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ABSTRACT The fifth-generation (5G) communications enables various promising applications that was
once impossible, e.g. remote healthcare with the help of fast and reliably delivery of medical data.
Post-partum hemorrhage (PPH) refers to the massive blood loss after the birthing stage (within 24 hours),
i.e.>500ml for the vaginal delivery, and>1000ml for the cesarean section. PPH is by far the most common
cause of the mortality rate of pregnant women, as well as a primary cause of current pregnant mortality in
China. Despite the great potential of prediction of PPH, there is currently no effective tool based on the
limited raw data from the clinical trials. In the study, we retrospectively study the 3842 vaginal delivery
cases in 2017 collected from Beijing Obstetrics and Gynecology Hospital, Capital Medical University.
In particular, we obtain the prediction based diagnostic model relying on machine learning, and we adopt
the ensemble learning to accomplish this task, by combining the results of various candidate methods.
According to the experimental results, the accuracy of correct PPH diagnosis would approach 96.7%; the
total disseminated intravascular coagulation (DIC) prediction accuracy approaches 90.3%. In this regard,
we may conclude the proposed model based on machine learning would allow us to predict successfully the
risk of PPH, and assess the critical level of PPH patient. We anticipate our study results would contribute to
the reduction the mortality of pregnant women.

INDEX TERMS Postpartum hemorrhage, prediction model, automated diagnosis, ensemble learning,
random forest, machine learning.

I. INTRODUCTION
The fifth-generation (5G) communications allow for high-
speed and ultra-reliable data transmissions [1]–[3], which
would boost various new demands and emerging applica-
tions [4], [5]. Recently, the Internet of Medical Things (IMT)
has attached general interests in both academy and indus-
try [6]. Combined with artificial intelligence (AI) and
machine learning (ML), the remote healthcare thus provides
the great promise to the remote medical decision in many
critical situations, e.g. remote patient monitoring and remote
medical learning [7]. Among them, the postpartum hemor-
rhage (PPH) diagnosis is one of such important scenarios.

The American College of Obstetricians and Gynecolo-
gists (ACOG) defines PPH as a blood loss of> 500 mL in the
case of vaginal delivery, or> 1000mL in the cesarean section
within 24 hours [8]. The World Health Organization (WHO)
statistical analysis suggests that PPH remains the leading
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direct cause of maternal death worldwide, contributing to
27.1% of total maternal deaths [9]. Moreover, PPH causes
several serious complications, such as shock, disseminated
intravascular coagulation (DIC), and so on. Most of the PPH
induced maternal deaths are relevant to the delay of clinical
diagnosis. To this end, the early stage prediction of PPH and
its complications is of great importance to reduce the mater-
nal death ratio for obstetricians, which allows the obstetri-
cians to provide the timeliest medical treatments for pregnant
patients with a high risk of PPH. ACOG also suggested to use
the risk assessment tool to predict the occurrence of PPH [10].

The risk associated factors attributed to PPH have been
extensively researched based on conventional statistical
methods [11]–[18]. Logistic regressionmodel or lasso regres-
sion model was used for the PPH risk prediction [11], [12].
In particular, lasso/logistic regression models show low-but-
good discriminative ability [12]. Based on maternal clinical
characteristics and medical history, a risk score was used for
prediction of PPH [13], [14]. Although the conventional pre-
diction methods are proved to be effective, the performance
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of prediction is unsatisfied: only 60% of women with high
PPH risk are identified, whilst the other 40% of women who
had PPH are not identified in advance [19].

With the recent advance of artificial intelligence (AI), var-
ious machine learning-based models have been developed in
the medical fields. For instance, the performance of ensemble
learning was assessed for automated diagnosis of breast can-
cer using an open access dataset in [20]. Predictive models
have been studied for cancer diagnosis using Support Vector
Machines (SVMs) are developed in [21]. Prediction of heart
disease risk using classification and regression tree (CART)
was developed in [22]. A homogeneous ensemble is then cre-
ated from the different CARTmodels using an accuracy based
weighted aging classifier ensemble, which is a modification
of the weighted aging classifier ensemble (WAE). In our
concerned PPH prediction field, only a fewmachines learning
basedmethods were studied [23]–[25]. A fuzzy expert system
to predict the risk of developing PPH was developed in [23].
Besides, another Mamdani inference was used to simulate
the experts reasoning and thereby enables the predictionary
analysis. According to the previous study on this topic,
we unfortunately find that the attained PPH prediction recall
(sensitivity) would even approach 87.48%, which is far from
reliable for automated analysis and practical deployment in
the medical diagnosis. It is reported that XGBoost would
perform better than logistic regression and Artificial Neural
Network (ANN) for the repeat cesarean delivery in [24], [25].
However, their datasets were only for cesarean delivery and
did not cover the vaginal delivery, and the ensemble learning
method was not explored.

Meanwhile, it should be noted that such machine learning
models also incurs the stringent requirements on the amount
of experimental data. Unlike the other fields whereby the
observation of data is relatively less expensive, for the consid-
ered PPH problem the collection of clinical data is extremely
time consuming. When the dataset is not large enough, then
we can expect the deduced prediction model would be less
reliable for practical applications.

In this paper, we study the ensemble learning in the context
of PPH and thereby construct the complication prediction
model, enabled by the recent advances on 5G communica-
tion and machine learning. The 5G communications would
greatly facilitate the high-speed and highly reliable data col-
lection via remote monitoring, which the new ML paradigm
inspire us to develop new efficient methods on highly accu-
rate automatic diagnosis. The main contribution of this work
contain two folds. First, we collect a total of 3842 vaginal
delivery cases in 2017 from Beijing Obstetrics and Gynecol-
ogy Hospital, Capital Medical University. This large dataset
potentially allows us to derive a reliable machine learning
prediction model. Second, targeting at improving the PPH
and its complication prediction performance of base learners,
we carefully adapt an ensemble learning scheme to han-
dle realistic challenges in the model accuracy, especially
for the dataset with imbalanced samples as in our study
(e.g., the positive samples are dramatically smaller than the

negative ones). In particular, the selection of base learners in
ensemble learning (e.g. ANN, SVM, regression, etc.), which
is of great importance for the performance, has been rarely
exploited in the literatures on PPH data analysis. To address
this practical difficulty, we construct different EL schemes
for both the PPH and DIC tasks, based on their features and
limitations.

We collected 23 PPH-relevant features of each patient as
the input for our PPH prediction model. The importance of
the input features is also studied and ranking of the features
is obtained. For the base learners, after carefully evaluating
the most popular ML methods, we use the Random Forest
(RF), Extreme Gradient Boosting (XGB), Gradient Boosting
Decision Tree (GBDT) and support vector machine (SVM) as
the base learners,1 based on the 3842 records dataset. On this
basis, we explored the use of averaging and voting ensembles
to improve predictive performance. In addition, the prediction
performance of PPH complications, namely DIC, is evalu-
ated. As demonstrated by our experimental results, the accu-
racy of correct PPH predictive diagnosis would surpass 90%;
the total DIC prediction accuracy approaches 90.3%. Other
performance metrics used for our imbalanced samples, e.g.
the recall ratio, the F-measure as well as the Matthews
correlation coefficient (MCC), are also investigated. In this
regard, we would conclude our proposed model based on
well-designed ensemble learning allows us to predict suc-
cessfully the risk of PPH, and assess the critical level of PPH
patients. We anticipate our study results would contribute to
the reduction the mortality of pregnant women.

In conventional prediction methods, many of the risk fac-
tors have a low value and may not be effective among the
hybrid risk factors [26]. However, we find that ensemble
learning can avoid this problem, a feature with binary value
(1 or 0) among other features with large values can also
be identified as the most important feature to predict PPH.
It should be emphasized that, although the multiple learners-
based ensemble learning is not a new idea for the ML com-
munity, the application of it to such new medical diagnosis
problems, especially with the collected real PPH dataset, has
not been reported in this field. As shown by our performance
comparison with regards to ANN and logistic regression,
we finally valid the advantage of our suggested models in
two specificmedical diagnosis tasks (PPH andDIC predictive
classification), and we anticipate this could provide insights
to widespread medical diagnosis applications.

The rest of this paper is organized as follows. In Section II,
the collect dataset and the selected feature (for both PPH and
DIC) are described. In Section III, the base learners used in
our ensemble learning to predict PPH and DIC are shortly
introduced and evaluated. Then, in Section IV we describe a
modeling framework for the ensemble learning. In Section V
we provide the numerical evaluations results of both classical

1We have also studied the popular artificial neural network (ANN), i.e. the
multiple layer perceptron (MLP). Unfortunately, for this specific problem,
we found it was not applicable (due to the poor performance) and hence was
excluded from the final ensemble learning.
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base learners and the designed ensemble learning, and com-
pare our proposed scheme with the previously used methods
(such as ANN and logistic regression). Finally, we conclude
our study in this work.

II. DATASET FEATURE SELECTION
In the work, our study aims to construct a prediction model
of PPH and its complications based on the method of ensem-
ble learning. Our prediction results are expected to give the
obstetricians necessary time to deal with the potential PPH,
and therefore the proactive treatment can be carried out in
advance, such as appropriate hemostasis, timely fluid resus-
citation, massive transfusion protocol, and tranexamic acid.

There are dozens of (or even more) associative features
relevant to each patient. In practical clinic trails, collecting all
the potential features for the prediction model would become
rarely feasible for our large dataset involving 3842 records.
Thus, the associative features shall be carefully selected,
to balance the potential information loss and the complexity.

The widely accepted rule in feature engineering is that
more features do not necessarily leads to the improved pre-
diction accuracy.

A. PPH FEATURES
For the primary goal of PPH prediction, our clinical team
maintain a large dataset consisting of 3842 patient records,
with 361 PPH records which were collected during 2017 at
the Beijing Obstetrics and Gynecology Hospital. The dataset,
as common cases, is also characterized by the significant
imbalance positive/negative samples. I.e., the true PPH occur-
rence ratio accounts for 9.4%, which is a moderate value for
the patient class of vaginal delivery.

To achieve better prediction performance, the assessment
indicators of PPH and its complication DIC have been sys-
tematically reviewed, by comprehensively exploring their
relationship with the blood loss [27], [28]. On this basis,
we have further studied and selected 23 features with high
relation to the occurrence of PPH. These features are catego-
rized into ‘‘Present Gestation’’ and ‘‘Factors related to deliv-
ery’’, as shown in Table 1. The data formats and categories
of such selected features are described by Table 1. We use
f0 to f22 to denote the 23 features in Table 1 sequentially.
It should be noted that, according to the ranking analysis of
such features, we believe such features constitute a relatively
complete description or representation of PPH, which are
expected to produce the good prediction diagnosis model.

B. DIC FEATURES
DIC is a typical complication developed following PPH.
Based on the 361 patients who have PPH, a total number
of 212 PPH patients were included in the DIC dataset, among
which only 7 PPH patients presented the DIC complication.

For the DIC dataset, we have also carefully selected 19 fea-
tures, as shown in Table 2. We use f0 to f18 to denote the
19 features shown in Table 2 sequentially.

FIGURE 1. Random forest algorithm.

III. BASE LEARNERS FOR ENSEMBLE LEARNING
As discussed, the machine learning algorithms are utilized
to perform automated diagnosis for PPH and DIC. To be
specific, we adopt the ensemble learning in this paper, with
four base learners of random forest (RF), gradient boosting
decision tree (GBDT), XGBoost (XGB) and SVM. As such,
our ensemble learning collects different merits of four meth-
ods, and enable the more reliable prediction model. The
well-known ANN and logistical regression (LR) are not
included in this section, but we have tested their performances
in Section V.

A. RANDOM FOREST
Random forest model is widely used for classification.
In principle, such a random forest model is one bagging-type
ensemble (collection) of decision trees, which trains several
trees in parallel and thereby uses the majority decision of the
trees as the final decision of whole forest model. Usually,
individual decision tree model is easy to interpret, but the
whole model is nonunique and exhibits high variance.

Random Forest combines the two concepts of Bagging and
Random Selection of Features by generating a set of T regres-
sion trees. The algorithm flow of RF algorithm is illustrated
in Fig. 1, whereby the sample data is obtained using boot-
strap and the splitting predictor is selected from a randomly
selected subset of predictors [29]. Each tree thus constitutes a
standard classification or regression tree (CART) which uses
the so-called decrease of Gini impurity (GI) as a splitting
criterion. In practice, the GI is computed by:

IG(p) =
J∑
i=1

pi
∑
k 6=i

pk =
J∑
i=1

pi(1− pi) = 1−
J∑
i=1

p2i , (1)

where J is the total number of classes, pi is the fraction of
items labeled with class i in the set T , i ∈ {1, 2, . . . , J}.
Meanwhile, the out-of-bag (OOB) error serves as an impor-
tant feature of RF, which is simply the average error fre-
quency obtained when the observations from the data set are
predicted using the trees for which they are OOB – they are
not used to construct the trees.
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TABLE 1. Selected risk factors causing PPH.

TABLE 2. Selected risk factors causing DIC.

B. GRADIENT BOOSTING
Gradient enhancement is a kind of machine learning tech-
niques used for regression and classification problems, its
weak prediction model (usually the decision tree) gener-
ated forecast model in the form of collection. It likes other

strengthening methods, building the model in the form of
stage, and by allowing the optimization of the loss function
of arbitrary separable variables to a generalized model. Thus,
the generic gradient boosting model is specifically described
in Algorithm 1 [30]. The negative gradient gt (x) along the
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observed data is denoted as:

gt (x) = Ey

[
∂ψ(y, f (x))
∂f (x)

]
f (x)=

_
f t−1(x)

(2)

where ft (x) is the estimated function at the t-th iteration.
Because it is rarely feasible to identify one general solu-
tion for a boost increment in the functional space, one may
alternatively choose another new base-learner function h(x,θ )
increment which is expected to be mostly correlated with -
gt (x). According to eq. (2), we find the best gradient descent
step-size ρt , and then the function estimate is updated by
eq. (3).

Algorithm 1 Gradient Boosting
Input:
input data (x, y)Ni=1
number of iterationsM
choices of the loss-function ψ(y, f )
choice of the base-learner model h(x, θ)
Algorithm:
1. initialize f̂0 with a constant
2. for t=1 to M do
3. compute the negative gradient gt (x)
4. fit a new base-learner function h(x, θt )
5. find the best gradient descent step-size ρt :

ρt = arg min
ρ

N∑
i=1

ψ[yi, f̂t−1(xi)+ ρh(xi, θi)] (3)

6. Update the function estimate:
_

f t ←
_

f t−1 + ρh(xi, θt ) (4)

7. end for

C. EXTREME GRADIENT BOOSTING
Extreme Gradient Boosting (XGBoost or XGB) is one pop-
ular supervised learning algorithm that implements a process
called boosting to yield accurate models. Boosting refers to
the ensemble learning technique of building many models
sequentially, with each new model attempts to correct for
the deficiencies in the previous attained model. In the tree
boosting, each new model that is added to the ensemble
is a decision tree. XGBoost thus provides the parallel tree
boosting (also known as GBDT, GBM) that is efficient to
many data science problems in a fast and accurate way. For
many problems, XGBoost is one of the best gradient boosting
machine (GBM) frameworks today.

As shown in Fig. 2, at each iteration of gradient boosting,
the residual will be used to correct the previous predictor that
the specified loss function can be optimized [31]. Since the
base model is decision tree, the output of model _yi is obtained
by a collection F of k trees:

_yi =
k∑
i=1

fk (xi), fk ∈ F . (5)

FIGURE 2. Flow chart of extreme gradient boosting.

Compared with the general gradient boosting method,
XGBoost has more complex objective function and, in par-
ticular, it involves the additional regularization to further
improve performance, which is given by:

J (t) =
n∑
i=1

L(yi,
_yi)+

t∑
k=1

�(fk ),

=

n∑
i=1

l(yi,
_y
t−1
i + ft (xi))+�(ft ) (6)

where J (t) denotes the objective function at the t time itera-
tion, and the n is number of predictions. As described in [31],
the objective function will be further written as:

J (t) ≈
n∑
i=1

[
giωq(xi) +

1
2
hiω2

q(xi)

]
+ γT +

1
2
λ

T∑
j=1

ω2
j

=

T∑
j=1

(∑
i∈Ij

gi)ωj +
1
2
(
∑
i∈Ij

hi + λ)ω2
j

+ γT , (7)

where gi and hi denote first and second-order Taylor expan-
sion coefficients, respectively. The number of leaf nodes is
T , and the decision tree is composed of a vector of values
w ∈ RT corresponding to all leaf node, Ij = {i|q(xi) = j},
is defined as the set of all training samples divided into leaf
nodes j. Hence, the optimization of objective function can
be transformed into a problem of finding the minimum of a
quadratic function.

Owing to the regularization when optimizing the objective
function, a trained predictive classifier is very robust to the
overfitting.

D. SUPPORT VECTOR MACHINE
Another popular method is the SVM, which has been demon-
strated to be effective in classification/prediction problem.
Unlike the aforementioned base learningmethods, SVM aims
to minimize the empirical risk in deriving the classification
bound in the high- dimensional feature space. In particu-
lar, SVM constitutes the following quadratic optimization
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problem:

W (α) = −
k∑
i=1

αi +
1
2

k∑
i=1

k∑
j=1

yiyjαiαjh
(
xi, xj

)
s.t.

k∑
i=1

yiαi = 0, ∀i : 0 ≤ αi ≤ C (8)

Here, α is the vector of k variables, which is determined by
minimizing the cost W (α); each element αi corresponds to
a training example (xi, yi); h(xi, xj) is the nonlinear kernel
function, such as the Gaussian function (in the simplest linear
case, h(xi,xj) gives the dot product of xi, and xj.
In this way, SVM searches for a hypersurface to maximize

the minimal distance to different samples. As a result, SVM is
capable of minimizing the empirical risk on training data, and
thereby obtains the optimal accuracy on test data ever saw.

IV. ENSEMBLE LEARNING
In order to attain the highest accurate mode which outputs the
highest probability of the positive class prediction, we com-
bine the results based on a well-known voting principle [32].
That means, based on the common voting rule, the final
output corresponds to the dominant output results of the RF,
GBDT, XGB and SVM base learners. In this way, we can
avoid the less convincing result and attain the highest proba-
bility of the positive class prediction. That means, if the pro-
posed automated diagnosis model gives a ‘‘1’’ prediction for
a patient, then the probability that PPH occurs on this patient
with the probability approximating 1. For each base learner
(RF, GBDT, XGB or SVM), we used a grid-search method
to obtain the optimal value for the main hyperparameters.

For PPH prediction, since the prediction target is the blood
loss volume of each patient, each base learner (RF, GBDT or
XGB) outputs a blood loss volume prediction result. If these
blood loss volume prediction results are combined softly first
and then compared with the PPH threshold (500 mL), we call
it Softly Combined Ensemble Leaning (EL-SC); otherwise,
if the blood loss volume prediction results of the base learners
are decided to be true or false hardly using the PPH threshold
(500 mL) and then the resultant binary prediction results are
combined, we call it Hardly Combined Ensemble Leaning
(EL-HC). We compare the performances of two kinds of EL
combination scheme in Section V.

For SVM, only binary PPH results are used as the training
data and test data, which means the blood loss volume data
are compared with the threshold (500 mL) first.

For the DIC prediction, since the prediction target is that
whether DIC occurs or not, the binary prediction results of
all base learner are combined directly.

V. EXPERIMENTAL RESULTS
The effectiveness of our designed ensemble learning method
for both the PPH and DIC prediction is verified by
our collected clinical datasets in Beijing Obstetrics and

Gynecology Hospital. The numerical evaluation is based on
the Python 3.8 platform.

A. PERFORMANCE EVALUATION FOR PPH PREDICTION
Our collected PPH dataset consists of 3842 records. In the
analysis, 3500 records that are 65% of all records are used as
training dataset; while the remaining 1342 records are used
as the test dataset.

Among the 3842 records, there are 361 positive PPH
patients. The training dataset contains 2500 records with
242 positive PPH instances, whilst the testing dataset contains
1342 records with total 119 positive PPH instances. The ratios
of the positive instances for the training dataset (8.87%) and
the testing dataset (9.68%) are approximately equal.

In order to evaluate the performance of the compared base
learning methods and ensemble learning, two well-known
performance measures in classification were used, especially
for the imbalance data set as in our cases. These are the com-
monly used classification accuracy, F-measure and MCC.

Classification accuracy (A) is the ratio of true positives
and true negatives obtained by the designed classifier over
the total number of records in the test dataset, as given by (9)

A =
TN + TP

TP+ FP+ FN + TN
(9)

Here, TN, TP, FP and FN denote the number of true
negatives, true positives, false positives and false negatives,
respectively, as also shown in Table 3.

TABLE 3. Description of TN, TP, FP and FN.

Recall ratio (R) is defined as the proportion of the true
positives against the true positives and false negatives, which
is given by (10),

R =
TP

TP+ FN
(10)

Precision ratio (P) accounts for the proportion of the true
positives against the true positives and false positives, which
is given by (11),

P =
TP

TP+ FP
(11)

For the most dataset with imbalance class samples, the
F-measure is more useful as it acts as the harmonic mean
of precision and recall which is given by (12). In practice,
the F-measure takes values in [0, 1] interval and the values of

VOLUME 9, 2021 18543



Y. Zhang et al.: Ensemble Learning Based PPH Diagnosis for 5G Remote Healthcare

F-measure closer to 1 should indicate the better classification
performance.

F =
2PR
P+ R

(12)

Matthews correlation coefficient (MCC) is in essence a
correlation coefficient between the observed and predicted
binary classifications, which is given by (13); it returns a
value between −1 and +1. Using MCC as a metric would
be more meaningful for our imbalanced dataset.

MCC =
TP · TN − FP · FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(13)

Since a high precision value (P) results in a small value
of FP, which means no false positive (FP) instances in the
prediction results. This would be very useful to allow the
obstetricians to accept the prediction results with a high
probability.

FIGURE 3. Prediction results comparison with the actual test dataset.
(a) Random forest, (b) GBDT (c) XGB and (d) ensemble learning (EL-SC).

In Fig. 3, we provide the blood loss prediction results as
well as the actual binary test dataset. In the subplot from
(a) to (c), we respectively show the results of the used basis
methods, i.e. RF, GBDT and XGB. It can be seen that such
three multi-classifiers can give the approximate blood loss
estimate as the true blood loss. In this way, the predicted
blood loss is supposed to provide the obstetricians with more
information on the critical levels of blood loss.

Fig. 4 shows the binary blood loss prediction results com-
parison with the actual binary test dataset. In the actual
dataset, if blood loss > 500 ml, it is labelled as 1; and
otherwise it is labelled as 0. For the purpose of illustration,
in the predicted results if the blood loss > 500 mL, then

FIGURE 4. Prediction results (binary) comparison with the actual test
dataset (binary) (a) random forest, (b) GBDT, (c) XGB, (d) SVM and
(e) ensemble learning (EL-SC).
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TABLE 4. Accuracy, Precision, Recall, F-measure and MCC for PPH
prediction.

FIGURE 5. Prediction results comparison with the actual test dataset for
PPH prediction.

it is denoted by 1.2 (for comparison purpose); otherwise it
is denoted by 0. The subplots (a) to (d) give the analysis
results for the basis methods, i.e. RF, GBDT, XGB and SVM
respectively.

Table 4 summarizes the classification accuracy, precision,
recall, F-measure and MCC for the PPH prediction model.
In Table 4, the EL-HC results are obtained by a voting policy
that all ‘‘1’’ ballot from RF, GBDT, XGB and SVM can
give an EL result ‘‘1’’. It is shown that the SVM method
achieves the highest F-measure and MCC, while EL-HC
obtains the similar performance. RF achieves almost the same
performance as SVM.Note that, we have also evaluated ANN
base learner for PPH prediction; but unfortunately, we found
such an ANN method cannot achieve satisfied prediction
performance for our dataset (as seen lately in the Table 6).
For EL-SC, the prediction result is attained by averaging the
blood loss volume results of the 3 base learners (RF, GBDT
and XGB) first, then compare with the PPH threshold (500
mL). We can see that the performance of EL-HC is higher
than EL-SC.

Fig.5 shows the feature importance of PPH features given
by XGB. The feature f21 (uterine inertia) shows the highest
importance (F score). The F score is computed using the
plot_importance function of the xgboost module. It should
be noted that f21 (uterine inertia) is a binary feature with
small values 0 or 1. However, XGB can avoid the unbalanced
value problem, that is, a binary feature among features with
large values (thousands) can also be identified as the most

important feature. This figure shows all the features that are
important to instruct the obstetricians for prompt intervention
of PPH.

B. PERFORMANCE EVALUATION FOR DIC DATASET
For the DIC prediction model, there are 212 records in the
dataset. 150 records are used as the training dataset, and the
other 62 records are used as the testing dataset. Among the 62
testing records, a total number of 7 positive instances (DIC
complication) occur.

FIGURE 6. DIC prediction results comparison with the actual test dataset.
(a) random forest, (b) GBDT (c) XGB and (d) ensemble learning.

Fig. 6 shows DIC prediction results comparison with the
actual test dataset. It is shown EL and RF achieves better
prediction performance.

Table 5 shows Accuracy, Precision, Recall, F-measure and
MCC for DIC prediction using only 3 base learners (RF,
GBDT and XGB). In Table 5, the EL results are obtained by
a voting policy that a majority ‘‘1’’ ballot (2/3) can give an
EL ‘‘1’’. It can be seen that the highest F-measure is obtained
for the DIC prediction using the RF base learner. EL achieves
identicalMCC, F-measure, A, R, andP as the RF base learner.
That means performance of EL would not descend compared
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TABLE 5. Accuracy, Precision, Recall, F-measure and MCC for DIC
prediction.

to a base learner. It is shown that both F-measure and MCC
of the DIC case are much lower than that of PPH prediction,
due to the much imbalanced dataset of DIC.

Fig.7 shows the feature importance of DIC features given
by XGB. The feature f16 (Crystal liquid) shows the highest
importance (F score). The F score is computed using the
plot_importance function of the xgboost module. This fig-
ure shows all the features that are important to instruct the
obstetricians for early intervention of DIC.

FIGURE 7. Prediction results comparison with the actual test dataset for
DIC prediction.

Note that, in this dataset, we find both theANNmethod and
the other SVMmethod (with both linear kernel and nonlinear
Gaussian kernels) may acquire the less accurate performance
(as seen in Table 7), which hence are excluded from the base
learner in our EL scheme for DIC prediction.

C. PERFORMANCE COMPARISON
As discussed, logistical regression (LR) and artificial neural
networks (ANN) are two popular methods used for medical
diagnosis. In the last numerical experiments, we further com-
pared the proposed EL method with LR and ANN, on both
the PPH and DIC prediction. The prediction results of PPH
are summarized in Table 6, and the results of DIC are sum-
marized in Table 7.

For the PPH prediction task (i.e. the binary classification),
we find that, when using the ANN method, the maximum
F-measure is only 0.55 (based on a grid search of hidden
layers and number of neutrons), which is much smaller than
the F-measure of EL-HC (0.78).

For the other DIC prediction task, we show that both the
SVM method (with the linear/nonlinear kernels) attains the

TABLE 6. Performance comparison of different methods for the PPH
prediction.

TABLE 7. Performance comparison of different methods for the DIC
prediction.

less accurate performance, i.e. the F-measure is only about
0.50. Another logistic repression method abstains also the
uncompetitive result, e.g. its obtained F-measure is only about
0.42, which is far less than our proposed EL method (with an
improved F-measure of 0.63).

VI. CONCLUSION
In this paper, we study the PPH predictive diagnosis prob-
lem by resorting the machine learning techniques. Two main
contributions are (1) the collection of large clinical dataset,
and (2) the well-designed ensemble learning method. Our
PPH and DIC dataset involves 3842 and 212 records, respec-
tively. The ensemble learning is designed to integrate four
basis methods, i.e. random forest, extreme gradient boosting,
gradient boosting decision tree and SVM for PPH prediction.
With the trained prediction diagnostic model, the accurate
results have been obtained. As shown, the accuracy of cor-
rect PPH diagnosis would achieves 96.7%; the total dis-
seminated intravascular coagulation (DIC) prediction accu-
racy would surpass 90%. As a result, the proposed model
based on machine learning enables to predict successfully
the risk of PPH, and assess the critical level of PPH patient.
We anticipate our study results have the great potential to
the reduction the future mortality of pregnant women. In the
future, we may further extend the dataset to further adapt our
proposed method to improve the generalizability.

APPENDIX
In this analysis, we have used the grid-search method to
obtain the proper configuration of various ML methods and
the designed EL method. To be specific, we have adopted the
sklearn.ensemble software tool for RF and GBDT, whilst we
used the xgboost software tool for XGB. For the other SVM
methods, the sklearn software tool was also used. According
to our study, the used hyperparameters of RF, GBDT, XGB
and SVM for PPH are listed in the following Table 8.
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TABLE 8. Hyperparameters for the PPH dataset.

TABLE 9. Hyperparameters for the DIC dataset.

In the same manner, we have determined the Hyperparam-
eters of RF, GBDT and XGB for DIC dataset, which are listed
in the Table 9.
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