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ABSTRACT Big data and geographic information systems (GIS) are two technologies that have increasingly
influenced many areas in the last 10 years and will continue to improve and help solve serious global
problems, such as consequences of climate change or global pandemics. A wide spectrum of GIS applications
interacts with the continuous growth of geospatial big data sources to drive precise and informed decisions.
Geospatial big data integration is designed to accomplish the compatibility of distinct geospatial datasets
regardless of their spatial coverage. The large number of geospatial big data sources demand effective
data integration for storing and handling such datasets, which will be used for geospatial data analysis
and visualization. For instance, risk management datasets related to healthcare and the environment are
heterogeneous and disparate. Obtaining a unified view of such geospatial big datasets is complicated and
challenging, especially if we consider problems related to healthcare pandemics and environmental disasters.
Hence, before we can attempt to predict and mitigate processes occurring in these domains, we must
realize that geospatial big data integration is crucial in consolidating datasets. We explore and discuss
issues involved in integrating geospatial big datasets in this study. We then classify big data integration
processes into three categories, namely, data warehousing, data transformation and integration methods.
Furthermore, several research challenges focused on geospatial big data, big earth data, data warehousing,
data transformation and linked data are presented. Lastly, open research issues and emerging trends that

require in-depth investigations in the near future are highlighted in this study.

INDEX TERMS Big data integration, geographic information system (GIS), geospatial big data.

I. INTRODUCTION

Geographic information systems (GISs) interact with a large
number of geospatial big data sources with different formats.
GIS can import, export, store, manage, analyze, process and
visualize spatial georeferenced data and plays a key role
in integrating and analyzing large amounts of geospatial
data [1]. A considerable portion of information is referred
to as geospatial data, which are collected using technolo-
gies, such as global position systems (GPS), radio-frequency
identifications, volunteered geographic information and
location-based social networks. Geospatial data are used in
applications related to land use, environmental management,
healthcare, tourism, marketing and many others. However,
the majority of these data are only available in isolated
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diverse data sources and have many data quality issues due to
heterogeneous data types and contributors [2].

Pooling geospatial data from different data sources
is commonly applied and important in healthcare- and
environment-related applications to obtain new knowledge
and make informed decisions [3], [4]. An increasing num-
ber of geospatial data sources is stored in databases that
consist of sensor data, volunteered geographic information
and location-based data. Even regular people can create new
or update existing geospatial data in near-real time with
advanced web technologies and location-based devices and
services. Integrating proper geospatial and non-geospatial
data can help provide correct and timely information for
relevant people because the heterogeneous information will
be pooled from multiple sources.

Synthesis of data located in distinct sources is known
as data integration [5]. The underlying principle of an
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integration system is the homogeneous perspective of one
access interface for data stored and accessed from various
data sources through a universal plan in a mediator or data
warehouse (DW) [6]. Data integration is generally classified
into six categories, namely, manual integration, provision
of a shared user interface to users, creation of an integra-
tion application, use of a middleware interface, development
of homogeneous data access, and creation of shared data
storage [7].

Modern decision-making systems rely heavily on DWs,
a concept first introduced in the 1980s [8]. Combined data
from different sources are stored and made accessible in
multidimensional formats in DWs for investigations intended
to assist users in improving their knowledge about their
business. An extract-transform-load (ETL) procedure is typi-
cally applied to collect the majority of DW information from
corporate operational databases and involves the extraction
and conversion of data into a multidimensional format before
loading into the DW as cubes for subsequent analysis via
reporting and online analytical processing (OLAP) tools.
Rapid bulk-loading methods are generally used to conduct
ETL regularly during a time interval of DW inactivity [9].

Although collecting general data from various database
systems is difficult, numerous solutions have been proposed
for data integration from distinct relational systems. However,
the lack of homogeneity in source database systems indicates
that dissimilar data models, such as relation or various nonre-
lational data models, are used [7]. Conventional approaches
to data access, discovery and integration are revolutionized
by linked data [10]. Geospatial data can be efficiently shared
and discovered in spatial data infrastructures (SDI) based on
properties of linked data, such as the common data model,
standardized mechanism of data access and data discovery
based on links. Semantic interoperability amongst various
web applications and services can be achieved by address-
ing the issue of semantic heterogeneity on the basis of
ontologies [6].

The issues associated with getting data from a vast num-
ber of sources are a challenge. Many differences between
conventional and big data integration (BDI) are related to
the number of data sources, structural homogeneity, changing
nature and highly varied data sources in terms of their quality,
such as timeliness, precision and coverage [11]. Additionally,
geospatial big data integration is designed to accomplish the
compatibility of distinct geospatial datasets regardless of their
spatial coverage [12]. Data undergo conversion from a range
of formats, projections or systems of reference, followed
by adaptation according to a given data model [13]. This
process makes it easier for the integrated geospatial data to
be analyzed, processed and visualized. This is achieved from
the merging of data gathered from various sources with the
different methods into a unified view.

Notably, numerous applications ranging from trans-
port planning to crisis risk management depend on BDI
for data access and analysis [14]. Many studies in the
literature reviewed geospatial big data. For instance,
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Eldawy and Mokbel [15] presented the era of geospatial big
data. Li et al. [2] reviewed geospatial big data methods and
major challenges. Yao and Li [16] introduced big geospatial
vector data management. However, these studies ignored
the holistic integration of geospatial big data. Hence, this
article reviews the literature on general data and big geospa-
tial integration and aims to develop a common taxonomy
that can help researchers understand this field and develop
holistic geospatial BDI methods. Furthermore, we believe
that this review will be valuable to novice researchers from
different fields and domains. An extensive review of existing
geospatial data integration methods and a comprehensive
investigation of BDI in geospatial environments in the past
five years are presented in this study. The extensive review
explores existing definitions and characteristics of geospatial
and big data integration. The relationship amongst big data,
BDI and geospatial data is also discussed. Existing BDI
studies are classified into the following categories: (i) data
warehousing, (i) data transformation, and (iii) integration
methods. Furthermore, research challenges, several open
research issues, and trends on geospatial data are discussed.

The whole paper is organized as follows: Definitions and
characteristics of geospatial big data are introduced in
Section II. The classification of BDI is presented in
Section III. A summary of current research challenges and
open research issues, especially problems related to geospa-
tial BDI, is provided in Sections IV and V, respectively.
Trends in future development are presented in Section VI.
Lastly, the conclusion of the study with discussion and future
work is presented in Section VIL.

Il. DEFINITION AND CHARACTERISTICS OF GEOSPATIAL
BIG DATA

According to Liu et al. [17], common characterizations of
big data are volume, variety and velocity, which are col-
lectively known as the 3V model. IBM [18] considered
veracity an important dimension in accurately characterizing
big data. Volume refers to different data sources, including
sensor and social networks, which generate large amounts
of daily data beyond the processing capability of traditional
databases. Variety is concerned with the different formats of
generated data, including structured and unstructured data.
Examples include legacy systems, blog posts, tweets and
mobile applications. Tria et al. [19] noted that velocity came
from the need for rapidly transferring data between sources
to remain competitive.

Geospatial data includes position (e.g. building geometry
or coordinates) and lexical (e.g. building names) informa-
tion [2]. A range of modalities is used to capture geospa-
tial data, including GPS, satellite images, social networking,
location-based services and high-resolution remote sensors,
which are then entered into a GIS database, which stores
the georeference-related data that specify spatial information
related to connections amongst data points, non-geospatial
(attribute) characteristics and other issues. Spatially-located
datasets are valuable because they determine not only
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FIGURE 1. Classification of big data integration.

locational features of any given data point but also indicate
the timing and type of event. Furthermore, this data can be
represented in either raster or vector data type. The latter
uses geometrical shapes, such as points and lines in the
vector model to represent geospatial elements and has the
advantages of accuracy, low volume and high quality when
considered with respect to the raster data model [1], [16].

Geospatial data has long been considered as big data.
Managing geospatial data is highly important since a
great proportion of data is available for geo-referencing,
as reflected by the questionable claim that “80% of data is
geographic” [2]. Nowadays, geospatial big data are valu-
able in many fields such as data analytics and discovery.
Numerous societal applications, such as environmental
changes and disaster risk management, can possibly benefit
from geospatial big data [20].

Ill. CLASSIFICATION OF BIG DATA INTEGRATION
Apart from structured information, semi-structured and
unstructured data have also been increasingly used by orga-
nizations to improve their business analytics-related decision
making [21]. Consequently, data from a wide range of sources
must be accessed, analyzed and shared. Interoperating and
integrating tasks of various information systems are challeng-
ing due to the volume, variety and velocity properties of big
data and the lack of intersystem uniformity emphasis in big
data. The demand for data integration by organizations and
enterprises has led to the emergence of a new research field
called BDI [11], which is limited by key features of big data.
Hence, BDI plays a key role in consolidating various
datasets. In this review, we introduce BDI classification.
This classification will help geospatial data players to obtain
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a holistic comprehension on how to combine disparate
geospatial or non-geospatial sources into meaningful and
high-value information. Fig. 1 illustrates the main categories
of BDI, namely, (i) data warehousing, (ii) data transfor-
mation, and (iii) integration methods. Fig. 2 presents the
keyword analysis of reviewed articles using VOSviewer soft-
ware [22]. Big data, data integration, semantic web and DW
are commonly repeated keywords.

A. DATA WAREHOUSING

DW is created within environments that were previously
dependent on traditional servers used to run relational
databases. Although the term was used in the 1980s, data
warehousing became a standalone research topic in the
late 1990s. Notably, DW has stringent connections with
related topics, such as data visualization and database integra-
tion [23]. DW was mainly invented due to the need for storing
and querying historical data and is a means of extracting
scattered important information saved in various informa-
tion systems and collating it in a centralized and integrated
storage system. A notable shift towards the use of parallel
architectures to cater to the demanding aspects of big data
requirements has been observed. Santoso and Yulia [24]
noted that various architecture approaches, such as shared-
disk, shared-memory, shared-nothing and shared-everything
methods, can be adopted. DW is generally classified into five
types, namely, classical, modern, parallel processing architec-
ture, spatial DWs, and data cubes. Table 1 lists recent studies
related to DW and big data according to their publication
year. The last column (big data category) shows the typi-
cally used big data characterization in the reviewed studies.
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FIGURE 2. Frequent keywords in geospatial big data articles from 2015 to 2020.

Amongst the big data categories, variety and volume are
commonly utilized in nearly all the studies. Velocity and
veracity are neglected in most studies because of the lack of
holistic solutions due to the nature of big data.

1) CLASSICAL DATA WAREHOUSES

Enterprises commonly use different IT systems to cover
different functions and business areas, such as customer
relationship management, accounting and human resources.
DWs are generally created when management requires an
integrated and streamlined strategy for accessing informa-
tion [25]. A classical DW is built from a logical collec-
tion of data that provides a summary of the organization’s
information but stands separate from any other operational
databases to allow the integration of many different datasets
regardless of the application or system the information is
obtained from. Centralization creates a one-door access pol-
icy for management to obtain and assess information for
strategic decision making. However, the traditional DW is
incapable of handling large volumes of information with the
arrival of big data. Santoso and Yulia [24] noted that data
processing must be conducted in parallel. Describing data are
structured in the classical DW, which is incapable of dealing
with semi-structured or unstructured data. Hence, modern
DWs can be an option for large volumes of datasets.
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2) MODERN DATA WAREHOUSES

Modern DWs are designed to deal with emerging data
sources, including sensor and social networks, which gener-
ate large amounts of data on a daily basis. Not only struc-
tured query language (NoSQL) is equipped to process high
volumes of structured, semi-structured and unstructured data.
Bicevska and Oditis [25] demonstrated that NoSQL technol-
ogy is suitable for processing high volumes of data from
various settings. Akid and Ayed [26] extended the NoSQL
technology and proposed an entirely new architecture of
modern DW to construct a graph document-oriented NoSQL
database for storing and analyzing big social data. However,
both [25] and [26] ignored the ETL process requirement
under the NoSQL DW, thereby limiting the creation of these
DWs and hindering the transfer of required data.

3) PARALLEL PROCESSING ARCHITECTURES

Massive data are generated by a number of devices, such as
Internet of Things (IoT) and location-based social networks.
Parallel processing architectures (e.g. MapReduce) [27] can
solve classical DW issues, which cannot be addressed by
single-node solutions because of the high load required for
data analysis. Analysis of big data in distributed environments
is typically conducted via the MapReduce-based Hadoop
frameworks [28]. Supporting effective queries on large
amounts of geospatial data is increasingly important in a wide
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TABLE 1. Summary of data warehouse studies related to big data and limitations.

. Data
Publica Type/ Bic Dat
Article tion Description Limitations/Drawbacks ype 18 Lata
Year Database Category
Model
Moulai [43] 2018 The information warehousing model was introduced Only limited to and valid for specific
in this study as an alternative to the current DW domains, such as social media, press
paradigm by separating the three key entities of articles and scientific papers
knowledge, information and data. A common and Unable to support geospatial data and RDBMS Variety
original information warehouse architecture was parallel processing NoSQL
proposed for both the storage and analysis of
information from a wide range of sources, including
social media, press articles and scientific journals.
Mazzei and 2018 A SOLAP and SDW prototype was created in this Unable to support distributed
Guida work. The finished project illustrated the possibility of architectures and parallel processing
[44] providing users with an analysis tool containing high RDBMS Variety
volumes of information from a wide variety of data GIS formats
sources.
Goyal 2017 GIS data models with geospatial data mining strategies Analyzing and mining of forestry data
etal. [1] were integrated in this study. A big data approach for are difficult to apply MapReduce Volume
integrating GIS datasets was proposed to achieve Forestry data mining process takes a Geospatial Variety
informative data analysis results. long time to complete data
Requires additional computing powers
Akid and 2017 An entirely new architecture was proposed in this Applicable to and valid only for social
Ayed [26] study to construct a graph DW for storing and networking sources
analysing big social data. The system uses a Lacks a standard query language
document-oriented NoSQL database management NoSQL Volume
system to cater specifically to the storage needs of
data shared on social platforms, and nodes and links
required for analysis are stored in a graph NoSQL
database.
Bimonte et 2017 A conceptual model that integrates regular grids of Unable to support distributed
al. points into SOLAP was provided in this study by architectures, such as NoSQL
[45] extending logical models of SDW in many ways. The Excludes cloud-based solutions RDBMS Volume
proposed FieldMDX, an extension of the existing Geospatial Variety
MDX model, can generate the continuity of an data
incomplete field using geospatial interpolation
functions.
Barkhord 2017 Atrak is a technique proposed for building a Big data volume will affect the
and MapReduce DW. This approach solves the large latency and processing time
Niamanesh dimension problem caused by a massive amount of Some nodes still require linking parts RDBMS \\/lolgme
[46] data and allows every node to work individually. ofdota q ep MapReduce ariety
Hence, each node has the ability to run its queries
separately.
Bicevska 2017 Potential outcomes were presented in this study by The ETL process is missing in Volume
and Oditis applying the NoSQL database as the new DW. implementation in the NoSQL DW NoSQL Variety
[25] Implementation aspects and challenges needed for this
approach were outlined.
Eldawy and 2015 SpatialHadoop was developed to represent a complete Unable to support real-time
Mokbel MapReduce model that intrinsically supports geospatial processing o MapReduce Volume
[47] data. The Hadoop code base encompasses four layers Applies static data partitioning Geospatial Variety
of SpatialHadoop (i.e. language, storage, MapReduce technique between slave machines data
and operations). Requires optimization of geospatial
queries

range of application domains. Rapidly answering queries is
a key condition for geospatial applications involving large
amounts of data. This condition necessitates a scalable con-
figuration capable of large-scale querying of geospatial data.
For this purpose, the spatial data warehousing (SDW) system
Hadoop-GIS that demonstrates scalability and efficiency was
proposed in [29] as an option to run large-scale geospatial
queries on Hadoop. Furthermore, GeoSpark [30], an in-
memory cluster computing system, was developed to process
large-scale geospatial data and support various forms of
geospatial data, indices and operations by expanding the core
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of Apache Spark; hence, GeoSpark expands the concept of
resilient distributed datasets. Compared with Hadoop-based
systems, GeoSpark has been empirically demonstrated to
improve run-time performance [15].

4) SPATIAL DATA WAREHOUSES

SDW is utilized by geospatial decision support systems
(DSSs) to query and analyze position information-related
data [13], [31]. According to Baazaoui-Zghal [32], SDW
has become increasingly necessary in many fields, such as
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healthcare and environmental disaster management. SDW
is generally considered an efficient option when large vol-
umes of data are involved. Decision makers have become
increasingly aware of the urgent need for effectively stor-
ing continuously growing amounts of both structured and
unstructured data. Li er al. [33] suggested the use of a
NoSQL database as a warehouse for geospatial big data whilst
using a traditional geospatial database as the application
server. Baazaoui-Zghal [32] proposed an ontology-based
fuzzy SDW for contextual search and recommendation based
on the integration of uncertain data at multiple levels of the
knowledge layer whilst decisional architecture, contextual
search and recommendation remain the same. The extraction
of relevant and interesting information from SDWs can be
complicated. Hence, recommendation systems aim to aid
users in their navigation through large datasets and finding
of relevant information based on their analytical objectives
and personal preferences.

5) DATA CUBES

Constituting extensive multi-dimensional arrays [34], data
cubes are among the newest and most effective approaches
for Big Earth Data (BED) storage and analysis. Based on
these data cubes, information from gridded data kept spatial,
temporal, and various other dimensions can be trimmed,
sliced or extracted more rapidly [35]. Besides affording a
number of advances, data cubes also promote the application
of the standards of the open geospatial consortium (OGC) in
interactions with geospatial data. Several important endeav-
ors have been initiated in recent times to resolve the big
data problems facing various scientific groups based on the
use of data cubes. For example, EarthServer4 ensures com-
patibility between BED analysis and a range of integrated
products [36], while earth observation (EO) data can be better
organized and analyzed on the basis of the data structures
and instruments encompassed in the analytical framework of
Open Data Cube [37]. Furthermore, the continuous gathering
and analysis of cutting-edge data cubes and array databases
(e.g. standards and implementations) are facilitated by the
Research Data Alliance [35]. Nevertheless, the use of data
cubes is problematic because it demands novel storage and
processing paradigms to ensure the same speed of queries
along each dimension [34].

B. DATA TRANSFORMATION

The ETL process can be used to integrate and load data
from different sources completely; this process begins with
the creation of an integrated repository of data [14]. Tasks
involved in the ETL process are data acquisition from more
than one source (extraction), data processing according to
the warehouse integrity standards (transformation), and data
populating in the warehouse in the form of new records
(loading) [38]. Thus, the ETL process is crucial in the cre-
ation of DW [39] because it loads all the existing data in
the DW prior to the initiation of user queries [9]. The ETL
process is classified into three types, namely, traditional
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ETL, extract-load-transform (ELT) and spatial ETL (SETL).
Table 2 presents the summary of some studies related to
ETL tools and our highlighted advantages and disadvantages.
Many studies lack the support for extracting and transforming
data, and use NoSQL databases, which are unable to handle
unstructured geospatial data.

1) TRADITIONAL ETL

Traditional ETL is called an eager process because it starts
by loading complete data sources in an integrated reposi-
tory of data [14]. Data are ineffectively managed through
the eager ETL mainly because of (1) the high loading time
and bandwidth, and (2) data authorization which could be
circumvented if all the data source contents are loaded in an
integrated data repository; however, this bypass will increase
the risk of data breach by allowing data access to users [14].
A number of approaches has been proposed to solve these
issues [9], [40]. Lazy ETL involves the eager integration and
the loading solely of metadata rather than the actual data
entry [14]. Traditional ETL techniques are graphical user
interface (GUI) to ease the process of moving data from the
source to the target system and hand-coded ETL system,
which provides high adaptability. Many open-source and
commercial ETL tools, such as Talend, Informatica and IBM,
are available. Iswas et al. [34] proposed an ETL approach
that supports near real-time ETL processes by applying incre-
mental loading. However, this model is unable to support
GUI and requires users to work with a few lines of code.
Sreemathy et al. [42] used Talend Open Studio as a GUI
ETL tool to ease the data integration and analysis process.
GUI ETL tools are very helpful because they provide users
with many ready-to-use features and can be implemented by
different fields due to the repetitive process of ETL.

2) ELT

Massive amounts of healthcare [3], [4] and disaster man-
agement data [48], [49] are generated by many different
organizations. The ETL system is unable to manage the
order data of terabytes and petabytes because its operation
is typically supported by only one machine known as the
ETL server. However, the complex nature of big data can
potentially be managed by paralleling or distributing the data
processing in clusters. In relation to this, the DSS community
suggested that the ETL process should be divided amongst
a number of cluster nodes to solve the issue. Thus, ETL can
perform better due to the parallel management of source data
partitions by different components of the ETL process [50].
One option in such cases is the use of Hadoop, which involves
ELT or ‘extraction’ of data from sources, ‘loading’ data in the
HBase database, and ‘transformation’ and integration of data
in the targeted form in the Hive [51].

3) SPATIAL ETL

Integrating GIS technologies with data warehousing ability
makes it possible to obtain SDWs. ETL was broadened to
SETL in [38] for this purpose. Meanwhile, the extra plug-in
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TABLE 2. Summary of data transformation studies related to big data.

Author(s) | Year Description Advantages Drawbacks Dﬁz‘;zie g;gte]zglt;
Kathira- 2019 | An on-demand acquisition and storage of | - Supports the hybrid | - Only applied and
velu et al. data approach was proposed according to method of eager-lazy validated on medical
[14] analysis requirements. In this way, a major ETL data
limitation of eager ETL is solved because | - Requires human | - Unable to support RDBMS Volume
loading the entire data source content in an intervention in the ETL geospatial data NoSQL Variety
integrated data repository is an unnecessary loop - Unable to  support
preliminary procedure. - Allows virtual sharing virtual DWs
Homayo- 2018 | The approach in this study defined certain | - Develops a balancing test | - Fails to address
uni et al. rules to ensure the quality of source and approach limitations of the
[63] target data and automatically builds | - Automatically builds approach
mapping relations, which can support 1-1, mapping relations | - Evaluation in other RDBMS Volume
M-1, M-M mapping, between entities. The between entities domains is required Veracity
current approach validated data - Unable to support
completeness and consistency using geospatial data
current mapping.
Lupa 2018 | The method in this study was developed as | - Extraction, - Needs human
et al. a plug-in ‘Spatial extension for Talend’ to transformation and intervention
[40] enable complete data integration of features loading of a range of data | - Unable to  support
. . . RDBMS
amongst the Database of Topographic formats are facilitated by different scales Shapefiles
Objects 500 and 10k scale databases by multiple constituents of
applying Talend Open Studio for data Talend.
integration to formulate a SETL process. - Supports geospatial data
Baldacci 2017 | This approach took the form of query— | - The optimization - Has only been
et al. extract-transform-load (QETL) process to procedure is a major validated in a single
[9] supply a multidimensional cube, and feature of QETL that scenario
involved loading facts acquired from source involves the use of - Unable to support RDBMS
data, which were exclusively provided to specific data provider geospatial data Volume
the cube when required to address an online characteristics to acquire | - Runs only on a single
analytical processing query and set down the necessary data machine
facts when space must be freed for loading efficiently
different facts.
Balaetal. | 2017 | P-ETL, a novel approach containing five | - Applicable to - Must be validated by a
[50] procedures, was proposed as an alternative parallelized data commonly used RDBMS
to the three traditional ETL steps. This processing method benchmark NoSQL Volume
method outperforms traditional ETLs in big | - Adds partitioning to and | - Unable to support
data scenarios. reduces steps in the geospatial data
traditional ETL process

‘Spatial extension for Talend’” was developed in [40] by
applying Talend Open Studio for data integration to formu-
late an SETL process and enable complete data integration
of geospatial features amongst databases. The extraction,
transformation and loading of a range of data formats are
facilitated by the multiple constituents of Talend. However,
shapefiles with geometrical data are unreadable using a
conventional Talend application. Jo and Lee [52] proposed
D_ETL as delayed ELT steps by applying the parallel data
processing method to deal with massive amounts of IoT
geospatial data. The experimental results showed a better
performance of the D_ETL data preparation compared with
traditional ETL and ELT when dealing with large amounts
of data. However, D_ETL demonstrated poor performance
in simple data analysis and showed inability to support
geospatial big data queries.

10610

SpatialHadoop [47], GeoSpark [30] and other geospatial
systems have been proposed to address the issues related
to geospatial big data processing and analysis. However,
the mechanism underlying the majority of such systems
involves the introduction of types or functions of geospatial
data into current big data systems, thus not providing straight-
forward implementations.

C. INTEGRATION METHODS

Domain requirements play a key role in selecting a suit-
able data integration method or technique. The classifica-
tion of integration methods into the two main types of
database data models and semantic integration is proposed
to address the large quantity of different BDI methods and
techniques.

VOLUME 9, 2021



S. Al-Yadumi et al.: Review on Integrating Geospatial Big Datasets and Open Research Issues

IEEE Access

1) DATABASE DATA MODELS

a: RDBMS

The widely used relational data model is the basis of
relational database management systems (RDBMS). This
technology is incorporated in classical DWs and legacy sys-
tems [53]. Apart from facilitating the storage and processing
of small and structured data, RDBMS is also the preferred
technology for GIS data storage. PostgreSQL and the related
PostGIS geospatial extension demonstrate advantages, such
as efficient functions in vector and raster models [54]. A wide
range of models, schemas or formats is used by various
organizations. Data heterogeneity can be (1) syntactic or
(2) schematic [55]. Syntactic heterogeneity is caused by the
usage of different database systems, such as relational or
object-oriented databases and geometric representations (e.g.
raster or vector representations). Schematic heterogeneity is
caused by the use of dissimilar data models for represent-
ing identical actual objects. RDBMS ensures that data are
consistent and intact in the context of data management.
However, certain problems persist in the storage, access
and maintenance of large volumes of data, management of
semi-structured and unstructured data, and achievement of
horizontal scalability [56].

b: NoSQL

RDBMS reaches the maximum capacity and is insufficient
in managing big data [57]. Thus, NoSQL databases are used
for such issues. At present, massive amounts of unstruc-
tured data are available in GIS. Previous studies explored
the NoSQL database to store and query geospatial data.
Vathy-Fogarassy and Hugyédk [7] proposed a data integra-
tion framework that supports different data models on GIS.
This framework allows the retrieval of data from RDBMS
and NoSQL databases at the same time, integrates dif-
ferent data sources, and considers causal users. NoSQL
implements various methods and workflows without requir-
ing programming expertise from users. Zhang et al. [58]
suggested an approach for the storage of large geospa-
tial data based on the MongoDB nonrelational database.
MongoDB and Python scripting languages have achieved
superior work compared with traditional relational databases.
Rainho and Bernardino [59] proposed a web GIS using the
NoSQL database to increase the efficiency of obtaining a
large amount of GIS data from the web. Web GIS adopts
MongoDB as NoSQL database and renders geospatial data
in the GeoJSON format through a web service. The study
outcomes demonstrated that storing and retrieving unstruc-
tured geospatial data using MongoDB achieve better results
compared with RDBMS databases.

In addition, MongoDB provides competent spatial opera-
tors and allows the storage of various data structures. NoSQL
systems compensate for the gap caused by storing big data
and maintain performance by supporting many data models,
such as column stores, key-value stores, document databases
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and graph databases [60]. NoSQL databases generally have
many veracity issues because they fail to apply data integrity
or durability techniques unlike relational databases, which
apply strict data consistency policies to guarantee the simul-
taneous delivery of similar data to all users. Khalfi et al. [61]
presented another technique for the big data environment
to address capacity issues and ensure geospatial data con-
sistency in a document-based NoSQL framework through
a particular consistency approval workflow. GeoJSON used
schema as a logical model to optimize both relational and
NoSQL databases along with semantic constraints to support
consistent storage.

2) SEMANTIC INTEGRATION

a: Linked data

Semantic web allows universal access to interlinked web
data by using the linked data paradigm. Data are supplied in
standardized formats and connected to additional web data
sources with constant expansion in the volume of geospatial
data; such geospatial data can be accessed through the web
in state-managed SDIs and activities of a voluntary, scientific
and corporate nature, and influenced by factors, such as leg-
islation, market appeal and social interaction [62].

Data can be organized, disseminated, discovered, accessed
and integrated in new ways via linked data. Geospatial
resources in SDIs can be efficiently identified and shared by
exploiting the strengths of linked data, such as the common
data model, a mechanism of standardized data access and
link-based identification of data. OGC standard-abiding and
other geospatial web services demonstrating interoperability
have been created to help implement SDI [10]. Accordingly,
user expertise is unnecessary for retrieving, accessing and
sharing data in the semantic web and SDI.

Linked data can improve the effectiveness of this entire
process, help create a universal infrastructure for data sharing
based on the publication of data in a resource description
framework (RDF) as a common data model, and use hyper-
links to associate dissimilar data. Purss et al. [64] proposed
a novel OGC standard in the form of discrete global grid
system to offer a homogeneous medium for integration and
visualization of vector geometry and raster-based geospa-
tial data sources in a similar manner to the conversion of
information in a computer graphics workflow to computer
screen pixels. The construct of linked widgets for streaming
the data domain is expanded in [65] to facilitate the creation
of mashups on the linked widgets platform in real time. The
underlying principle of this construct is the representation
of the entire data processing workflow and the provision
of user assistance in developing semantic data streams and
end-user mashups as well as the visualization of processed
data flows to obtain knowledge in real time. However, these
standards are difficult to apply because of geospatial data
geometric joining computations and the requirement of user
expertise.
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b: ONTOLOGIES

Ontologies convey knowledge as a formal characterization
of the target domain. Ontologies are typically used in data
integration systems [66] and crucial in data semantics because
they explicitly conceptualize a domain in a comprehensible
manner for machines. Ontologies facilitate semantic interop-
erability amongst various web applications and services to
address the issue of semantic inhomogeneity [6]. An inte-
grated set of inhomogeneous and dissimilar data sources can
be queried by end users via the category of systems called
ontology-based data access (OBDA) to reduce the demand for
IT assistance [67]. Ontology mapping and hybrid ontology
can provide an interpretation of schematic (structural) and
semantic interoperability, respectively [68].

Several studies have addressed ontology BDI. For exam-
ple, Abbes and Gargouri [66] proposed an ontology web
language supported by NoSQL databases, MongoDB and
modular ontologies, with sources equivalent to big data.
It produces local ontologies and then generates a universal
ontology by formulating local ones. The storage and pro-
cessing of heterogeneous data from more than one source
in their initial form are permitted by big data configurations.
Nadal et al. [67] developed a structured ontology supported
by an RDF in the form of a BDI ontology that facilitates
the modelling and integration of developing data from more
than one provider. An integrated set of heterogeneous and
dissimilar data sources can be queried by end users via OBDA
to reduce the demand for IT assistance. However, these stud-
ies are unable to analyze massive amounts of data in real
time. Moreover, the schema-less nature of NoSQL databases
is considered an obstacle in the ontology integration process,
and schema maintenance in response to domain requirements
will impact ontology access.

IV. RESEARCH CHALLENGES

The study of geospatial big data is still in the develop-
ment stage although numerous organizations have applied
GIS. Volume, variety, velocity and veracity are key features
that define big data and emphasize issues of heterogeneity.
However, the demand for data integration by users has led
to the emergence of a new research field called BDI, which
is limited by key features of big data. This section identifies
challenges in the following areas of focus: geospatial big
data, big earth data, data warehousing, data transformation,
database data models, linked data and ontologies.

A. GEOSPATIAL BIG DATA

Geospatial data are acquired by both public and private orga-
nizations. The field of geospatial big data management is
underdeveloped [16]. Hence, developing technical and the-
oretical approaches and providing solutions to critical prob-
lems are necessary to understand the core of GIS theory.
At present, state-of-the-art techniques, including automa-
tion, are used to gather geospatial big data, particularly sen-
sor data, thereby creating novel opportunities and threats.
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A degree of redundancy also occurs due to the high variety
of formats, data providers, sources and usage. A range of
obstacles is also associated with the continuity of data updat-
ing, data harmonization methods and diverse functionalities
that professional-level users require. Consequently, the same
geospatial data may be acquired several times and final prod-
ucts may vary despite addressing identical areas [69].
Previous studies focused on the textual database of data
integration [70]. At the same time, large volumes of image,
audio and sensory data are obtained although these types
of data are rarely integrated with textual data into a collec-
tive knowledge base. Thus, determining necessary database
components is important to facilitate the use, sharing and
integration of geospatial data and define standards for orga-
nization in a geospatial data setting. In addition, the creation
of responsive, accessible and easy-to-use web portals, which
users can rely on as decision-making supports, is also crucial.

B. BIG EARTH DATA

From the perspective of big geospatial data development
and technical uses, the field of BED is attracting a great
deal of attention. The domain of GIS has been progres-
sively permeated by theoretical constructs and empirical
techniques accompanying the latest advances in cutting-
edge computing technology such as NoSQL databases and
cloud computing [16]. BED is a subcategory of big data
concerned with EO data such as satellite information, weather
data and addressing human activities. It is mainly geared
towards facilitating examination and insight into earth-based
interactions by analyzing and understanding the available
data [71]. A variety of skills and technologies must be
combined to undertake the complicated process of analyzing
BED, which presents substantial difficulties especially with
regard to how to store, process and visualize them. Further-
more, it is necessary to formulate a spatio-temporal data
model that effectively supports cloud setting. Relational and
non-relational databases and the distributed file system are
currently the primary strategies for data storage. Given these
circumstances, the strain on the storage system can be allevi-
ated by exploiting the various existing approaches for storing
data.

C. DATA WAREHOUSING

The reliance on traditional data-processing techniques is
insufficient in the age of big data. The critical obstacle for GIS
is related to the integration of large datasets. NoSQL-based
DW may offer novel features for data analysis, which would
not have been possible under classical DW systems. Also,
a considerable promise is associated with distribution and
parallelization methods of data and processes. Innovative
techniques that can integrate heterogeneous geospatial and
non-geospatial data in the context of a unified SDW are
urgently required. Constructing virtual distributed DWs is
also important because data are partially reproduced and
shared between organizations. The creation of a novel
DW with NewSQL databases is relational. NewSQL and
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NoSQL databases have similar properties, such as distributed
architectures and massively intensive parallel processing.
Moreover, NewSQL databases are a viable way of managing
big data.

Although the DW design has been examined by
researchers, DW testing is comparatively underexplored [63].
Data quality testing is utilized to validate data sources prior
to loading to the target DW. Similarly, techniques have been
proposed for target data validation in isolation although these
approaches overlook data changes or losses arising from the
ETL process.

D. DATA TRANSFORMATION

The ETL process can consolidate data from heterogeneous
sources. However, ETL should be re-examined to address the
complex nature of big data. Traditional ETL systems typically
operate on one machine as the ETL server and are unable
to handle large datasets. Therefore, creating new approaches
capable of developing cloud computing, MapReduce and
NoSQL data models as well as optimizing and enhancing the
efficacy of current ETL approaches are necessary. Notably,
ETL frameworks proposed in the literature are incompatible
with the automated incorporation of humans in the process.
Hence, human-in-the-loop ETL processes are manual, repet-
itive and time-consuming tasks. Distributed ETL processes
can promote integrated data sharing and minimize repeated
data loading and integration efforts with a negligible band-
width overhead. However, research gaps still exist in this
topic. Additional indicators should be identified for assessing
the system architecture’s physical properties and evaluating
the effort required to design the ETL phase with respect to
a particular domain [19]. Examining problems of extracting,
transforming and loading geospatial data in the context of
multiple geometric representations is also necessary [13].
At present, ETL processes are incapable of effectively inte-
grating the use of real-time data with archive data, such as
information stored in data sources.

E. DATABASE DATA MODELS

The identification of comparable relational databases from
numerous expansive databases stored in various database
management systems (DBMSs) has become increasingly
challenging due to the high diversity in database technologies
and sizes [72]. Developing an effective storage solution is
necessary to read and write geospatial big data [73] because
conventional RDBMSs are limited by the storage and analysis
of big data. The massive information volume and RDBMS
performance in storage and queries of unstructured geospatial
data are major GIS issues. These issues are important because
on-demand and real-time queries require effective access
to large geospatial data volumes across the Internet [74].
Future investigations should address the matter of parallel
process for schema comparisons and the implementation of
methods facilitating usage of a greater amount of RAM
memory than computers can provide at present. Furthermore,
data dictionary and domain are additional metadata dataset
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characteristics that can be considered [75]. Big data has
significantly contributed to the management of unstruc-
tured NoSQL databases recently. However, geospatial data
specificity is still ignored.

F. LINKED DATA

The integration of heterogeneous web data from multiple
sources can be effectively achieved through the strategy of
linked data in the context of big data, which involves the
initial conversion of heterogeneous geospatial data using
current linked geospatial data into an integrated RDF that
can be read by machines [76]. However, the processing of
web content is generally intended for human users and not
machines. Furthermore, accomplishing key goals of linked
data, namely, linking and integration, can be challenging
and expensive [77]. Different organizations and authorities
utilize dissimilar models, schemas or formats. The provision
of user-friendly GUI integration tools can facilitate the shar-
ing, interpretation and reuse of knowledge [10]. However,
the accuracy and completeness of data are still suboptimal.

G. ONTOLOGIES

The fundamental problem in BDI is the automatic con-
struction of the ontology model and identification of poten-
tial semantics that are indirectly accessible from other
data sources. The manual generation of ontologies is time-
intensive and susceptible to errors. Furthermore, maintaining
and updating ontologies is a difficult task. Allowing users to
gain an integrated perspective on a dynamic heterogeneous
group of data sources is complex and referred to in the liter-
ature as the data variety challenge [67]. Therefore, the effi-
cient generation of ontologies is a critical research topic at
present. Further investigations can construct novel models for
extracting ontologies from other frequently used data sources,
such as NoSQL databases. User-friendly visualization is a
key goal although linked geospatial resources in the RDF
format are able to be processed by computing systems. GUI
tools for creating explicit semantic descriptions should also
be provided. Overexposure of technical details is a limitation
of existing SPARQL implementations [10]. Hence, effective
user interfaces are needed for queries rather than SPARQL
queries.

V. OPEN RESEARCH ISSUES

Direct human understanding is rapidly exceeded by the scale
and complex nature of big data. Therefore, machine support
is needed for semantic analysis, organization and interpre-
tation to determine the strategic value of such massive and
multisourced data [78]. Many studies are unable to support
big geospatial data. Table 3 clearly shows the need to inves-
tigate holistic geospatial BDI methods. Fig. 2 presents the
different relations between reviewed topics using VOSviewer
software. Numerous traditional integration options are inac-
cessible due to their inability to cope with problems of
BDI posed by their volume, velocity, variety and verac-
ity. Automation-based integration methods are necessary to
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TABLE 3. Summary of big data integration studies in the literature.

DATA INTEGRATION
Data warehousing Data transformation Integration methods
é g o (OC? Database Semantic
Classical Modern ;& ff g g ETL m((i)a;t:ls integration
Ref. Year g =
ELT SETL
[42] | 2020 ~
[38] | 2020
[54] | 2020 ~
[83] | 2020 N
[68] | 2020 ~
[31] | 2020 ~
[76] | 2019 ~
[67] | 2019 ~
[27]1 | 2019 ~
[771 | 2019 ~
[52] | 2019 N N
[28] | 2019 N N
[87] | 2019 ~
[80] | 2019 N
[29] | 2019 N N
[14] | 2019 ~ ~
[88] | 2018 ~ N ~
[44] | 2018 N
[6] | 2018 ~
[43] | 2018 | 4/
[8] 2018 | 4/ N ~
[40] | 2018 ~
[60] | 2018 ~
[59] | 2018 ~ ~
[26] | 2017 N
[19] | 2017 N
[24] | 2017 ~
[45]1 | 2017 ~
[9] 2017 ~
[50] | 2017 ~
[89] | 2017 N
[7] 2017 ~
[61]1 | 2017 ~
[491 | 2017 ~
[25] | 2017
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TABLE 3. (Continued.) Summary of big data integration studies in the literature.

[15] | 2016 N
[32] | 2016 N

[51] | 2016 N

[66] | 2016 N
[47] | 2015 N

[30] | 2015 N

[90] | 2015 N

[62] | 2015 NI

[65] | 2015 N

replace existing manual methods. A few of these issues are
addressed in the following subsections.

A. DATA SOURCES

The continuous proliferation of data sources and volume
of existing data in numerous domains makes it difficult to
integrate several geospatial datasets into one dataset [79]. The
heterogeneity of data sources across government agencies,
private organizations, geospatial resolutions, projections and
storage formats has led to significant challenges in geospatial
BDI. Various geospatial theories and methods can be used
to integrate traditional data as well as address geospatial big
data [2]. Given the wide range of data providers, technical
tools and considerations are insufficient to achieve geospatial
data integration from multiple sources. The consideration of
institutional, social, legal and policy specifications are also
necessary.

B. SEMANTIC INTEGRATION

Semantic heterogeneity occurs when the same real-world
object is interpreted differently by various disciplines or
user groups [80]. Semantic heterogeneity can also take the
shape of naming heterogeneity, whereby different names are
given to the same real-world object or different real-world
objects have an identical name. Geospatial data sharing is
challenging due to its heterogeneous character and results in
data duplication issues [55]. Although manual comparison
methods can be used for data integration, the process involved
requires a considerable amount of effort in the case of mas-
sive datasets [68]. Significant advances have been achieved
in the past five years, but addressing issues caused by
dissimilar conceptualizations and interpretations of geospa-
tial data, exchanging knowledge between different domains
and integrating cross-lingual information still require further
investigation [81].

C. DATA QUALITY

Data quality can be interpreted depending on the purpose of
its use. Organizations, companies and users are responsible
for setting their quality requirements. According to [82],
quality has several definitions; for example, ‘quality is the
degree to which a set of inherent characteristics fulfil the
requirements; fitness for use; conformance to requirements’.
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Furthermore, data quality consists of the following dimen-
sions: data consistency, data deduplication, information com-
pleteness, data currency and data accuracy [17]. Researchers
who use geospatial big data must comprehend how the behav-
ior of the data provider influences the quality of big data,
and assess the quality of big data and potential mistakes,
such as positioning accuracy, logical consistency and other
accuracy-related features of the data, prior to data analysis.
Different data sources can be used to improve the reliability
of these findings. Visualizing errors and the management of
NoSQL database quality are basic challenges. The intrinsic
uncertainty in big datasets, such as crowd-sourced datasets,
impedes their development and implementation [2], [83].

D. STORAGE GEOSPATIAL BIG DATA

Data storage plays a crucial role in processing and ana-
lyzing massive amounts of structured, semi-structured and
unstructured data [16]. Significant quantities of data are
paired with performance issues in RDBMS for storage and
unstructured data, whilst geospatial data queries are funda-
mental challenges associated with GIS. Given that efficient
access to Internet-based geospatial data is critical in perform-
ing on-demand and real-time queries, several studies have
recently examined the use of the cloud computing paradigm
in solving these issues [45]. Driven by the substantial com-
putational and storage-related capacities of cloud computing
infrastructures, many studies have applied NoSQL DBMSs,
such as MongoDB and HBase. In view of this, a unified meta-
data format with an effectively formulated data integration
framework is urgently needed. Furthermore, studies should
focus on deep learning algorithms, particularly the use of
semantic matching and unified format conversion of remote
sensing metadata [84].

E. PROCESSING GEOSPATIAL BIG DATA

Processing big data obtained from GIS has become increas-
ingly difficult due to data volume [57]. Understanding
geospatial data is important because of their positive effect
on a range of consequential domains and applications. The
infeasibility of waiting until a complete dataset is obtained
is a critical problem of geospatial algorithms in real-time
big data processing. Consequently, the distribution and paral-
lelization of geospatial algorithms are essential. Identifying
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viable strategies for rapidly processing user requests, such
as responses in less than one second, is a main obstacle.
Accordingly, adding novel functionalities that promote devel-
opment in geospatial data frameworks are required. Scientists
currently operating in this area can work on frameworks such
as GeoSpark [30].

F. BIG EARTH DATA ANALYTICS
The analytical lifecycle of preparation, analysis, mining, and
visualization of ample volumes of various types of spatio-
temporal data constitutes the analytics of BED. Through this
process, comprehension of the earth system can be improved
and issues caused by transformations at global and regional
level can be better addressed by uncovering a range of rele-
vant information, including patterns, causations, and knowl-
edge [85]. Although there have been several endeavors to
create an integrated model for analyzing big data [71], this
process of analysis remains a complicated task that calls for
the fusion of numerous different skills and technologies.
Undertaking such meta-analysis is frequently made more
difficult by the fact that the greatest proportion of data lack
structure. In addition, scalability and parallelism are also
issues, as with big data in general. Therefore, within this
age of big data, geospatial analytics necessitate adaptable
architectures capable of employing the existing data as much
as possible, effective scaling with data volume, demonstrat-
ing compatibility with different modelling frameworks, and
offering users options for exploring and visualizing data
interactively [86].

G. BIG SPATIOTEMPORAL DATA ANALYTICS

Big spatio-temporal data analytics is necessary to investigate
and apply relevant algorithms, frameworks, and solutions for
big data generated with space and time stamps [91]. The
processes of observation and documentation of both natural
and social phenomena have been significantly enhanced by
sensing technology innovations as case in point tracking of
the COVID-19 crises [4]. However, spatio-temporal analysis
has not yet achieved maturity, with many issues still to be
overcome, including the pattern types that can be derived
from time series data and the applicable techniques and
algorithms. The formulation of new techniques of real-time
event discovery could help to resolve such issues. Further-
more, it is essential to achieve improved data integration
for inclusive and multi-dimensional event identification by
taking advantage of the fast proliferation of spatio-temporal
data sources. This can have positive implications not only
for how events are comprehended scientifically, but also
for the operational processes underpinning decision-making
associated with events [92].

VI. EMERGING BIG GEOSPATIAL DATA TRENDS

In the present age of big geospatial and EO data, develop-
ment over last years shows its evolution from conventional
areas to more evolutionary application areas such as health-
care risk management, environmental disasters mitigation
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and prediction, addressing human activities and self-driving
vehicles. To address these needs, emerging technologies have
been designed and developed. This section identifies big
geospatial data trends in the following areas of focus: big
geospatial cloud computing, big geospatial data in the context
of artificial intelligence (AI) and machine learning (ML),
smart geospatial data discovery and geospatial data content
understanding.

A. BIG GEOSPATIAL DATA CLOUD COMPUTING

Cloud computing can facilitate computer resources dissem-
ination by ensuring that they are used as effectively as pos-
sible with regard to CPU, RAM, network and storage [93].
The field of Computer Sciences is currently undergoing a
paradigm change in the direction of cloud computing [94],
which has been useful for a number of sophisticated applica-
tions and has markedly improved storage and computational
cost-effectiveness [95]. Given the open availability of large
volumes of geospatial data, appropriate storage, processing,
transmission, and analysis of such data present difficulties
for conventional SDI. This has prompted the creation of new
cloud computing-based technologies, such as GeoRocket,
which is among the first cloud-based technologies intended
exclusively for geospatial data management [94]. Other tech-
nologies running in the cloud and facilitating geospatial
datasets to be scientifically analyzed and visualized on a large
scale are the Google Earth Engine and the System for EO
Data Access, Processing and Analysis for Land Monitor-
ing [37]. However, there is one significant problem associ-
ated with cloud computing platforms, namely, vendor lock
in. The migration of data can be disrupted by the fact that
management and processing functions are dissimilar between
cloud platforms [71]. Additionally, the storage and processing
of ample geospatial data within remote cloud servers can be
subject to delays and energy use due to the geographically
specific nature of geospatial data [96].

B. BIG GEOSPATIAL DATA IN THE CONTEXT OF Al AND ML
As computing power, learning algorithms and application
scenarios become more sophisticated and diverse, the appli-
cation of Al in a range of fields has intensified. Geospatial
information science benefits significantly from AlI, par-
ticularly when used alongside big data analysis [97].
Furthermore, BSD analytics can be refined by drawing of new
methods, such as explainable Al and interpretable ML [98].
Given the variety of domains in which big geospatial data are
relevant (e.g. infection tracking, climate change simulations,
disaster management, etc.), research has been focused on
supplying geospatial extensions to current ML solutions
or formulating entirely new solutions to enable effective
analysis and intelligence for existing applications [99].
Nevertheless, further research is needed to determine which
geospatial applications are most influential as well as to
integrate geospatial techniques and parallelization in this age
of big data [100]. The lack of big data homogeneity poses
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a particular research difficulty to formulate more advanced
algorithms to be used more effectively [101].

C. SMART GEOSPATIAL DATA DISCOVERY

The vast daily production of data poses great difficulties to
the field of Earth Sciences in terms of geospatial data dis-
covery and accessibility [102]. In particular, the application
of linked data and precise data discovery are affected by
the lack of semantic homogeneity of geospatial data [103].
In this context, the creation of geospatial data portals has
been proposed as a solution to make big geospatial data
more accessible [104]. Jiang et al. [102] devised an intelli-
gent system of geospatial data discovery based on the web,
whereby metadata user behavior is exploited to mine and
use data relevancy. Besides, in the context of intelligent sus-
tainable urban centers and the built environment, quantitative
and semantics analysis can benefit from the integration of
building information modeling (BIM) and GIS, which can
also provide visualization opportunities for knowledge dis-
covery and informed decision-making [105]. Furthermore,
building knowledge graphs from multiple sources can be
semantically linked in a spatio-temporal manner, thus afford-
ing researchers more reliable and effective services [106].

D. GEOSPATIAL DATA CONTENT UNDERSTANDING
Integrating heterogeneous data leads to better data represen-
tation and understanding. Conventional survey data can be
exploited for research purposes to the greatest degree possible
through the fusion of geospatial analytics and big data tech-
niques. For instance, to shed light on how income inequality
and health were correlated. Haithcoat et al. [107] integrated
geospatial big analytics and conventional large-scale survey
data. Another important use of big geospatial data is in
controlling self-driving vehicles as a new frontier of smart
transport, taking advantage of the ability of these types of
vehicles to sense the environment and operate with minimal
or without human intervention [108]. Furthermore, important
insight into travel behavior, traffic flow, and surrounding
environment can be gained from knowledge of big geospa-
tial data. Novel systems and tools are needed to success-
fully explore the existing data archives, given the continuous
expansion of EO data [101]. However, data accuracy should
be taken into account to gain an inclusive comprehension of
such data [109].

VIi. CONCLUSION

We provide a review of geospatial BDI methods and infras-
tructures. The classification of BDI approaches, including
data warehousing, data transformation and integration meth-
ods, is proposed in this study. A large number of studies
related to data warehousing and ETL tools is explored and
summarized, and their drawbacks and limitations are high-
lighted. Many studies focused on and were limited to the
so-called structured data whilst ignoring unstructured data,
especially geospatial big data. Our study clearly shows that
holistic geospatial BDI methods need further investigation.
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Lastly, several persistent challenges, research issues and
trends have been discussed on the basis of the current big data
era. This review covered data sources, semantic integration,
data quality, processing and storage of geospatial data, and
improvements in these research insights will be beneficial to
this field.
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