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ABSTRACT Protein-Protein Interaction (PPI) is a network of protein interconnections which regulates most
of the biological methods. A sound state of biota largely depends on synchronized interactions between
protein molecules, and any aberrant interactions between protein molecules may lead to complications,
including cervical leukemia, tuberculosis, and other neural disorders. In PPI investigation, a plethora of
computational methods have been developed over the years to analyze and predict PPI conclusively; however,
a majority of these techniques proved to be strenuous and expensive. Therefore, the need for faster, accurate,
and critical analysis of PPI warrants the adoption of Machine Learning (ML) methods such as Support Vector
Machine (SVM), Artificial Neural Network (ANN), and Random Forest Model (RFM). These classifiers are
useful in PPT unfolding in terms of amino acid sequence data. The SVM classifier, in particular, is serviceable
in solving a majority of complex classification problems producing robust results in a reasonable time frame.
This publication summarizes some state-of-art SVM based PPI investigations and challenges incurred in the
application of the SVM method.

INDEX TERMS Artificial neural network, machine learning, protein-protein interaction, support vector
machine.

I. INTRODUCTION from an environment or from neighboring cells. These sig-

Proteins are macromolecules consisting of long strings of
amino acid residues that perform several functions inside
organisms, including replication of DNA, stimuli-response
mechanism, and molecular transportation. Biological pro-
cesses follow a concerted mechanism in which several pro-
tein molecules participate where DNA molecules sustain
necessary biological information, which expresses through
functions of proteins molecules. PPIs are the bio-physical
connections of high specificity set between protein molecules
produced by biochemical phenomenon. The PPI constitutes
cellular communications in living beings that take place
through the exchange of signals, which may come either
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nals bind to receptor proteins to reach the desired cell
through a channel known as cell membranes. These recep-
tors are connected inside and outside of a cell, forming a
signaling pathway between source and destination. Com-
munication between proteins such as tissue proteins, pro-
teins from viruses, microorganisms, and bacteria resulted
in disease-causing mutations. Therefore, it is imperative to
analyze protein communications that help in the identifica-
tion of such mutations. These mutations either affect binding
interfaces or causes biochemical impairment by amending the
job of an enzyme. The PPI analysis empowers us with the
following:

« Detection of protein complexes.
o Identification of domain interactions.
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« The involvement of protein in disease pathways.

« Developing effective strategies in drug design.

Conventional bio-physical methods for PPI identification
are both tedious and expensive. In contrast, traditional com-
putational methods are confined by pre-requisite knowl-
edge about gene-neighbourhoods, phylogenetic sketches, and
sequence interpretation to render favourable PPI prediction
outcomes. Machine learning (ML) methods, including SVM,
ANN, RFM, and deep-learning, deliver critical means for
judicious prediction of PPIs based on the direct derivation
of protein information from amino acid sequences. In this
context, Xia et al. [1] reviewed the adoption of computational
methods in Genomic, structure, domain, and sequence-based
approaches. The SVM method offers multi-faceted aspects,
such as integrating statistical descriptors with binary coding
of protein sequences, and operative use of SVM variant,
i.e., two-class SVM on heterogeneous protein complexes,
both stable and temporary, in PPI recognition. Reference [1]
reviewed the use of the Rotation Forest on sequence-based
approach, wherein the SVM method is equally useful.

These constituents influenced us to review PPI predic-
tion through the lenses of SVM. Consequently, we reviewed
SVM’s performance based on the cluster, genome, domain
and customized feature-encoding tool.

Il. PRELIMINARIES

The study of PPI can be conceptualized from diverse per-
spectives. In computer science, a PPI system is modelled
as a graph G = (V, E), where V is the set of the protein
vertices, and E is the set of the edges representing pairwise
protein interactions. Weighted edges in graph G used to
describe reliability information associated with such interac-
tions. A PPI system can also be considered as a network of
interconnected nodes, which build a global network of protein
interaction architecture. The PPI network system is useful
in depicting, visualizing, and quantifying cellular functions.
In this context, the authors of [2] used Graph Fragmenta-
tion Algorithm (GFA) derived and adapted from the Max
Flow Algorithm (MFA) to identify protein complexes in the
PPI network. In their work, authors of [3] used a graph mining
algorithm for determining protein interactions by merging
local cliques to obtain maximal dense regions. In contrast,
authors of [4], proposed a cost clustering algorithm for pre-
dicting protein complexes, in which the entire PPI network
partitioned into clusters for searching interacting neighbours.
Authors of [5], suggested the application of spectral graph
method in unhiding the topological structures consisting of
similar functional groups.

The biophysical methods encompass a plethora of tech-
niques to describe, recognize, and predict PPI. These methods
are useful in analyzing the bio-molecular roles of PPI at
the atomic level. The organization of biophysical methods is
shown in Fig. 1.

Rao et al. [6] reviewed the role of biological meth-
ods for detecting PPI. These methods are primar-
ily classified into three basic types’ in-vitro [7], [8],
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FIGURE 1. PPI identification methods.

in-vivo [9], and in-silico [10]. The TAP tagging method is
an in-vitro approach to investigate yeast interactome. Tap
tagging a three-stage method, where a two-fold tagging of
protein to its chromosomal locus done, followed by dou-
ble purification using SDS PAGE and the proteins that
remain affiliated to target proteins are scrutinized. Finally,
mass spectrometry analysis is used to detect PPI. Another
method, namely, Affinity Chromatography, is used to detect
weak protein interactions at the molecular level. However,
it has a drawback of generating false-positive results due
to a high particularity between protein molecules. To over-
come the limitation of Affinity Chromatography, a hybrid
approach using affinity chromatography with SDS-PAGE
and mass spectrometry employed for detecting PPI rea-
sonably, whereas, the Protein-fragment Complementation
Assay (PCA) method is useful for identifying interaction
among proteins with varying molecular masses. A compar-
ison between in-vitro, in-vivo, and in-silico methods is listed
in Table 1.

TABLE 1. PPI recognition methods.

Method Area
Experiments
conducted in

In-vitro controlled

[7-8] conditions that are
external to living
organisms.

Application Limitation

Caco-2 cell tests. It is used
to measure the absorption
of compounds of the
gastrointestinal instances.

[7]

Discovery of the
In-vivo Experiments on  formulations of explicit
[9]  living organisms. drugs set and their
behaviors. [9]
Used in Sequencing, Simulated molecular
Molecular Modeling, and ~ dynamics and simplified
Whole-cell facsimile. [10].  assumptions.

In-vitro techniques may
not distinguish 99% of
varieties in the human
micro biota. [8]

A shortfall of offering
immediate benefit with
long term impairment.

In- Performed in a
silico  simulated
[10]  environment.

The binding affinity between protein molecules largely
depends on the presence of a small fraction of the residues
in the protein-protein interfaces [11]-[13]. These critical
residues are generally regarded as ‘Hotspots Positions’,
which specify mutational spots where the increase in free
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binding energy >= 2.0 kcal/mol. A method, namely, Alanine
Scanning Mutagenesis (ASM), is widely used for Hotspots
detection to identify primary intonation in PPI [14], [15].
An extensive analysis of Hotspots-PPI helps in unfolding
leukemic genes [16]. In this context, some Hotspot based
PPI study along with results listed in Table 2.

TABLE 2. Hot spot prediction result.

Authors Database Dataset Results
Lise S. et al. Alanine Scanning Energetics 81 Hot Spots, and ~ Precision 56%
[17] database (ASEdb) [15], and 268 non-Hot Spots Recall 65%
Protein Data Bank (PDB) [18]
0,
Tuncbag N. Binding Interface 54 Hot Spots, and P;:zg;(r;c;;? 2);1 d
o
etal. [19] Database (BID) [20] 58 non-Hot Spots Recall 59%
Lise S. et al. [15,18] 81 Hot Spots, and Precision 61%
[21] ’ 268 non-Hot Spots Recall 69%
Qiao Y. et [15,20] 62 Hot Spots, and ~ F-measure 62%
al. [22] > 92 non-Hot Spots Recall 82%

The biophysical methods are often time-consuming and
labour-intensive, and these large-scale experiments usually
suffer from high false-positive rates [23]. Consequently, the
ML classification algorithms are extended in the PPI study to
realize and predict protein interactions effectively.

A. MACHINE LEARNING

Machine learning is a part of Artificial Intelligence (Al)
that assists machines to spontaneously comprehend and learn
from experience about a given dataset for making accurate
predictions without the need to be explicitly programmed.
The description of two machine learning methods Support
Vector Machine, Artificial Neural Network, and Confusion
Matrix used to analyse the classification performance prob-
lems are as follows:

1) SUPPORT VECTOR MACHINE

In their work, Vapnik et al. [24] introduced the theory of
SVM classification. In [24], a hyper-plane is created to clas-
sify voluminous data in appropriate classes in a reasonable
time frame shown in Fig. 2. In Fig. 2. the dotted line rep-
resents the hyper-plane, which separates the data points into
two classes.

The data points that are nearest to the hyper plane are called
support vectors. The quality of SVM classification depends
on maximizing the margin between class data points from
the hyper-plane. The proportion of unambiguously identified
protein interaction data is minute compared to the data of
diverse organisms, wherein, the application of SVM can be
elongated to classify PPI prudently. Description of mathemat-
ical background of SVM is given below.

In SVM, x; is an element in the input space X, i.e.,
xj€¢ X, and yj is an element in the output space Y, i.e., yj€
Y{—1, +1}, where —1 and +1 represent two different class
labels of output space Y. If y; is the corresponding class of x;,
then the pair {x;, y;} is used to train the SVM method. For a
given weight vector w, the linear separation of the input data
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FIGURE 2. SVM classification.

is done by exercising (1) and (2), where. represents the vector
multiplication.

wl' X +B > 0fory; = +1 )
wl X +B < 0fory; =—1 )

In (1) and (2), B is the bias in the SVM method. The
matching decision function is given in (3).

wl X +B=0 (3)

2) ARTIFICIAL NEURAL NETWORK

Artificial Neural Network [25] method is also faster and accu-

rate in identifying protein interactions. This model simulates

the human brain and consists of three primary layers, an input

layer, hidden layers, and the output layer shown in Fig. 3.
Input Layer

Hidden Layer
)

Qutput Layer

1 (,) == Class for instances as output

FIGURE 3. ANN classification.

In ANN, each neuro-signal is interconnected by weighted
edges, and the activation function provides an output value
corresponding to incoming signals. The concept of the
Back-propagation algorithm used in Multi-Layer Perceptron
(MLP), i.e., ANN is a two-step process shown in Fig. 4.

In [24], [25], the role of kernel function is critical.
A kernel function uses a linear classifier to unravel a non-
linear problem. It involves mapping of linearly non-separable
instances into a higher N-dimensional plane to make them
linearly separable. For input vectors ﬁ)% kernel functions
listed in Table 3.

3) CONFUSION MATRIX
A confusion matrix is the summary of the quality of the solu-
tion for a given classification problem. The confusion matrix
demonstrates how much a classification model is confused
while making predictions. Some commonly used terms in the
confusion matrix are listed in Table 4.

The performance of a classification model depends on
the proportion of data it can correctly classify. In Table 5,
classification performance measures are listed.
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FIGURE 4. Two-step process in ANN.

TABLE 3. Kernel functions.

Kernel Description Parameter Suitability

C is the
constant

. Easy to implement
— T
Lincar Kxy)=xy+C with faster response.
Poly Kernel K, (y;,7,) = 1,75+ 1)¢
LYz Oz +1) The relationships
Knormp V1, ¥2) d is the degree among PPI datasets
Normalized

Poly kernd] : K, 01, 72) of polynomial d?:ﬁnd oln the Qrcller
- — — (&) € polynomial.
VOL YOV 32.72)
Radil visthe  Ihedaa
Basis Kenr 52 57) = e-1I7-71 exponent classification based
Function rBF Y1, Y2) = € parimeter on circles or hyper-
(RBF) spheres.
TABLE 4. Confusion matrix.
Term Observation Prediction
True Positive (TP) Positive Positive
False Positive (FP) Negative Positive
False Negative (FN) Positive Negative
True Negative (TN) Negative Negative

TABLE 5. Performance measures of ML based classifiers.

Term Description Measure
The proportion of correctly classified data TP + TN
Accuracy . _
instances. TP + FP + FN + TN
Recall The proportion of correctly classified positives to TP
total no. of positives. TP + FN
. . The proportion of correctly classified positives to TP
Precision . Lo [
total no. of positive predictions. TP + FP

2 x Precision X Recall
F-Measure A Harmonic Mean of Recall and Precision. 2 x frecision x Recal
Precision + Recall

B. PPI DATABASE

The recent development in bioinformatics braced thescien-
tific community in the acquisition and storing of PPI data
in databases. These databases contain gene information,
i.e., cellular functions, structures, sequences, and species-
specific information in a computer-readable form.
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Lac operon of E. coli dataset [26] stores the genetic
information of lactose metabolism, which terminates as a
repressor in the presence of lactose. An operon is a part
of DNA in which genes, i.e., structural or regulatory or
operator genes, are placed adjacently, and it constitutes the
functional unit that provides transcription and regulatory
activities. The Database Negatome [27] and General Repos-
itory for Interaction Datasets (GRID) [28] used to determine
Interacting Proteins (IP) and Non-Interacting Proteins (NIP)
with features. [27] stores NIP, whereas [28] is a web-based
platform that caters both IPs and NIPs of Saccharomyces
Cerevisiae. However, a significant drawback of [27], [28] is
that both of them do not provide attributes, and to overcome
this limitation, KUPS (The University of Kansas Proteomics
Service) database [29] developed. It stores ready to use high
throughput IP and NIP data for ML of Kansas Proteomics
Service) database [29] developed. It stores ready to use high
throughput IP and NIP data for ML methods.

The Munich Information Centre for Protein Sequences
(MIPS) [30] is a secondary database of manually curated
PPI data of mammals and high-quality genome data of Sac-
charomyces Cerevisiae, NeurosporaCrassa, and Arabidopsis
Thaliana. It is a public-database catering to the need of a
wide variety of users through a user-friendly interface sup-
ported by easily executable query languages for retrieving
pieces of information, thereby providing an effective search
mechanism for finding protein data of interest. The Database
of Interacting Proteins (DIP) [31] stores PPI data generated
from both manually curated sources and automatically via
computational methods, and the vast PPI information in [31]
is used to create reliable PPI set in a single form. Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) [32] is an assem-
bly of databases of genomes, diseases, and drug ingredients.
This database is a huge source of information to identify the
high-level functions and class values of different organisms.
It provides bio-molecular information and large-scale molec-
ular information created by genome arrangement using high-
throughput investigational skills. The GenBank database [33]
is a collection of organism’s genetic sequences and transla-
tions of protein sequences. It is an open-access database and
is a part of the International Nucleotide Sequence Database
Collaboration. Some widely recognized PPI databases are
listed in Table 6.

Ill. PPI CLASSIFICATION

This publication mainly incorporates a review of some of
the state-of-the-art PPI classifications using the SVM vari-
ants. However, both SVM and ANN methods are useful
in heterogeneous classification problems. The SVM’s per-
formance depends on kernel choice, whereas the neural
net’s performance relies on activation function. Therefore,
these methods are not offbeat in the tasks they perform
except in approaches and implementations. Consequently,
this manuscript reviewed a PPI study with SVM and ANN
to realize and illustrate SVM and ANN’s performance in
recognizing interacting and non-interacting amino acid pairs
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TABLE 6. PPI databases.

Database Version Type Data-type Organism Unique Features Dataset Information
Experimental Information on non-interacting protein pairs 2171 Mammalian proteins, 4397 Proteins from PDB
Negtome [27] 2.0 Secondary xperm Multiple . . &P pairs, database, 1234 Proteins from PDB & PFAM, 6532
& Predicted physical annotation, and protein structure .
Mammal & PDB proteins
. . Data collected from IntAct, HPRD, MINT, o
KUPS [29] - Secondary Experimental —Multiple UniProt, and Gene Ontology databascs 185446 IPs, and 1.5 billion NIPs
Experimental . Systematic information of plant, fungal, and . AT .
MIPS[30] - Secondary . Multiple g . 982 proteins of 37 distinct interactions and 1859 PPIs
& Predicted micro-organism genomes [37]
. . Combinational information of DIP Nodes 28850 Proteins, 834 Organisms, 81923linteractions,
DIP [31] 2017 Secondary  Experimental  Multiple (Proteins), and DIP Edges (Interactions) 82143 Distinct experiments, and 8234 Data sources
PPI information of 6197 no. of organisms, 899
. . . .. . . Disease-related elements, 380 Human gene variants,
KEGG [32] 92.0 Primary  Experimental ~Multiple Origin and progression of cellular organisms [38] and 2337 Human discases, 11094 Drugs, and 2237
Drug groups
Combined information of GenBank at NCBI,
GenBank [33]  234.0 Primary  Experimental ~Multiple DNA Data-Bank of Japan (DDBJ), and European 386197018538 Bases, and 216763706 Sequences
Nucleotide Archive (ENA)
. Experimental Complete drug-target dataset of Drug-Bank 16499 Genes, 158 Samples, 36023 Proteins, and
UniHI [34] 7.1 Secondary & Predicted Human database [35] 573995 Molecular interactions

GPS-Prot [36]  3.1.5 Secondary  Experimental

HIV sequences

Set of domain-domain interactions of 3D
Multiple structure. PPI data to identify peptide-mediated
interactions, and derived consensus motifs [42]

Collection of protein domain families. Each
Multiple family is denoted by multiple sequence

Human & HIV PPIs & Visualization of human protein

Complete set of annotated data [39]

Protein Interactions of 395501 Human, 8004 HIV-1,
and 2291 HIV-1 Screen Hits

25000 lines of documentary annotation, 6021 entries,
2369 Known, 2421 Unknown, and 123 not
characterized

13499 Domain-domain interactions, 513184 Structures
of domain-domain interactions, 812 Domain-motifs
interactions, and 8223 Structures of domain-motif
interactions

17929 Total families, 1229 New families, 74.5%
Pfamseq holds at least one Pfam domain, and 50.1%

orientations and Hidden Markov Model (HMM)  Residues fall inside Pfam domains

Collection of 66 organism’s data from well
recognized biomedical research with stress on
central biological methods and human disorders

Saccharomy
YPD [40] 6.0 Primary ~ Experimental ces
Cerevisiae
3did [41] 2019 01 Secondary Experimental
Pfam [43] 32.0 Primary ~ Experimental
Experimental
STRING [44] 1.0 Secondary & Predicted Human of linked network.
BioGrid [45]  3.5.177 )
Primary  Experimental — Multiple

[46]

Updated gene-set data and hierarchical clustering 5090 Total organisms, 24584628 Proteins, and

3123056667 Interactions

1740143 Protein & genetic interactions, 28093
Chemical associations, 1350574 Non-redundant
interactions, 12015 Non-redundant biological
associations, and 28093 Raw biological associations

in the yeast dataset where both of these methods offer close
and satisfactory accuracy measures.

A. PPI PREDICTION USING SVM WITH AUTO COVARIANCE
DESCRIPTOR

In their work, Kumar H. ef al. [47] employed [24], [25] for
investigating PPI data in yeast. They used the dataset [29]
to comprehend the overall scenario of interacting and non-
interacting amino acids. By using the Auto Correlation
Descriptor (ACR), [47] converted each amino acid descriptor,
i.e., six in number, into uniform numerical strings.

The Auto Covariance (AC) or ACR is a function that
measures the covariance of a process when pairing made
between two points. The ACR descriptor was used for assign-
ing six physicochemical descriptors to an individual amino
acid residue of a protein sequence. The ACR is also used for
comparing the autocorrelation measure between two protein
sequences.

For an amino acid sequence say, AQGTALP, A was
assigned numerical values of six descriptors, Q assigned with
numerical values of six descriptors, and so on. After assign-
ing numerical values, amino acid interactions computed, for
the sake of simplicity, lengthy heterogeneous datasets con-
verted into a homogeneous 180-dimensional vector (30 is the
length of amino acid having 6 no. of descriptors) using ACR,
where each vector represents a protein sequence. A pair of

VOLUME 9, 2021

amino acid sequences say A and B can be concatenated in
A+B or B4+A way. Hence, [47] made cumulative concatena-
tion between two such sequences to represent an interaction
between them. The mathematical representation of the ACR
is given in(4).

1 L-D 1 L
ACRD,j = m Zpos:l (Spos,j_i Zpos:l Spos,j)

1 L
X(Spos+D,j - E Zpos:l Spos,j (4)

In (4), ACR is autocorrelation value, j is jth descriptor, pos
is position in sequence S, L is the length of the sequence,
D is the distance between one descriptor to its neighbor.

The methodology adopted in [47] for PPI identification as
follows:

o Interacting and non-interacting protein sequences

obtained.

« Assigning numerical values to each of the six descriptors
of amino acid.

« Heterogeneous length of numerical strings is converted
to homogeneous data length using ACR.

« Cumulative concatenation of two protein sequences rep-
resents an interaction and constitutes the dataset for
investigation.

« Dividing the complete datasets into two parts, i.e., train-
ing and test set.
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o The training set is used to train classifiers [24], [25].

o The trained model is then subjected to the test validation.

« Finally, the result obtained and validated against protein

data sequences of different organisms.

[47] referred to the work of [48]-[52] to create an
N-dimensional hyper plane for classifying their data set
using SVM. Initially, the classes labelled either 1 or 0. After
classification, the entire dataset divided into two classes,
i.e., class 1 of IP and class O of NIP. The authors used the
SVM-RBF kernel because of its suitability in the dataset
having class-conditional probability distribution close to the
Gaussian distribution, which serves better accuracy in the
binary classification. In [47], the data normalization was done
using in (5).

’ (x — min) (neWmax —NeWyin)

x = (@)

(max — min) + new_min

In (5), X is normalized value, x is the original descriptor
value, max and min are maximum and minimum value of
descriptor respectively.

After normalization, new-min becomes 0, and new-max
becomes 1. Finally, the SVM classifier for 360 attributes,
i.e., 180 no. of attributes each for sequence A and B
employed. The training set was subjected to a 10-fold
cross-validation technique, where the entire training data par-
titioned into ten equal-length sets, i.e., each set with 450 pro-
tein sequences and 360 no. of attributes. The model was then
subjected to a test set of 1500 no. of protein sequences, out
of which 1059 protein sequences were correctly classified,
i.e., an accuracy of 70.6%.

An analytical tool, namely the Receiver Operating
Curve (ROC) used for showing the classifier’s performance
by plotting the TP rate against the FP rate. For the RBF kernel
parameter, T = 0.125, the TP rate increases sharply with the
FP rate until TP becomes 0.15, and after that, the TP rate is
firmly linear to the FP rate.

Authors of [47] also used the back propagation algo-
rithm to perceive the performance of the ANN model. The
ANN model was trained until there is no variation in sub-
sequent iterative values. The model was subjected to the
training set, which generated a bi-classifier output with two
class labels, i.e., 1 for interacting amino acid pairs and O for
non-interacting pairs. The ANN model finally validated with
the test dataset with an accuracy of 72.60%.

In a similar work, Guo Y. ef al. [51] predicted PPI from
protein sequences using SVM with AC. The authors used
the AC variable to calculate the average relations between
residues. The residue is the leftover material that remains
after completion of a process or a set of processes. The
calculation of the AC variable given in (6) is similar to ACR
in (4).

1 I—v 1 !
AChd =725 2 (S'“’ "7 2pm Sl’"’)
1

1
X (S(p+v),d 7 szl Sp,d) (6)
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In (6), d is a descriptor, p is the position of sequence S, 1 is
the length of sequence S, v is the value of lag, and lag is the
distance between one residue and its neighbouring residue.
The calculation of no. of AC variables is given in (7).

N=DxL @)

In (7), N is the no. of AC variables, D is the no. of
descriptors, and L is the maximum lag.

The varied lengths of protein sequences resulted in
vectors of uneven lengths. Therefore, to convert these vec-
tors into uniform matrices, the authors used the Auto
Cross-Covariance (ACC) method. The authors analysed vec-
tor sequences by referring to the work of Li et al. [53].
Finally, ACC created with two variables, i.e., CC for different
descriptors and AC for similar descriptors. However, they
considered only the AC variable to avoid creating large no. of
variants. The details of the Dataset, Three-Level Strategy
for NIP, and Performance Comparison of AC and ACC are
specified below.

1) DATASET

Authors of [51] considered DIP database version
DIP_20070219 [54] for collecting the PPI set of
Saccharomyces Cerevisiae. To define the test subset,
an Expression Profile Reliability (EPR) and the Paralogous
Verification Method (PVM) [55] used. Initially, the subset
consists of 5966 no. of protein pairs. However, to retain sim-
plicity, the authors considered protein pairs having less than
50 amino acids. Finally, by using the cd-hit program [56],
a data set of 5943 pairs derived. Since Non-Interacting
pairs (NIP) are not exclusively available in the DIP [54]
database, authors devised a 3 level strategy for creating NIP.

2) THREE-LEVEL STRATEGY FOR NIP

At first, the authors used the Prcp method to randomly
generate NIP from a positive data set of [57] followed by
deploying Psub, where subcellular localization of informa-
tion is done using the Swiss-Port [58] which is a database of
protein sequences rendering detail specification about protein
sequence curation. Lastly, negative protein sequences are
created using the Shufflet program [59], where adjustment
of right-sided interacting pair sequences done for different
values of k-let, k = 1,2,3.

The authors considered LIBSVM 2.84 [60] to employ [24].
The performance of [24] tested with five-fold cross-
validation for a negative data set of 25 amino acids. The
authors referred to the Jackknife test using two-fold cross-
validation [61], [62] to optimize the RBF kernel parameters
C and y, respectively. The results achieved by [51] listed
in Table 7 and shown in Fig. 5.

3) PERFORMANCE COMPARISON OF AC AND ACC

In [51], the AC converted into 420, i.e., 2 x 30 x 7 dimen-
sional vectors and the ACC converted into 2940, i.e., 2 x
30 x 7 x 7 dimensional vectors. The negative dataset of Psub
used for creating 5 test datasets, each with 30 no. of amino
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TABLE 7. Result obtained using k-let; k = 1, 2, 3, Psub and Prcp.

Protein sequences Prediction Sensitivit Precision
(Negative Dataset) Accuracy iy !
1-let 79.25% 79.29% 82.67%
2-let 77.30% 69.81% 85.14%
3-let 70.25% 60.74% 80.15%
Psub 86.23% 85.22% 87.83%
Prep 58.42% 41.76% 62.64%
90.0% |
80.0% -|
70.0%
60.0% -
50.0% -
40.0% T T
1-let 2-let 3-let Psub Prep
=0=Prediction A ccuracy =0=Sensitivity =0C=Precision

FIGURE 5. Comparison of results obtained using k-let; k = 1, 2, 3, Psub
and Prcpprocess.

acids and 7 descriptors, characterizing each amino acid. The
result achieved using AC and ACC for the SVM-RBF ker-
nel parameter y = 0.0312 listed in Table 8 and shown
in Fig. 6.

TABLE 8. Comparison between ACC & AC for y = 0.0312.

Method Sensitivity Precision Accuracy
ACC 89.93 88.87 89.33
AC 87.30 87.82 87.36

91%

920% -
90% -
89% o

89% -+

88% -+

88% - /’—o—\a

B7%

Precision
= A CC

Sensitivity Accuracy

= A C

FIGURE 6. Performance of ACC & AC for y = 0.0312.

It is evident from Table 8 and Fig. 6 that ACC per-
forms better than AC. However, the authors considered the
results of AC only to conclude the performance of the
SVM method.

In [51], the performance analysis of the indepen-
dent dataset was performed by considering 17491 pairs
of yeast. By considering the residues with less than
50 amino acids, 11474 no. of pairs created of which
10108 no. of pairs predicted correctly, resulting in an accu-
racy of 88.09%. The authors generated the non-interacting
test set pairs in the same locations by referring to the work of
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Ben-Hur et al. [63], where experimental testimony reveals
that any non-co-localized negative protein pairs lead to the
unfair and erroneous PPI prediction. Consequently, authors
randomly selected a dataset of 8000 non-interactive cyto-
plasm and endoplasmic reticulum protein pairs where the
classifier resulted in a moderate accuracy. However, without
cytoplasm protein pairs, the classification accuracy reduced
to 77%, and accuracy further reduced to 69% without endo-
plasmic reticulum protein pairs. In contrast, by conceding all
27204 no. of non-interactions, the overall prediction accu-
racy increased to 81.46%, and for non-redundant data set of
11474 no. of yeast data, the prediction accuracy further raised
t0 93.25%.

B. PPI PREDICTION USING SVM WITH CORRELATION
COEFFICIENT

The Auto-correlation Descriptor (ACD) illustrates the cor-
relation between two protein structures with the specific
physicochemical property. The ACD is a topological descrip-
tor that encrypts both physiochemical properties and molec-
ular arrangement to the numerical vectors and represents
it in uniform matrices, whereas the Correlation Coefficient
(CC) quantifies the relationship strength between two vari-
ables. CC is used to transform the sizeable and heteroge-
neous protein sequence’s physicochemical descriptions into
a uniform length pattern. Therefore, both ACD and CC can
be employed in the discrete arrangements of protein pairs’
physicochemical attributes to reconstruct them into a consis-
tent pattern. In this context, Shi et al. [64] employed CC with
SVM classifier to predict the PPI using the yeast dataset with
high accuracy.

1) DATASET

The authors considered the S. Cerevisiae positive data and
employed the CC transformation to consider the neighboring
effect of protein sequences and levels between protein pairs.
The CC accepts 12 physiochemical properties of protein
pairs and transformed it into a uniform pattern. They con-
stituted the dataset using protein pairs of DIP, MIPS, and
BIND databases. After removing protein pairs of BS0 amino
acids, 2,800 proteins, and 6,436 interactions retained with
829 proteins, 1025 interactions from MIPS and 736 pro-
teins, 750 interactions for BIND databases. Finally, a total
of 4365 proteins and 8211 interactions were considered to
develop a positive dataset. Reference [64] generated the equal
no. of negative dataset listed in Table 9.

2) METHODOLOGY

The authors considered 12 sequence-based physicochemical
properties of 20 amino acids for this experiment. To normal-
ize the physicochemical properties, the authors used the min-
max normalization reprocessing method wherein CC is used
to transform the sequence of protein pairs’ physicochemical
properties into a uniform shape. Therefore, CC for 12 physic-
ochemical properties is used to measure the distance between
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TABLE 9. Description of the negative dataset.

Serial e
No. Name Description
1 R-NEG Non-mt‘e‘ractmg protein pairs collected randomly from
the positive datasets
Non-interacting pairs collected from Organelle DB
2 BS-NEG database; wherein produced pairs form the discrete
subcellular compartments in proportion to different
subsets
The non-interacting pairs in the same localization in
3 IS-NEG Organelle DB database, not present in DIP, MIPS, and
BIND databases.
Negative protein pairs satisfying both the values of RSS
4 GO- Cellular Components and RSS Biological Processes lies
NEG between 0 and 0.4 with lower confidence by refereeing to

the RSS similarity matrix of Wu et al. [65].

protein sequences using (8)-(10).
Yoami Xapx 305 Yoo

I (RunxXZ) xS0 (Yex Y2, )
3

In (8), X, Y represent two protein pairs, respectively and s is
the CC lag ford = 1, 2,...,lg, where the maximum s is lg.

Xa,b

1 P 1 —p
= (Ma,b_E Za:l Ma,b) <Ma+r,b_1; Za:l Ma,b) (9)

Yc,b

1 9 1
= (Nc,b—a > Nc,b> (Na+r,b—a Do Nc,b) (10)

In (9)-(10), a, c representing the positions of amino acid
sequences M and N, bis 1 of 12 amino acids physicochemical
properties, p and q are the lengths of sequences of amino acid
M and N, respectively, d is the protein sequence distance of
two different residues. In (10), sis the CC lag, d =1, 2,... g,
wherein the maximum s is 1g.

The CC variables calculated 12 descriptors and 12 x lg
descriptor values. After generating the protein sequence vec-
tor space with 12 x lg dimension, using the CC transforma-
tion, the new vector set divided into k subsets and replications
of k times with k-fold cross-validation, i.e., each kth subset
as the test set and remaining k - 1 subset as the training
sets. Authors considered LIBSVM [60] software for the SVM
method with RBF kernel and measured the classification
performance and the prediction performance (PP) is given
in (11).

CC(s) =

#V =YV,
PP(V >V,) = #V 2 Vo) (11)
#(R)
In (11), v is the validated value of SN, PE, MCC, and ACC,
Vo is randomly generated values from observation datasets,

and R is randomly generated observation datasets.

3) RESULT
From the final positive and negative dataset of 2,050 protein
pairs, the authors randomly selected 50%, i.e., 1,025 pairs for
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the training set, and the remaining 50%, i.e., 1,025 for the test
set, which was trained by the SVM method with 5-fold cross-
validation for five iterations repeatedly resulting a total of 3
positive datasets of S. Cerevisiae and four negative datasets
to measure the performance of the SVM method. From these
four negative datasets, the GO-NEG negative dataset outper-
forms the other dataset and MIPS core positive with GO-NEG
negative dataset, which resulted in height values of 86.86%
sensitivity, 89.52% Precision, 75.98% Mathew’s Correla-
tion Coefficient (MCC), and 87.94% accuracy averaging
more than 5.2%, 2.5%, and 7.5% of R-NEG, BS-NEG, and
IS-NEG, respectively. Additionally, the authors compared the
performance with CC and ACD transformation of protein
sequence for 5 test sets using the SVM model using MIPS
core positive with GO-NEG negative dataset for 24 amino
acids shown in Table 10 and shown in Fig. 7. From Table 10,
it is clear that the SVM-CC transformation performed better
than AC.

TABLE 10. SVM performance for MIPS corewith GO-NEG dataset.

Sensitivity ~ Precision MCC Accuracy
SVM-CC 86.86 89.52 75.98 87.94

SVM-ACD 85.11 83.94 69.40 84.70
95.0
90.0
85.0
80.0
75.0 |
70.0
65.0 :

Sensitivity Precision MCC Accuracy
=0=SVM with CC =0=SVM with AC

FIGURE 7. SVM-CC and SVM-ACD performance.

The SVM method also delivers better performance with
Boosting [66] andLasso [67] methods for the Helicobacter
pylori [68] dataset. In another work, [69] employed ACD with
Rotation Forest as both ACD and CC are equally prudent in
the discrete arrangements of protein pairs’ physicochemical
attributes reconstructed to a uniform pattern, [69] consid-
ered Rotation Forest with ACD on Saccharomyces Cerevisiae
and Helicobacter Pylori data from the DIP database and
compared the performance with Guo ef al. [51], wherein
SVM-AC offered an adequate prediction accuracy of 93.97%.
In another work, Ma et al. [70] employed six classi-
fiers, including K-Nearest Neighbour (KNN), ANN, RFM,
Naive Bayes, Logistic Regression, and SVM methods for
sequence-based prediction on Helicobacter pylori and Human
protein pairs of DIP database. Authors implemented 5-fold,
8-fold, and 10-fold cross-validation for these six classifier
models and observed that the SVM method outperforms the
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other five models for the H. pylori protein pairs with a pre-
diction accuracy of 72.79% and human protein pairs with an
accuracy of 83.88%.

C. PPI PREDICTION USING DOMAIN PROPERTY AND
TWO-CLASS SVYM

In their work, Chatterjee et al. [71] adopted the concept of
domain-domain affinity and the two-class SVM to extract
features from the dataset [54] and to predict PPI, respec-
tively. Consequently, the approach employed in [71] is shown
in Fig. 8.

Calculate Domain Frequency and max.
Domain Affinity value.

¥

Create feature set of 8161 no. of features
and domain set of 4080 no. of domains.

!

Create dataset of 18000 no. of protein
pairs.

Is protein in the
i*domain D;
interacts with a
protein in the
" domain D;?

A4

Assign protein
pairs to class 0
v

Apply two-class SVM with
12-fold cross validation

¥

FIGURE 8. Methodology flowchart.

Assign protein
pairs to class 1

The detailing of Domain Frequency and Domain Affinity
exercised by [71], along with the Dataset, Results, and Com-
parative Analysis stated underneath.

1) DOMAIN FREQUENCY AND DOMAIN AFFINITY

A domain is a functional and structural element for
which a specific sequence of the PPI pattern preserved.
Elementarily the PPI data is disintegrated into physical
associations between constituting domains of the respective
proteins. In this context, the authors of [71] used two funda-
mental domain characteristics, Domain Frequency (DF), and
Domain Affinity (DA), to extract features from [54] shown
in Fig. 9.

In [71] referred to the profile method [72], which elab-
orates innovative pieces of data about domain interactions,
whereas, a list of domain affinities characterizes protein pairs.
To construct the feature set, the authors considered DF and
DA values represented as V¢ and AF, respectively, for each
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Domain

Domain

Feature
Set

Affinity
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FIGURE 9. Domain based extraction of features.

protein pair. For a PPI pair, the vector V? is the frequency of
the i™ domain in a range [0, 1] given in(12).
if pair is in i domain

(12)

Vi — Value of DF,
" o, Otherwise

Therefore, a PPI is a result of the interaction between
the corresponding domain pairs, where AF used to identify
all such interactions. The AF estimation for two interacting
domain pairs, say, P; and P; is given in(13).

Affinity(P;, P;)
100

The authors used all possible combinations of single and
multiple domain protein pair sequences to extract the feature
set. Finally, by using DF and DA, a set of 8161 no. of features
from 4080 no. of unique Pfam [43] domains extracted. [43] is
a big collection of protein relations and describes the Hidden
Markov Model (HMM) of protein domains.

AF = Max.( ) (13)

2) DATASET
The authors referred to [54] for assembling two types of PPI
information for their analysis. They considered the stable data
of protein-protein complexes as well as temporary complexes
where proteins momentarily bind with each other to attain a
specific purpose. Initially, a total of 9000 protein pairs (binary
strings) were collected; however, due to the non-availability
of NIP in [54], authors artificially created a random set
of 9000 NIP using the Exhaustive Search Method (ESM) [73].

The ESM is a brute force search technique for identifying
all possible solutions for a given problem and satisfying each
solution against the problem statement. For a given function f
(p) and x no. of intermediate points, namely p1, p2, p3s- - - »Px»
in a given range [m, n], [73] is shown in Fig. 10 along with
an algorithmic description as follows.

Finally, a dataset of 18000 pairs created following which
the entire dataset was equally partitioned into two classes,
namely, class 0 of 9000 NIP and class 1 of 9000 IP.

3) RESULT

For deploying SVM, authors of [71] referred to the
SVM-light code developed by Joachims [74]. Reference [71]
considered the linear kernel, the polynomial kernel of
degree 2, and the RBF kernel with y = 0.00123. A twelve-
fold class validation method employed for the two-class
SVM method for a training set size of 1500 no. of samples,
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Algorithm 1 ESM (f(p), m, n)
Input: Function f(p) and x no. of intermediate points
between m and n.
Output: Distinct X no. of values between m and n.
Step 1: set p; = m and Ap = (h — m)/x
/I'p2 =p1 + Ap,p3 =p2 + Apand soon....
Step 2:if f (p1) > f (p2) <f (p3) then
/I minimum point in [py, p3]

stop
else
pP1 =p2
p2 =p3
p3 =p2+ Ap
end if
Step 3: if p3 <x then
goto?2
else
minimum value does not exist in [m, n]
end if

f(p

MPyP2P; i Py N

FIGURE 10. Exhaustive search method.

i.e., 8.33% of the total sample having 750 positives and
750 negative protein pairs. The result obtained in [71] using
different kernel functions are listed in Table 11 and shown
in Fig. 11.

94% A C—_—(’\’
84% -
74% -
64% -
54% -
4%
RBF Kernel Linear Kernel Polynomial Kernel
=omAccuracy  =O=Precision (Specificity =~ =0=Recall / Sensitivity

FIGURE 11. Result comparison for different kernels.

It is evident from Fig. 11 that RBF and linear kernels
produced a reasonable classification accuracy of 86%.

4) COMPARATIVE ANALYSIS

Authors of [71] compared their outcome with the results
achieved by Chen et al. [75], Han et al [76], and
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TABLE 11. Result of different kernel functions.

Kernel Accuracy Precision /Specificity Recall / Sensitivity
RBF 86% 95.35% 75.65%
Linear 86% 95.24% 75.71%
Polynomial 69% 84.96% 46.00%

Alashwal et al. [77]. Reference [75] employed a domain-
based approach and achieved a sensitivity of 79.3% and a
precision of 62.8%, whereas, [76] used the ranking method
and reached a sensitivity of 77% and specificity of 95 %, the
authors of [77] employed [47] and achieved a sensitivity of
77.4% and a specificity of 83.9%. The authors also compared
their results with the outcomes achieved by Zaki [78] and
Kim et al. [79]. Reference [78] analysed the information of
inter-domain linker regions and found 60% sensitivity and
70.26% specificity, whereas by employing the Potentially
Interacting Domain (PID) method, i.e., a domain-based algo-
rithm, used for evaluating the interaction probability between
protein pair domains, [79] achieved 50% sensitivity and
98% specificity. A comparison of specificity and sensitivity
achieved by [71] with others is listed in Table 12 and shown
in Fig. 12.

TABLE 12. Comparison between Chatterjee et al. with Other authors.

Authors Method Sensitivity Specificity

Chatterjee P.et al. [71] Two-class SVM 75.65% 95.35%
Chen X.W.et al. [75] Domain-based 79.30% 62.80%
Han D.S.et al. [76] Ranking method 77.00% 95.00%
Alshawl H.et al. [77] BayesianClassification 77.40% 83.90%
ZakiN. [78] Inter ‘i‘;gi‘n’; linker 60.00%  70.26%
Kim W.K.et al. [79] PID 50.00% 98.00%

D. PPI IDENTIFICATION USING NORMALIZED
POLYPEPTIDES AND SVM

In their work Romero-Molina S. et al. [80] accumulated
the information of amino acid sequences and applied a
mathematical tool to represent a normalized form of polypep-
tides, following which the SVM method is employed to pre-
dict protein pair interactions. Moreover, they also developed
a PPI-detect predictor to detect peptides that bind better
than EPI-X4, which is an endogenous peptide inhibitor of
CXCR4 and G-protein-coupled receptor [61], [81], [82]. [80]
referred to the work of Chou [83] to adopt five-step rules
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FIGURE 12. Comparison between Chatterjee P. et al. with other authors.

for producing a sequence-based mathematical predictor. The
methodology of [80] as follows:

1. Training and testing the predictor by choosing an
appropriate benchmark dataset.

2. Representing the biological patterns with a mathemat-
ical expression that imitates their association with the
target application.

3. Designing a powerful engine to execute the prediction
process.

4. Implementing cross-validation tests for calculating the
correctness of the predictor.

5. Developing a publicly accessible predictor through net-
work server architecture.

The specifications of Dataset, Validation, and Perfor-

mance Comparison with other Predictors and Significance of
PPI-Detect are mentioned below.

1) DATASET

The authors referred to three databases to construct the
experimental dataset, i.e., [41] for obtaining 3D interacting
domains, iPfam [84] for obtaining the domain interactions
and protein families, and [27]. A total of 9326 no. of domain
pairs obtained from [41], 9516 no. of pairs from [84], and
2666 no. of pairs from [27]. Authors considered the indi-
vidual domain pairs with distinct elements present in both
positive and negative sets. Finally, 1922 no. of interacting
domain pairs, and 2405 no. of non-interacting domain pairs
constituting 1922 4 2405 = 4327 no. of pairs obtained for the
analysis. These 4327 no. of pairs are subdivided for training
and testing their model. A training set of 3491 no. of PPI pairs,
i.e., 1613 positives 4+ 1878 negatives constituted and a test set
of 836 no. of pairs, i.e., 309 positives + 527 negatives created.
To evaluate the performance of their proposed model, they
partitioned the test set into three classes as follows:

1. Very hard: The domain pairs which remain absent in
the training set. This set consists of 103 no. of domain
pairs, i.e., 57 positives + 46 negatives.

2. Medium-hard: The domain pairs in which at most
one domain is present in the training set. It consists
of 307 no. of domain pairs, i.e., 102 positives +
205 negatives.
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3. Easy: The domain pairs in which both domains present
in the training set. It consists of 426 no. of domain pairs,
i.e., 150 positives + 276 negatives.

The authors of [80] referred to their earlier work to employ
a method, namely ProtDCal [85], which is a protein-feature
generation system tool. The purpose of using ProtDCal is to
encode protein orders and structures. Level-wise explanations
of encoding of distinct proteins using [85] are as follows:

e Level 1
The physicochemical and structural characteristics of the
amino acid set fed to the ProtDCal tool to generate a
residue-based feature matrix.

o Level 2
A noteworthy feature of [85] is that it can only ply with indi-
vidual amino acid sequences. Therefore, to generate a pair-
wise descriptor from a single-chain descriptor of amino acid
sequences, authors of [80] developed a strategy as follows:

Let X and Y be a pair of amino acid sequences, then
the concatenation of the pair, i.e., XY or YX representing
block co-polymers made based on the inequality, 2X 4 2Y >
XY+ YX. Subsequently, the pairwise descriptor represented
as Cx_y is given in (14).

Cx_y = Cxy + Cyx —2Cx — 2Cy (14)

In (14), Cx, Cy, Cxy, and Cyx represents the single-
chain descriptor values for sequences X, Y, XY, and YX,
respectively.

The above approach can also be employed to generate a
vicinity-modified residue feature matrix from the residue-
wise feature matrix using Electro-topological State (ESO)
operator [86] given in (15).

R My —M,
MEgso ZM“_Zb#aW (15)

In (15), MEgso represents the vicinity-modified index using
the E-State operator, Mj is the value of the M index of the
amino acid sequence for the residue a, My, is the value of the
M™ index of the amino acid sequence for the residue b where
a and b both belong to the residue set R.

e Level 3
Based on the residue properties, the divide-and-conquer
approach is employed to split the vicinity-modified residue
feature matrix into multiple no. of group-based matrices.

e Level 4
Finally, a protein-feature matrix of dimension D xF inferred
from the vicinity-modified residue feature matrix where D is
the no. of proteins, F is the no. of features. The dimension F
extended as F = A x C x O, where A is the no. of amino
acid properties, C is the no. of grouping criteria, and O is the
no. of aggregation operators of amino acids.

Initially, a total of 3,248 features obtained for each pair of
proteins, to reduce the dimension of such an extensive feature
set, the authors adopted the Modeling Protocol as follows:

1. A scoring mechanism was employed by the authors
using Weka 3.7.11 [87] package for a content threshold
of 5%. Consequently, by eliminating the features that
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distinguish interacting domains from non-interacting
domains in the training set, the feature set was reduced
to 326 no. of features.

2. The DCluster tool [85] used in [80] to extract the
required components from each cluster, thereby elim-
inated redundancy in the dataset. For a threshold
value 0.95, the feature set was further reduced to
322 no. of features.

3. By employing the WrapperSubsetEval method of [87]
and the Genetic Algorithm (GA) [88], the authors
identified and estimated multiple sets of attributes of
the features. Lastly, by considering a population size
of 20 no. of samples with a mutation and crossover
probabilities 0.033 and 0.6 respectively, the SVM
method was applied with the RBF and polynomial
kernel following which the grid-search method Hsu
C.W. et al. [89] used with five-fold cross-validation.
However, for simplification, [80] considered the lin-
ear kernel with C = 11.3, to obtain an optimal set
of 19 no. of features.

2) VALIDATION

The authors applied the Precision-Recall Curve (PRC) with
a 10-fold cross-validation technique on the entire dataset to
determine the performance of the PPI-detect method. They
obtained a precision of 90% and a sensitivity of 30%. Though,
the PRC analysis reveals that 50% of precision classified
with 90% of sensitivity, whereas 50% of sensitivity created
with 78% of precision. Therefore, it implies that the PPI
data identified by the ten-fold cross-validation technique was
biased. To overcome the bias factor, [80] split the test set
into three classes, i.e., easy, mid-hard, and very hard. The
precision and sensitivity values for these three test sets listed
in Table 13.

TABLE 13. Precision and sensitivity of test sets.

Test Subset Precision Sensitivity
Easy 90% 70%
Mid-hard 90% 45%
Very hard 90% 45%

3) PERFORMANCE COMPARISON OF THE PREDICTORS

For a probability threshold value of 0.5 on Mid-hard and
Very-hard test groups, the authors compared the proposed
PPI-predictor with other widely used predictors, i.e., Pred-
PPI [51], PIPE [90], and SPPS [91]. PIPE is a sequence
alignment-based predictor whereas Pred-PPI and SPPS are
SVM predictors. Comparative results obtained using different
predictors listed in Table 14 and shown in Fig. 13.

It is evident from Fig. 13 that the PIPE prediction provides
the highest precision of 0.76 and Pred-PPI give maximum
sensitivity of 0.88, whereas, the PPI-Detect predictor per-
forms reasonably with an accuracy of 0.66.
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TABLE 14. Performance comparison with PPI-Detect.

Method Pred-PPI[51] PIPE [90] SPPS[91]  PPI-Detect [80]
Precision 0.40 0.76 0.51 0.55
Sensitivity 0.88 0.10 0.24 0.65
Accuracy 0.44 0.64 0.62 0.66

0.8 -

0.6 -

0.4 -

0.2

0.0 .

Pred-PPI [51] PIPE [90] SPPS [91] PPI-Detect [80]
=0=Precision =0m= §ensitivity =0m A cCUracy

FIGURE 13. Performance comparison between PPI-Detect with other
predictors.

4) SIGNIFICANCE OF PPI-DETECT

The authors applied the PPI-Detect predictor to predict
and identify the working derivatives of EPI-X4 interactions.
According to Zirafi O. et al. [82], EPI-X4 is an endoge-
nous antagonistic ligand of the CXC Chemokine Receptor 4
(CXCR4) which is a G-protein-linked receptor [61], [81].
By supplying a total no. of 35 peptides to the PPI-Detect
predictor, the precision and accuracy values noted. A sum-
mary of precision and accuracy achieved in identifying active
EPI-X4 derivatives based on the predicted interaction with
four fragments of CXCR4 is listed in Table 15 and shown
in Fig. 14.

TABLE 15. Performance of PPI-Detect on EPI-X4.

Fragment Residues Precision Accuracy
FRAGMENT A 25-45 0.52 0.63
FRAGMENT B 87-121 0.70 0.71
FRAGMENT C 164-205 0.50 0.60
FRAGMENT D 252-292 0.20 0.51

From the results listed in Table 15, it is quite apparent
that fragment B furnishes a high precision rate of 70%.
Therefore, based on the result, it can be concluded that the
EPI-X4 may bind more firmly with the CXCR4. The authors
also considered three small derivatives of CXCR4, namely,
JM130, JM133, and JM135. The prediction result of these
three derivatives revealed that the JM133 is roughly 3 times
active than the EPI-X4.

IV. RESEARCH DIRECTION AND CHALLENGES

This section broadly incorporates a summary of PPI classi-
fication results reviewed in this publication, along with the
opportunities and challenges of the PPI study.
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FIGURE 14. Realization of PPI-Detect on EPI-X4.

TABLE 16. Summary results of review paper performance.

Author Method Dataset Results

Kumar H. et al. [47] SXII:I/IN& KUPS Accuracy = 72.60%
Guo Y. etal. [51] SVM DIP Accuracy = 88.09%

. DIP, MIPS, _ o
Shi et al. [64] SVM and BIND Accuracy = 87.94%
Chatterjee P. et al. [71] SVM DIP Accuracy = 86.00%

Romero-Molina S. et al. 3did, iPfam _ o
(80] SVM and Negatome Accuracy = 71.40%

In [47], the SVM method used for a test dataset
of 1500 protein sequences and correctly classified data with
an accuracy of 70.6 %. They also achieved an accuracy
of 72.6% for the ANN method. In a similar work, authors
of [51] combined SVM with the AC concept and produced a
high accuracy in PPI classification. Reference [51] devised
a three-level strategy using a k-let approach for NIP and
achieved an accuracy of 88%. They also compared the accu-
racy results of SVM-AC, SVM-ACC and concluded that for
their dataset, ACC outperforms the AC method.

Lately, Shen et al. [57] proposed the SVM-based prediction
model with a conjoint triad feature to predict PPI networks
with reasonable accuracy. However, their model can predict
interaction networks in human PPIs for continuous amino
acid chains without considering neighbouring effects. These
limitations were addressed by [51, 64], wherein [64] used the
SVM-CC method to predict yeast-PPI with competent results.

In the work of [71], the concept of a domain-domain
affinity was used for selecting the feature set. For 9000 no. of
IP and 9000 no. of artificially curated NIP, they achieved an
accuracy of 86 % for SVM-RBE.

In [80], a combination of the SVM method and normalized
polypeptides was used for PPI classification. The authors
considered an array of databases to create an initial dataset
of 21508 no. of domain pairs, and after careful filtration,
1922 no. of IP and 2405 no. of NIP considered for the
investigation. The PPI-Predictive model of [80] performed
convincingly compared to [51], [90], [91] predictors. A sum-
mary of the results reviewed in this publication is listed
in Table 16 and shown in Fig. 15.
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Kumar H. et al. [47] Accuracy = 72.60% |

GuaY. et al. [51] Accuracy = 88.09% |
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Review Paper Results

FIGURE 15. Performance summary of review papers.

A. RESEARCH DIRECTION

In the medical investigation, the use of [24], [25] is highly
significant. In this context, Lo et al. [92] employed the [25]
for computer-simulated analysis of mammography using an
optimal no. of feature inputs, and the result revealed that for
four no. of feature inputs the [25] knocked the results of
conventional medical radiology. Polat et al. [93] employed
a Least-Square SVM (LS-SVM) method to analyze breast
cancer data and delivered symptomatic accuracy of 98.53%,
whereas, in their work, Enyinnaya [94] combined SVM
and Sequential Minimal Optimization (SMO) algorithm, i.e.,
SVM - SMO, to identify cancer-causing proteins in PPIL.
In contrast, Chuang et al. [95] implemented the classifica-
tion of PPI network for determining biomarkers as subnets,
and their result provided tumor sequence pathways correctly.
The authors of [96] suggested that [25] can be employed to
diagnose PPI in Human-Mycobacterium tuberculosis. In this
approach, the intra-race training of [25] using a combination
of human PPI and Bacillus Anthracis data of different species
was done for inter-race forecasting, resulting in a binary
classifier that predicted traces of Bacillus Anthracis in human
with moderate accuracy of 89.0%. Recently, Dey et al. [97]
employed various ML models, including SVM, to predict
interactions between SARS-CoV2 and human protein pairs,
wherein the SVM method performed adequately for RBF
and polynomial kernels, with the accuracy of 69.67% and
68.03%, respectively. However, [97] proposed an ensemble
technique that outperformed the other models with an accu-
racy of 72.33%. Lastly, we present a summary of the con-
tributions and limitations of the publications reviewed, listed
in Table 17.

B. CHALLENGES

The employability and effectiveness of the SVM method are
often limited by the selection of the inappropriate kernel
functions, which leads to erroneous discrimination between
solvent and insolvent problems, thereby resulting in infe-
rior solutions. An appropriate selection of SVM-Kernel aids
in minimizing the cost overhead associated with the trans-
formation of data from linearly non-separable to separable
ones thereby reduces human interventions. Therefore, opti-
mally shaped SVM parameters along with appropriate kernel
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TABLE 17. Summary of research contribution and limitations of review paper.

Author Contribution Limitations
Kumar H. SVM and ANN classifiers used for PPI prediction offering more efficient results
than existing sequence-based methods. The proposed model also validated for the An extensive comparison between other ML methods not considered.
etal. [47] dataset of Plasmodium Falciparum and Stem cell.
Guo Y The SVM, AC, and ACC methods combined to predict PPI. Authors constructed . . ..
uo 1. . X X . . . X . . Only one organism, i.e., Saccharomyces Cerevisiae, used to
nine different models, including nine different lags in Psub negative data-set with demonstrate the effect%venes’s of SVM in PPI prediction ’
etal. [51] five negative training data-sets Psub, Prcp, 1-let, 2-let, and 3-let, to predict PPIL. P :
Shi. PPIA predi?tion based on ty@lve sequence-based physicochemical propenigs of 20 The model's performance can be tested for diverse datasets, both
amino acids of S. Cerevisiac. The authors employed SVM-CC to predict PPI, irical and 1 >
ctal. [64] which outperformed SVM-AC. empirical and actual.

Chatterjee P. et
al. [71]

Romero-Molina S.
et al. [80]

PPI prediction accomplished with SVM classification. The authors used the
concept of Domain-domain interaction frequency and Domain affinity to build the
features set. Their model achieved reasonable accuracy compared to other PPI
prediction methods with similar domain information.

The authors developed a ProtDCal tool to transforms amino acid sequences into
vectors suitable for ML algorithms. They proposed the PPI predictor method,
namely PPI-Detect, which outperformed conventional predictors. The said
predictor applied to the derivatives of EPI-X4 to establish the anti-CXCR4

The authors created manually curated random NIP, which may not
exist in reality. Additionally, different types of protein features such
as solvent accessibility, subcellular localization, and hydrophobicity
can be considered to enhance the prediction performance.

The PPI-Detector applied only on a particular G-protein-coupled
receptor CXCR4 without considering other receptors.

footprints effectively.

selection help in inferring better specimens with novel
solutions in spite of the presence of bias in the input.
However, a significant drawback of the SVM method
is the transparency problem, which becomes substantial
for higher-dimensional datasets, where the classification
result may not always sketch a parametric function of
PPI characteristics.

The quality of SVM-based solutions is proportional to
the quality of the data. A comprehensive resource of PPI
databases well supplements the expansion of PPI research
through PPP (Private-Public Partnerships) model. Though,
widespread obstacles in access, treatment, and synthesis
of these databases block their fullest use. PPl databases
mostly revolve around a specific type of test data such
as Nucleotide-sequence or Protein-sequence data. However,
in practice, a majority of these databases represent the data
oddly and utilize a variety of encoding mechanisms to
represent protein-related information, i.e., attribute names,
units of measure, which often leads to an Interoperability
Problem. A solution to the interoperability problem is
database integration, which can be accomplished by adopt-
ing the concept of Data Warehousing. In the Warehous-
ing approach, a large no. of databases connected in
response to a query, i.e., Sequence-Retrieval System (SRS),
where databases are handled as text files and index-
ing of these files, in turn, are based on keywords and
PPI attributes.

V. CONCLUSION

The modern time is witnessing an outbreak of high-quality
genomic information that warrants the use of sound methods
such as machine learning to address multifaceted problems
in PPI study. However, the exponential growth in PPI infor-
mation makes the job of database curators tedious in storing
pieces of protein data suitably wherein the productive use of
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the query response system helps in delivering the fitting PPI
information for ML-based classifications. The selection of
ML-methods for investigating PPI becomes more effective
than traditional exhaustive and costlier approaches because
ML-methods offer robust solutions. In this context, exam-
ining PPI through the lenses of machine classifiers such
as SVM and ANN delivers prudent outcomes because of
their abilities in automating the learning process without
being programmed explicitly. Though, machine classifiers
often exhibit biased results that reduce the nobility of the
solution, i.e., the unavailability of NIP information in the
DIP database disproportionate the presence of IP and NIP,
leading to biased outcomes, which authorizes the formation
of rational approaches to create NIP artificially. The coherent
use of statistical descriptors, including CC, ACR, and ACD,
offers compelling sequence-based predictions with the SVM
method.However, protein functions are instrumental in PPI
analysis, where the usefulness of classification approaches
other than SVM and ANN cannot be overlooked. Conse-
quently, an assemblage of classification methods such as
Bayesian, nearest-neighbor, and y 2 are useful in determining
protein functions from a fixed no. of functional categories.
However, the Bayesian method produces more favorable
outcomes in terms of sensitivity measure than the nearest-
neighbor and x2 methods. Selecting features using the con-
cept of domain opens new avenues in the feature extraction
process. Lately, SVM’s hybrid approach, coupled with nor-
malized polypeptides, was used to develop a PPI-detector
model, which outperformed other conventional predictor’s
accuracy. The ML-classification outcomes are significant in
presenting novel acumens into the regulative devices to spot
biomarkers essential for the prognosis of various diseases
such as leukemia. Despite the precision offered by the SVM
method in classification, most of the outcomes still need
empirical validation, thereby offering a broad spectrum of
research openings.
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