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ABSTRACT A monolithic two-section InGaAs/GaAs double quantum wells (DQWs) mode-locked laser
(MLL) emitting at 1.06 µm is demonstrated. Stable mode locking operation is achieved up to 80 ◦C. The
fundamental repetition rate is at ∼9.51 GHz with a signal-to-noise ratio (SNR) of more than 55 dB, and
up to the fourth harmonic at ∼38.04 GHz is observed. The characteristic temperature (T0 ) of the laser and
the influences of absorber bias voltage on T0 have been systematically investigated. From our findings, T0
shows a two-segment feature, and is slightly affected by the absorber bias voltage for photon saturation.

INDEX TERMS Semiconductor lasers, quantum well lasers, quantum wells, laser modes.

I. INTRODUCTION
In recent years, light sources emitting ultra-short pulses
at 1.06 µm is attracting increasing attention in a num-
ber of applications, e.g., short link optical fiber commu-
nication [1]–[3], biometric imaging [4], [5], two-photon
microscopy (TPM) [6], treatment for removing melanocytic
nevi and melasma [7], [8], Lidar remote sensing on
space-based or measurement of ocean surface effects
(wave/ripples) [9], frequency combs [10], etc. Traditionally,
such light sources are realized via mode-locked solid-state
lasers utilizingmaterial systems, such asNd:YAG,Nd:YVO4,
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Ti:A12O3, etc., which are complex and difficult for the
control of pulse repetition frequency and for electron syn-
chronization [11], [12]. In contrast, mode-locked semicon-
ductor lasers, taking advantage of compactness, low cost, and
high frequency tuning flexibility have garnered considerable
interest of late. Up to now, semiconductor quantum well
(QW)/quantum dot (QD) MLLs, with multi-section, two-
section, and single-section configurations, have been exten-
sively reported at several wavelengths [13]–[16]. However,
MLL emitting at 1.06 µm and temperature-related charac-
teristics of such devices are rarely studied. To be exact,
study on the effects of absorber voltage on the temperature
characteristics in the passive mode locking of a two-section
1.06 µm–wavelength double quantum well (DQW)MLL has
not been reported till now.
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FIGURE 1. (a). Schematic diagram of top view two-section InGaAs/Ga As
DQW MLL. (b) Schematic diagram of the measurement setup for
characterizing the MLL.

In our previous work [17], we have demonstrated a novel
high power and high efficiency asymmetric heterostructure
laser diode (LD) with DQW, whose operation characteristics
show some advantages over traditional SQW/QD structure
lasers. And so far, there has not been a systematic study of
how the temperature affects the stability of mode-locking in
DQW lasers. In this work, we demonstrate stable passive
mode-locked operating parameter of a two-section DQW
laser at temperatures ranging from 20 to 80 ◦C, including
radio frequency (RF) spectra, power-current-voltage (P-I-V),
optical spectra, and characteristic temperature (T0). In addi-
tional, the effects of absorber voltage on T0 of the two-
section DQW laser have been reported for the first time.
This study demonstrates the feasibility of DQW MLLs
as promising sources for ultrafast optical communications,
TPM, frequency combs, and other applications. Devices with
higher output power as well as higher efficiency, and a lower
temperature sensibility can alleviate the requirement on ther-
moelectric coolers, thereby, decreasing cost and complexity
for practical application.

II. DEVICE STRUCTURE, FABRICATION
In this work, 1.06-µm InGaAs/GaAs DQW laser struc-
tures, with asymmetric heterostructure layers, were grown
on n-GaAs (100) substrates by metalorganic chemical
vapor deposition (MOCVD). The structure consists of
p-AlxGa1−xAs upper cladding layer, p-AlxGa1−xAs upper
waveguide layers, 1.06-µm InGaAs/GaAs DQW, a partly
doped In0.03Ga0.97As0.8P0.2 lower waveguide layer, and
n-In0.32 Ga0.68As0.95P0.05 lower cladding layers. The detailed
laser epitaxial structure is shown in our previous study [17].
This epitaxial structure provides a higher potential barrier for
holes and thus reduces the leakage and loss of injecting holes.
The MLL fabrication process is similar to those reported
in Refs [18]–[20]. First, a 5 µm-wide ridge waveguide was
formed by lithography and wet etching. A 300 nm-thick

FIGURE 2. (a). Temperature-dependent (Va = +1 V, 20 to 80 ◦C, a step
of 10 ◦C) P-I–V characteristics of the two-section InGaAs/ GaAs DQW MLL
(5× 4062 µm2). (b). Temperature-dependent (Va = −1 V, 20 to 80 ◦C,
a step of 10 ◦C) P-I–V characteristics of the two-section InGaAs/GaAs
DQW MLL (5× 4062µm2).

SiO2 film was deposited as a passivation layer, and a
3 µm-wide window was opened on the 5 µm-wide ridge.
Then, a 10 µm-wide electrical isolation region was patterned
by another step of lithography. Ti/Au layers were evaporated
to form the p-side ohmic contact. After that, lift-off process
was carried out to expose the electrical isolation region,
and consequent wet etching process realized the isolation.
The schematic diagram after p-side process of the 1.06-µm
InGaAs/GaAs DQW MLL was shown in Fig.1 (a). Finally,
Ni/Ge/Au/Ni/Au layers were evaporated as n-side ohmic
contact after substrate thinning of the wafer. The processed
wafer was cleaved into laser bars as well as single chips for
device characterization. During the characterization, a ther-
moelectric cooler (TEC), which can be varied from 20 to
80 ◦C, was used to control the operation temperature of the
MLL. For the tested laser in this study, the length of the
gain section (Lg) and the absorber section (La) are 3668 µm
and 384 µm, respectively. The gain section current (Ig) is
obtained by forward driving this section while the absorber
section is reversely biased by Va. The experimental setup for
characterizing the laser is shown in Fig. 1(b). The output light
from the gain section facet was coupled into a single mode
fiber. Then the light was split by a 10:90 fiber optic coupler,
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FIGURE 3. Temperature characteristics of the two-section InGaAs/ GaAs DQW MLL: (a) RF spectra (b). Spectra (c) Pulse
trains.

the 10 percent was guided into an optical spectrum analyzer
(OSA, AQ6370), and the 90 percent was further split into two
equal parts: one was fed into a high-speed detector followed

by a real-time oscilloscope (DSO93004L), another was fed
into high-speed detector followed by an electrical spectrum
analyzer (ESA, N9030A).
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III. RESULT AND DISCUSSION
Stable mode locking was achieved under a wide range of
bias conditions up to 80 ◦C without anti-reflective (AR) and
high reflective (HR) coating. This is the highest operation
temperature of such two-section DQW MLLs ever reported.
Power-current-voltage (PIV) characteristics of a fabricated
DQW MLL in the temperature range of 20 to 80 ◦C are
shown in Fig. 2 with Va setting at +1 V (a) and −1 V (b),
respectively. At Va = +1 V, the laser exhibited low threshold
currents (Ith) of ∼54.6 mA at 20 ◦C and ∼78.7 mA at 80 ◦C.
The light output power reached ∼36 mW/facet at 200 mA.
At both absorber bias voltages, the threshold current increases
consistently with increasing temperature owing to thermal
carrier leakage in QWs. It is found that the output powers
at Va = +1V are higher than those at Va = −1V, which
indicates a stronger absorption of the latter absorber bias.
Comparing Va = +1V and Va = −1V, it is found that
the larger reverse bias voltage is easier to form a saturated
photocurrent in the saturation absorption region, and it is
easier to achieve stable mode locking for the higher power
output of gain section. The instability of slope efficiency is
caused by heat accumulation when Ig is more than 0.15A in
the Fig. 2(b). The heat accumulation can affect the refractive
index of active region and waveguide layers, and then causes
mode jump. This is why the slope efficiency curve is unstable
at higher injection levels. Fortunately, according to our obser-
vation, stable mode locking generally occurs among 1.5 to
3 times the threshold current.

Figure 3 shows the typical mode locking characteristics,
i.e., RF spectra, optical spectra, and pulse train, of the tested
laser when it operates at four different temperature condi-
tions. Fig. 3(a) gives the RF spectra obtained by Agilent
technologies PXA Signal Analyzer (N9030A, 3 Hz-50 GHz).
The fundamental repetition frequencies are all at∼9.51 GHz,
for different temperatures operation with signal to noise ratio
(SNR) up to 55 dB, and the RF signals at the fundamen-
tal repetition frequency have a full width at half maximum
(FWHM) of ∼20 kHz, which indicates an efficient mode
locking mechanism. The repetition frequency almost has no
obvious changes with Ig at fixed Va at all temperatures, and
only the position and the intensity of harmonic frequency
signal decreases slightly from 20 to 80oC. This frequency cor-
responds to the photon round-trip time in the 4062 µm-long
laser cavity. Meanwhile, multiple harmonics are present at
∼19.02, ∼28.53, and ∼38.04 GHz, respectively up to 80 ◦C.
As shown in the figure, as Va becomes more negative,
larger Ig is needed to provide enough pulse energy so as to
achieve stable mode locking. The corresponding optical spec-
tra and pulse trains under the four bias conditions are shown
in Fig. 3(b) and 3(c), respectively. According to Fig. 3(b),
0.02nm resolution and 0.001nm step resolution were used.
The bias condition was adjusted at each temperature to obtain
the strongest RF signal. The central lasing wavelength shifts
from 1067.2 nm to 1090.7 nm when operation temperature
is varied from 20 to 80 ◦C, and the dλ/dT is determined

FIGURE 4. Threshold current (Ith) versus temperature (T) of 1.06-µm
InGaAs DQW laser under different reverse bias (Va).

to be ∼0.39 nm/K. This value shows good agreement with
our previous results on traditional single-section lasers with
the same epitaxial structure [20]. At 20 ◦C, the FWHM of the
optical spectrum (1λ) is∼1.278 nm by a Lorentz fit, and the
central spectrum at 1067.2nm. If sech2 pulses are assumed
which have an ideal time-bandwidth product of ∼ 0.315,
then a pulse width (PW, 1t) of 0.93 ps and a peak power of
0.9W/facet can be expected with an average output power of
8mW/facet. A similar pulse width estimation method is pro-
vided in Ref. [21], [22]. It can be recognized that the resulting
pulse train in Fig. 3(c) is the superposition of two sub-pulse
trains with different intervals in real time oscilloscope after
a PIN detector with a bandwidth of > 12.5 GHz. Signals
in Fig. 3(c) are superpositions of pulse trains at different
repetition frequencies, including the fundamental repetition
frequency, the second harmonic and other harmonics. So the
Fig.3 shows that the two-section InGaAs/GaAs DQW laser
can achieve stable mode locking under a wide range of tem-
perature changes, following that the operating current and
reverse bias voltage at each temperature need to be adjusted
appropriately. This result proves the stability and reliability
of the device. On the other hand, it also shows that the gain
region has to provide sufficient optical gain to achieve stable
mode locking. These are of special significance for the study
of frequency combs.

Figure.4 shows ln(Ith) versus temperature under different
absorber bias (Va). From the figure, the characteristics tem-
perature T0 is determined to be higher than 200 K in the tem-
perature range of 20 to 50 ◦C, and∼118 K in the temperature
range of 50 to 80 ◦C, respectively. T0 values change minutely
with Va, when Va is varied from +1 to −3 V. On the other
hand, the T0 value of this testedMLL is slightly lower than the
single-section counterpart [17], which we believe is resultant
from the loss introduced by the absorber section. It is appar-
ent that an additional loss is introduced when the absorber
section is negatively biased. The results suggest a similar
trend that T0 is Va-independent have also been reported
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in studies of GaAs-based QD MLL and GaSb-based QW
MLL [21]–[23].

IV. CONCLUSION
We have fabricated and demonstrated a 1.06 µm two-section
InGaAs/GaAs DQWMLL in this work. Its output character-
istics, including RF spectra, LIV, spectrum, and T0 have been
investigated. Especially, the output characteristics depen-
dence on temperature and absorber voltage of two-section
InGaAs/GaAsDQWMMLs has been focused on the analysis.
The prepared DQW MLL has exhibited a high threshold
current characteristic temperature (T0) of more than 200 K
while operating under continuous wave (CW) condition in the
temperature range of 20 to 50◦C. At temperature above 50 ◦C,
T0 are more stable and nearly independent with the reverse
bias voltage. Repetition rate, Spectra, and pulse trains, have
been obtained at different temperatures. As for stable mode-
locking operation, the influence of gain biased current (Ig) is
more dominant than the reverse biased (Va) on the absorber
section. The excellent operation characteristics of 1.06-µm
InGaAs/GaAs DQW MLLs indicate that the prepared MLL
can produce higher and more stable locked frequency and
will be one of the best choices for frequency combs, near-
infrared wavelength ultra-short pulse light sources, and other
applications.
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