecasting in wind farms, considering error in the wind speed
prediction. In this case this prediction is applied to wakeman-
agement in order to reduce the operational cost of a hybrid
wind farm equippedwith battery energy storage systems [18].
The same authors have another paper where they study the
wind speed prediction in presence of wake effect [19]. The
goal of this paper is the optimal placement of turbines in a
wind farm. The interesting result is how they conclude that
the wake effect reduces the effective wind power capture.
With the same objective, a parametric study of the wake effect
on the estimation of the energy production in wind farms is
presented in [20].

On the other hand, although it is out of the scope of this
work, it could be worthy to present some practical issues
related to the wind turbines, mainly with wind farms. Just
to mention a few of them. The control of the wind tur-
bines generator, usually a double fed induction one, has been
widely studied. For instance, Mohamed et al. [21], based on
a simplified model for the frequency response of DFIG WT,
develop an adaptive model predictive controller for the load
frequency control of the power system of the WT.

Interestingly, the uncertainty that is inherently associated
with the operation of a wind turbine should be also considered
from the economic point of view, as Mohamed et al. proposes
in [22]. In this paper, authors apply the transmission switch-
ing integrated interval robust chance-constrained (TSIRC)
approach as an effective tool to model the uncertainties of
the wind units by increasing the wind park-energy storage
system (WPES) profit as a strategic producer while reduc-
ing the system operation cost. They work with a 24-h time
horizon, in a day ahead electricity market. In a similar way,
the stochastic nature of the environment is taken into account
in [23], where an information management system for a wind
power producer is proposed. In this case, it also has an energy
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storage system and participates in a day-ahead electricity
market.

As shown, previous works that estimate the effective wind
speed and use it in the controller are scarce. In addition, there
are still some interesting and novel aspects that can be studied
further. For example, none of the previous papers explored
the combination of the current and predicted future effective
wind.

III. MATHEMATICAL MODEL OF THE WIND TURBINE
AND THE DISTURBANCES
In this work a model of a small 7 kW wind turbine is used.
It represents a real wind turbine. The equations of the model
are summarized in (1-8). The development of these equations
can be found in [4], [24].

İa =
1
La

(
Kg · Kφ · w− (Ra + RL)Ia

)
, (1)

λ = (w · R)/vef , (2)

λi =

[(
1

λ+ c8

)
−

(
c9

θ3 + 1

)]−1
, (3)

Cp(λi, θ) = c1

[
C2

λi
− c3θ − c4θc5 − c6

]
e−

c7
λi , (4)

ẇ =
1

2 · J · w

(
Cp (λi, θ) · ρπR2 · v3ef

)
−
1
J

(
Kg · Kφ · Ia + Kf w

)
, (5)

θ̈ =
1
Tθ

[
Kθ
(
θ ref − θ

)
− θ̇

]
, (6)

Pout = RL · I2a (7)

where La is the armature inductance (H), Kg is a dimen-
sionless constant of the generator, Kφ is the magnetic flow
coupling constant (V· s/rad), Ra is the armature resistance
(�), RL is the resistance of the load (�), considered in this
study as purely resistive; w is the angular rotor speed (rad/s),
Ia is the armature current (A), and λ is the tip-speed ratio
which is dimensionless.

The values of the coefficients c1 to c9 that define the
power coefficientCp depend on the characteristics of thewind
turbine; J is the rotational inertia (Kg.m2), R is the radius
or blade length (m), ρ is the air density (Kg/m3), Kf is the
friction coefficient (N.m/rad/s), Kθ and Tθ are dimensionless
parameters of the pitch actuator, vef is the effective wind
velocity in the blades (m/s), vM is the wind velocity mea-
sured by an anemometer sensor, and dW is the disturbance
function.

The state variables of the system are the current in the
armature, the angular rotor speed, the pitch angle and the
pitch velocity. The main variable of the control problem
here addressed is the pitch acceleration, where θ is the pitch
angle (rad) and θref is its reference (rad). Indeed, the con-
troller proposed in this paper is applied to find the pitch
reference signal, θref , that stabilize the output power, Pout ,
of the wind turbine around its rated value.

A. DESCRIPTION OF THE DISTURBANCES
Offshore wind turbines are subjected to external disturbances
which may produce oscillations in the tower, nacelle and/or
the hub. Because of that, the effective wind vef , which is
transformed into mechanical power, does not perfectly match
with the wind speed measured by the anemometer sensor.
This difference has been considered and modelled in this
work as a disturbance, dW .

vef = dW (vM ) (8)

The procedure to obtain the effective wind vef from the
measured wind vM must include the uncertainty in the mea-
surements. Two sources of uncertainty have been considered.
First, an external disturbance produced by the movement of
the wind turbine, dWext . This motion makes the wind reach-
ing the blades different from the measured one. In addition,
the aerodynamic shape of the blades changes the effective
wind vef that feeds the hub. The latter issue is not always
well-known and introduces uncertainty. It has been here mod-
elled as an internal disturbance, dWint .
Considering the behavior of the regular ocean waves as

periodic, the external disturbance has been modelled as a
sinusoidal signal with white gaussian noise.

dWext (vM ) = vM + Ad · sin
(
2π
Td
· t
)

+Ad · Kd rand (t)+ Cd (9)

where Ad is the amplitude of the disturbance in m/s, Td is the
period of the wave, Cd is a constant term, Kd is a coefficient
to adjust the signal noise ratio, and rand() denotes the random
function.

Thewind produces oceanwaveswith periods between 0.1 s
to 300 s [25]. So, we have considered these values in the
experiments. Storms and earthquakes produce waves with
longer periods but they have not been tested in this work.

On the other hand, the internal disturbance has been mod-
elled by two filters placed in cascade (10-11).

filt1(s) =
β · s+

√
2

β2 · s2
(√(

2
α

)
+
√
α

)
· β · s+

√
2

(10)

filt2 (s) =
γ · s+ 1/τ
s+ 1/τ

(11)

where [α, β, γ, τ ] values are [0.55, 0.832, 1.17, 9]. Then,

dWint (s) = filt1 (s) · filt2 (s) (12)

Finally, combining equations (9) and (12) the effective
wind can be modelled by:

vef = dWint (dWext (vM )) (13)

IV. DESIGN OF THE NEURO-CONTROLLER
The architecture of the neural controller is shown in Figure 1.
A lookup table (green block) obtains a pitch reference θTAB
as a function of the estimated wind. The mapping between
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FIGURE 1. Architecture of the neural controller.

the wind and the pitch reference that gives the corresponding
rated power is not perfect. Thus, to reduce this mapping error
we use a PID with anti-windup regulator. This conventional
controller is still the most widely applied to real wind tur-
bines, although a more advanced controller could be used.

The PID controller calculates the difference between the
power output Pout and the power reference, Pref , and uses it
to generate θPID. Then, both references, θTAB and θPID, are
combined and then limited to ensure the total pitch reference
θref does not overpass the pitch limits [0,π/2] rad. As it will
be shown in the experimental results, the PID smoothers the
pitch reference generated by the lookup table. The WT has
as inputs the pitch reference from the controller, θref , and the
wind speed with the external disturbance, Vwd .
The NN wind estimator receives the angular rotor speed

w and its derivative ẇ, the pitch angle θ , and the current
in the generator, Ia. This neural system then estimates the
effective wind and the disturbance in the current control
interval, as well their values for the next control interval. The
estimated and predicted winds are weighted and the result,
Ṽwd , is used as input of the lookup table.
The following equations formally describe the behavior of

the controller (14-19).

VACT (ti) = fNACT (w (ti−1) , ẇ (ti−1) , Ia (ti−1) ,

θ (ti−1) ,Vw(ti)) (14)

VFUT (ti) = fNFUT (w (ti−1) , ẇ (ti−1) , Ia (ti−1) ,

θ (ti−1) ,Vw(ti)) (15)

Ṽwd (ti) =

{
Vw (ti) t≤ tonl
KACT · VACT (ti)+KFUT · VFUT (ti) t> tonl

(16)

θTAB (ti) = fLT (Ṽwd (ti)) (17)

θPID (ti)=Kpc · Perr+Kdc ·
d
dt
Perr+Kic

∫
Perr · dt (18)

θref (ti) = MIN (π/2,MAX (0, θTAB (ti)− θPID (ti))) (19)

where fNACT and fNFUT are the functions of the neural net-
works which estimate and predict the current and the future
effective wind, respectively; KACT and KFUT are coefficients

within the range [0, 1] that fulfil the constraint 0 ≤KACT +
KFUT ≤ 1; fLT denotes the function of the lookup table, and
[KpC ,Kdc,Kic]∈R3 are the tuning parameters of the PID
controller. The parametersKACT andKFUT are used to ponder
the importance given to the forecasted wind respect to the
current estimated wind.

The lookup table implements a mapping function between
the wind speed and the pitch reference. The larger the wind
speed, the bigger the pitch angle, in order to stabilize the
output power around its rated value. This table can be defined
by experimental data or by airflow simulation tools. In our
case, the data of the table have been obtained introducing
different constant wind speed values in the simulation model
and adjusting the pitch reference to obtain the rated power.
This mapping function is shown in Figure 2.

FIGURE 2. Mapping function implemented by the lookup table.

A. DESCRIPTION OF THE NEURO-ESTIMATOR
In this section we focus on the estimation of the present
wind velocity, VACT and on the forecasting of the future wind
speed, VFUT . As it is shown in Figure 3, the neuro-estimator
is formed by two neural networks, which calculate VACT
and VFUT , plus a virtual sensor, that provides information to
train the networks, a memory buffer, and some switches to
commute signals.

Particularly, the effective wind virtual sensor calculates a
measurement of the effective wind based on the angular speed
of the generator, its derivative, the current in the armature, the
pitch and the measured wind speed. This measurement, Vvs,
is used to train the neural networks ACT and FUT (Figure 3).
According to (16), before tonl time, the estimator is not used
because the neural networks have not been trained. When t =
tonl , the switches SW1, SW2 and SW3 are set to the modes
[‘‘down’’, ‘‘up’’, ‘‘up’’] and the neural networks are trained.
The inputs of NN-FUT go through a memory buffer to allow
the neural network to associate the inputs at ti with the output
at ti+2.
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FIGURE 3. Architecture of the neuro-estimator.

Once the neural networks are already trained the estimator
commutes each control period between two states: estima-
tion and online-learning. During the estimation the switches
SW1, SW2 and SW3 must be set to the configuration [‘‘up’’,
‘‘down’’, ’’down’’]. This way VACT and VFUT are calculated
using equations (14) and (15). After that, the switches change
to [‘‘down’’, ‘‘up’’, ‘‘up’’] and the weights of the neural
networks are updated by the learning algorithm.

In the experiments, feedforward neural networks with two
hidden layers and 3 neurons per layer were applied, although
a different network configuration could have been used. The
Levenberg-Marquardt backpropagation algorithm has been
used for the training.

The utility of these neural networks is twofold. On the one
hand, NN-ACT allows to estimate the effective wind in case
the virtual sensor cannot provide a real value (singularities
such as division by 0, square roots of negative values, etc.)
In these cases the neural networks still provide an estimation
of input values different to the ones used during the training.
This is, the neural networks generate new knowledge. On the
other hand the NN-FUT forecasts the future effective wind,
that will be used in the control scheme.

B. DESCRIPTION OF THE VIRTUAL SENSOR
The wind speed measured by the virtual sensor is obtained in
two steps. First, the sensor gives a measurement of Cp(λi, θ) ·
v3ef , that is called CpV3est in equations (20) and (21).

estA(ti) = ẇ(ti−1)+ (1/J ) ∗ (Kg · Kφ · Ia(ti−1)

+Kf · w(ti−1)) (20)

CpV3est (ti) = estA(ti) · (2 · J · w(ti−1))/(π · ρ · R2) (21)

Then, the effective wind is obtained from a lookup table
defined by the mapping function which relates the tuple
[vef ,w, θ] with the value Cp(λi, θ) · v3ef . This table can be
obtained either by empirical experiments with the blades or
by airflow simulation tools.

FIGURE 4. Cp(λi , θ)·v3
ef for θ =0 rad and w =5.4 rpm.

Figure 4 shows a representation of this lookup table for the
coefficients of the wind turbine used in the experiments, when
θ =0 rad and w =5.4 rpm.

As it may be observed in this Figure 4, the relationship
Cp (λi, θ) ·v3ef → vef is not one-to-one. Thus, Vws needs to be
calculated by the procedure described below. First, we find
the set of effective winds Vcan ⊂ R whose Cp (λi, θ) ·v3ef
value matches CpV3est (ti) following the curve of Figure 4.
Formally:

Vcan ⊂R :
{(
v∈R | Cp (λi(v,w), θ) · v3 = CpV3est (ti)

}
(22)

Thenwe obtain the closest value to the previouswind speed
calculated by the virtual sensor, Vvs(ti−1), that is (23).

Vvs (ti) = argMIN v∈Vcan (|v− Vvs (ti−1)|) (23)

C. IMPLEMENTATION OF THE CONTROLLER
The Algorithm I details the sequence of equations that are
executed after the neural networks have been trained for the
first time, that is, from t > tonl to the end of the simulation.
The algorithm may help to follow the flow of the operations
of equations (14-23). As it is possible to see, at each control
period Tc the references are obtained, the neural networks are
updated and, finally, the WT model is simulated.

Before running this algorithm, the controller calculates the
reference without the use of the neural networks and a first
training of the neural networks is carried out. In order to per-
form this first training, a dataset with ([w, ẇ, Ia, θ,Vw, ] ,Vvs)
is obtained with the information from t=0 up to t = tonl . This
way, when t > tonl the neural networks are already trained for
the first time and the Algorithm I starts.

V. SIMULATION RESULTS
In order to show the effectiveness of the neuro control
strategy, simulation experiments have been carried out with
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Algorithm 1 Execution of the controller and the model from
t > tonl
For t =tonl to Tsim {

If t ≥told+Tc {

VACT← NNACT .fNACT (w,ẇ,Ia, θ,Vw)

VFUT← NNFUT .fNFUT (w,ẇ,Ia, θ,Vw)

Ṽwd←KACT ·VACT+KFUT ·VFUT
θTAB←fLT (Ṽwd )

Perr←Pref−Pout
Ṗerr← (Pref−Perr )/Tc
sPerr←sPerr+Perr ·Tc
Pold←Perr
θPID←Kpc·Perr+Kdc·Ṗerr+Kic·sPerr
θref← MIN (π/2,MAX (0,θTAB−θPID)

estA←ẇ+(1/J ) ∗ (Kg·Kφ ·Ia+Kf ·w)

CpV3est← estA·(2 · J · w)/(π · ρ·R2)

Vcan←
{
(v ∈ R|Cp (λi (v,w) , θ) ·v3= CpV3est

}
·

Vvs← argMIN (|v−Vvs|) |v ∈Vcan
NNACT← onlineTraining(NNACT , [w,ẇ,Ia, θ,Vw] ,Vvs)

NNFUT← onlineTraining(NNFUT , old[w,ẇ,Ia, θ,Vw],Vvs)

told← t

}endIf

old[w,ẇ,Ia, θ,Vw]← [w,ẇ,Ia, θ,Vw]

[Pout ,w,ẇ,Ia, θ,Vw]← WTmod(θref ,Vw)

}endFor

different wind profiles and several disturbance values. All
the results have been obtained with the software Mat-
lab/simulink. A variable simulation step has been used to
minimize the discretization error. The maximum simulation
step has been set to 10ms and the control period Tc is 100ms.
The parameter tonl has been set to 10 s.
The performance of the proposed neuro-control scheme

has been compared with a biased PID (24), the lookup table
without the PID (with and without the neuro-estimators)
(25-26), and the lookup table with the PID but without the
neuro-estimators (27).

θref =
π

4
−

π

4000
[KP · Perr

+KD ·
d
dt
Perr + KI ·

∫
Perr · dt] (24)

θref = fLT (Ṽwd (t)) (25)

θref = fLT (VW (t)) (26)

θref = fLT (Vw)−
π

4000
[KP · Perr + KD ·

d
dt
Perr

+KI ·
∫
Perr · dt] (27)

The range of the pitch reference is [0, π /2] rad. Thus,
the bias of the PID has been assigned half the input range,
i.e., π /4. The PID tuning parameters [KP,KD,KI ] have been
obtained by trial and error; their values are [1, 0.2, 0.1],
respectively.

To test the control approaches, the following metrics have
been used: MSE [W] and Mean [W] (28-29).

MSE[W ] =

√
1
Tsim

∑
i

[(
Pout (ti)− Pref

)2 Ts(ti)] (28)
Mean[W ] =

1
Tsim

∑
i

[Pout (ti) · Ts(ti)] (29)

The values of the parameters used during the simulation
are shown in Table 1, taken from [26] for a 7 kW turbine.

TABLE 1. Parameters of the wind turbine model [26].

The control approaches have been evaluated with different
wind profiles: constant, random, sinusoidal, square, ramp and
sawtooth. The range of the wind speed is between 11 to
13 m/s. The modelled wind turbine has a rated wind speed
of 12.25 m/s, which means that below this cut-off speed the
wind power is not enough to generate 7kW. Thus, the pitch
control only works when wind speed is over this value.
This range of winds speeds reflect the reality. Indeed, they
correspond to ‘‘Strong breeze’’ regarding the Beafourt scale.
Velocities from 11 to 13 m/s, that is, 21 to 25 kts, are typical
in a windy day in many places, for example in the North of
Spain, where some wind turbines are installed.

The random wind speed oscillates between 12.25 and
12.75 m/s. The sinusoidal wind has a mean value of 12.5 m/s,
an amplitude of 1 m/s and a time period of 50 s. The ramp
has a slope of 0.01 m/s and a start value of 11 m/s. The
square wave switches between 12.15 m/s and 13.1 m/s of
amplitude with a time period of 50 s. Finally the sawtooth
profile has limits at 12.25 and 13.1 m/s, and a time period
of 50 s.
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A. PERFORMANCE WITHOUT EXTERNAL DISTURBANCES
Figure 5 shows the comparison of the output power when the
different control strategies are applied. The wind speed is a
random value between 12.25 and 12.75 m/s.

FIGURE 5. Comparison of output power for different control techniques
with random wind without external disturbance.

In the following figures, the color code is as follows. The
dark blue line represents the output when the pith reference is
permanently set to 0◦ and the red onewhen it is set to 90◦. The
yellow line is the output power with the PID controller and the
purple one is the output when the pitch is only determined
by the lookup table and the effective wind is estimated by
the neural network (TAB-NEW). The green line is the output
power when the pitch is determined by the lookup table
together with a PID and the wind is estimated by the neural
network (TPID-NEW). The output power when the pitch is
obtained by only the lookup table and the wind is measured
only by the sensor is represented in light blue (TAB-MW).
The magenta line represents the output when the pitch is
determined by the lookup table together with a PID but the
wind is only measured by the sensor (TPID-MW). Finally,
the black dashed line is the rated power.

As expected, pitch angle 0◦ and 90◦ configurations provide
the maximum and minimum power, respectively. It is also
possible to observe how all the controllers stabilize the output
power around the rated value. However, TPID-NEW config-
uration gives the smallest settling time. Although external
disturbances have not been considered in this experiment,
the results of TAB-NEW and TAB-MW are not the same due
to the effect of the internal disturbance (12).

Figure 6 shows the pitch of the blades for each control strat-
egy. The color code is the same as in Figure 5. It is noticeable
how the pitch angles obtained by TAB-MW and TPID-MW
are the noisiest. A possible explanation of this effect is that
these techniques do not include the neuro-estimator that tends
to smooth the pitch reference.

Figure 7 shows the comparison of the output power when
the wind follows a sawtooth profile with limits at 12.25 and

FIGURE 6. Comparison of pitch signal for different control techniques
with random wind without external disturbance.

FIGURE 7. Comparison of output power for different control techniques
with sawtooth wind without external disturbance.

13.1 m/s, and a time period of 50 s. This sawtooth shape
is clearly observable in the output power when the pitch is
set to 0◦ and 90◦. However, the other control strategies limit
the peaks and the output power has a more trapezoid shape.
The TPID controller with the neuro estimators provides the
minimum error.

The pitch signal of this experiment is shown in Figure 8.
The periodic behavior of the output power can also be
observed in the pitch signal but in this case with a sinusoidal
shape. TPID-NEW and TPID-MW are similar but not exactly
the same due to the fact that there are not external distur-
bances.

In addition to the graphical results, numerical outcomes
have been obtained. Tables 2 and 3 show the compari-
son of the MSE and mean values of the output power
when the proposed control strategies have been applied with
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FIGURE 8. Comparison of pitch signal for different control techniques
with sawtooth wind without external disturbance.

TABLE 2. Comparison of MSE [W] for different controllers without
external disturbance.

TABLE 3. Comparison of mean value [kW] for different controllers
without external disturbance.

different wind profiles. The random and sawtooth wind pro-
files have the same characteristics as in the experiments of
Figures 5 and 7.

In the columns of these Tables, the term TAB represents
the values obtained when the lookup table is used without
PID. The term TPID indicates the values obtained when the
lookup table is used together with the PID. On the other hand,
NE-wind represents that the wind speed is obtained by the
neural estimators andM-wind refers to wind values measured
directly by the sensor.

Although in these experiments external disturbances have
not been included, the TPID with the neuro-estimated wind
provides the smallest MSE for almost all wind profiles. It is
also possible to see how, in general, the combination of TAB
and PID provides better results than the individual application
of each technique, even when the wind is measured. How-
ever, the best mean values are provided by the PID and the
TPID with measured wind. The control approach TPID-NE
provides an improvement of 24% for sinusoidal wind and an
average improvement of 10% respect to the PID.

In order to facilitate the comparison of the results, Figure 9
shows the MSE for all the control strategies. It is possible
to see how the best performance is obtained by the proposed
new control scheme TPID-NE, and the best improvements are
achieved with sinusoidal and sawtooth wind profiles.

FIGURE 9. Comparison of MSE [W] for the different control strategies
without external disturbance.

B. WIND AND DISTURBANCE ESTIMATION
In previous experiments the external disturbance has been
discarded to see how the control systems performs. Now,
in the following experiment an external disturbance has been
included, with a sinusoidal shape with 0.3 m/s mean value,
0.3 m/s of amplitude and a time period of 30 s. A random
signal of 0.3 m/s is also added to this disturbance. The mea-
sured wind has the sawtooth profile used before. The neural
estimators are trained from the beginning of the simulation
up to t=10 s, then the on-line learning algorithm is applied
up to the end.

Figure 10 shows the wind measured by the sensor in yel-
low, the combination of the wind and the disturbance in red,
the effective wind estimated by the neural estimator in green;
the future effective wind predicted by the neural estimator is
represented by the blue line.

It is worth noting the sinusoidal influence of the distur-
bance in the input wind. As expected, the measured wind
has a sawtooth shape. It is also possible to observe how the
estimation of the current wind fits quite well the input wind.
In general, it is possible to say that the future wind is well
predicted by the neuro-estimator, although some peaks appear
when the slope of the measured wind changes from negative
to positive values. Despite these peaks, as it will be seen in
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FIGURE 10. Effective wind estimation when wind type is sawtooth and
there is a sinusoidal external disturbances.

the next section, the performance of the controller is better
when the future estimation is considered.

The estimation of the disturbance for the same experiment
is shown in Fig 11. The blue line represents the disturbance,
the yellow one is the current disturbance neuro-estimated and
the purple line shows the future disturbance predicted by the
neuro-estimator. The disturbance is a sinusoidal signal with
random noise. The width of the line shows the noise level
of the signal. As in Figure 10, the estimation at the current
time fits quite well the expected value, however the future
forecasting shows peaks at the same instants of time as before.

FIGURE 11. Disturbance estimation when wind type is sawtooth and
there is a sinusoidal external disturbance.

C. PERFORMANCE WITH EXTERNAL DISTURBANCES
In the next experiment the input wind is randomly generated
between 12.25 and 12.75 m/s, and an external disturbance

FIGURE 12. Comparison of output power for different control techniques
with random wind and external disturbance.

with the same characteristics as in the previous section is
included. Figure 12 shows the comparison of the output
power when different control strategies are applied. The color
code is the same as in Figure 5.

As expected, the worst results are obtained with 0◦ and
TAB-MW control strategy. The disturbance increases the
mean value of the effective wind. This produces a bigger
output power, therefore a higher pitch value is needed to
compensate it. However, the lookup table with the measured
wind as input does not perceive this increment in the effective
wind and it generates a pitch angle smaller than the necessary
one.

The amplitude of the disturbance pushes the WT to its
regulation limits so the effect of the disturbance cannot be
completely eliminated. Despite this issue, it is still possible
to observe how the best performance is obtained with the
TPID-NEW strategy.

In order to better analyse these results (Figure 12),
the numeric values of the MSE and the mean value of the
output power are shown and compared in Tables 4 and 5. The
description of each column is the same as in previous tables.
In this case, it is clear that TPID with neuro-estimated wind
gives the lowest MSE for all the tested wind profiles. It is also
remarkable that the use of neuro-estimated wind gives better
results with the TAB controller (comparison between third
and fifth columns in Table 4 ). Another relevant result is that
the use of TPID, even with measured wind, improves the con-
trol performance respect to the use of the PID (comparison
between the second and the last columns in Table 4). In this
case the improvement achieved with the different control
approaches for different wind profiles is more similar than
the one previously obtained in Table 2. Again the best results
is obtained by the TPID-NE control strategy (16% improve-
ment for sinusoidal wind and an average improvement of 8%
respect to the PID).
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TABLE 4. Comparison of MSE [W] for different controllers with external
disturbance.

TABLE 5. Comparison of mean value [kW] for different controllers with
external disturbance.

However, in view of the values of Table 5, the best output
power mean values are obtained with the PID controller fol-
lowed by the TPID M-Wind strategy. A possible explanation
of this outcome is that the PID does not use the wind values in
the control law but only the power errors; this produces more
symmetric values respect to the rated power.

Figure 13 shows these results for all the control strate-
gies. The best performance is obtained with the proposed
TPID-NE control for sinusoidal and sawtooth wind profiles.
Comparing this figure with Figure 9, it is possible to see that
the worst performance corresponds to the TAB-M control.
This may be explained due to the fact that the PID is not
directly affected by the disturbance in the measurement of
the wind as the TAB-M approach is.

FIGURE 13. Comparison of MSE [W] for the different controllers with
external disturbance.

D. INFLUENCE OF THE PERIOD OF THE EXTERNAL
DISTURBANCE
In the next experiment the effect of the time period of the
disturbance is evaluated. To do it, different simulations are
carried out with a sawtooth reference defined as in Figure 7,
a sinusoidal disturbance of 0.3 m/s mean value, amplitude
of 0.3 m/s and a different period each time. The period value
varies between 0 and 100 s. These values are standard in
the ocean waves. For each simulation the MSE of the output
power is calculated.

The result of this experiment is shown in Figure 14. The
blue line represents the MSE values with the PID and the
red one is the MSE values obtained with the TPID with
neuro-estimated wind. In the case of the PID, it may be
observed how the MSE increases with the period of the
disturbance, with some exceptions (at periods of 40 s and
80 s). However, in the case of the TPID-NEW control the
MSE increases up to period of 20 s, and from then on a
decreasing trend is observable. A possible explanation of this
effect is that the high frequency external disturbances are
filtered by the wind turbine and only its mean value affects the
MSE.When the period grows, the variation of the disturbance
cannot be filtered and their influence on the output power
is larger. On the other hand, slower disturbances are better
estimated, thus they can be considered by the TPID-NEW
and its influence is reduced. In all cases the performance of
TPID-NEW control scheme is better than the PID controller.

FIGURE 14. Variation of MSE with the period of the external disturbance
for a sawtooth wind.

E. INFLUENCE OF THE RELATIONSHIP BETWEEN
ESTIMATION AND FORECASTING
Finally, the influence of the parameter KFUT is studied to see
the benefits of considering the future wind. Several simula-
tions for all the different wind profiles considered in Table 4
have been carried out. In all the cases a disturbance as in
Figure 12 is introduced. For each wind profile the parameter
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KFUT varies from 0 to 1. The KACT parameter is set to
1 − KFUT . For each simulation the MSE is obtained. The
average MSE of each KFUT for all the simulations is shown
in Figure 15.

FIGURE 15. Variation of the average MSE of the output power with the
KFUT parameter.

The behaviour of Figure 15 shows a clear decreasing
trend up to KFUT is 0.8, where there is a local minimum.
As observed it is positive to consider the forecasting of the
wind in the control of the output power. In the previous
experiments this parameter had been set to 0.5, in order to
give the same weight to the actual estimation and the future
prediction.

VI. CONCLUSION AND FUTURE WORKS
Considering the effective wind speed allows to achieve rel-
evant improvements in the performance of the control of
a wind turbine. However, the effective wind speed, that is,
the speed of the wind that really impacts the rotor and is trans-
formed into mechanical power, cannot be directly measured
by a sensor such as an anemometer. In addition, the turbine
blades act as a filter. This makes the effective wind different
from that measured externally. On the other hand, WTs are
subject to oscillations and vibrations that distort the external
wind measurement, an effect that is even more noticeable
in floating offshore wind turbines since they are subject to
extreme external conditions.

To address this problem, in this work the use of a neuro-
estimator based on neural networks is proposed with the
objective of estimating the effective wind and predicting the
wind in the next control period. Both signals, the current wind
and the forecasting wind, are included in the controller. The
proposed control architecture combines a PID and a look-up
table, and a neural network that estimates the effective wind,
and a virtual sensor. The neural estimator consists of two
neural networks, one for estimating and one for predicting
the wind speed. Neural networks are trained online to allow

them to react to changes in the environment, wind conditions
or even variations in the WT dynamics.

The results of the different simulated experiments val-
idate the efficiency of the proposed intelligent control
approach. This neural controller scheme is compared to a
PID, giving better results.

As future work, it would first be desirable to test the
proposal on a real prototype of a wind turbine. Also, it would
be interesting to apply this control strategy to a larger turbine.
To do so, the small wind turbine is going to be scaled to a
bigger one. This will allow us to analyze the sensitivity of
the model when the parameters (size, mass, mechanical and
electrical components) vary. In addition, this will allow us
to see if this control action affects the stability of a floating
offshore wind turbine.
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