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ABSTRACT Tensor sparse coding (TSC) is a method used to excavate 3D volume structures extended by
sparse coding (SC), which is increasingly applied in data noise attenuation. Existing TSC approaches control
the intensity of noise attenuation by using a predetermined soft or hard threshold that relies on the noise
variance. However, the noise variance in seismic data is unknown and varies with time and space, leading to
the conventional TSC method not being able to track this change. To address this issue, we proposed a tensor
sparse coding model with spatially adaptive coherent constraint (TSC-SAC) to find an optimal adjustable
threshold without the demand for prior knowledge of the noise variance. The threshold is determined by
the coherence of the residual with respect to the dictionary. Moreover, a tensor spatial coherence orthogonal
matching pursuit algorithm (TSC-OMP) is developed for solving sparse representation. Unlike the existing
threshold strategy in traditional TSC methods, TSC-OMP utilizes an ideal spatially adaptive coherence
threshold to regulate the sparsity, which can effectively preserve the valuable information in processing
for noise suppression. By comparing with four state-of-the-art denoising algorithms, we then demonstrated
the superior performance of TSC-SAC on both a synthetic and two field data sets.

INDEX TERMS Tensor sparse coding, spatially adaptive coherence threshold, tensor spatial coherence
orthogonal matching pursuit (TSC-OMP).

I. INTRODUCTION
Sparse coding (SC) is an unsupervised method to learn the
useful structure or pattern of real data, which is widely
used in signal denoising [1], [2], natural image denoising
[3], [4], video denoising [5], [6] [7], and medical image
denoising [8], [9] [10]. With the increasing demand for high-
quality subsurface images, SC is naturally applied in seismic
data denoising [11], [12]. However, since the seismic noise
varies with time and space, the traditional SCmethods cannot
track this change due to the applied preset soft or hard thresh-
old strategy [13], [14], thus damaging some useful signals
while eliminating the noise [15]. Therefore, the essential
challenge for SC is to find an adaptive threshold strategy
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to achieve the optimal balance between the spatio-temporal
noise reduction and the preservation of detailed information.

In the seismic literature, most threshold strategies are
generally based on the transform domain to regulate the
data sparsity, which can be divided into the fixed-basis-
based transform and the SC-based method. The fixed-basis-
based transformmethod utilizes a linear combination of fixed
basis, representing the signal sparsely by a predetermined
soft or hard threshold in the transform domain, namely,
Fourier transform [16], wavelet transform [17], curvelet
transform [18], [19], shearlet transform [20], [21], and seislet
transform [22], [23]. However, the fixed basis is determined
in advance, which can lead to an unsuitable adjustment to
the varying strength of seismic noise. The SC-based method
encodes several basic elements as linear combinations in
the dictionary domain, controlling the sparsity with a set
threshold value to attenuate the seismic noise, including the
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K-singular value decomposition (K-SVD) [24], the data-
driven tight frame (DDTF) [25], the double-sparsity dic-
tionary learning [26], the multichannel singular spectrum
analysis (MSSA) [27], and the coherence-constrained sparse
coding [28]. Nevertheless, the mentioned method has diffi-
culty in eliminating spatio-temporal noise virtually, due to the
deficiency of spatial information in seismic data.

Recent research has suggested that the tensor-tensor prod-
uct (t-product) can be introduced into SC models, which
enables the direct data to process on high dimensional struc-
tures [29], [30], such as K-tensor singular value decompo-
sition (K-TSVD) [31], and two-dimensional sparse coding
(2DSC) [32]. However, the existing approaches rely on the
preset fixed threshold strategy, leading to an inability to effec-
tively extract useful features from seismic data [33]–[35].
In the absence of noise variance as a priori knowledge,
the application of predetermined threshold strategies will
cause part of the valuable information to be removed together
with the seismic noise. To address this issue, we introduced
a tensor space coding model, namely, tensor space coding
with spatially adaptive coherence (TSC-SAC), in which the
sparsity of seismic data is restricted by spatial coherence.
Since our adaptive coherence threshold is independent of the
noise variance, TSC-SAC can efficiently address the seismic
noise varying spatio-temporally.

More specifically, the main contributions of this paper lie
in four aspects. First, we introduce tensor sparse coding to
extract the spatial-time structure features of seismic data.
Second, by combining the tensor space coherence constraint
with orthogonal matching pursuit (OMP) [36], we estab-
lish a tensor spatial coherence orthogonal matching pursuit
algorithm (TSC-OMP), which we then use it as an algo-
rithm for solving sparse representation. Third, we deduce
an ideal spatial adaptive coherence threshold, which is used
as a stop criterion to find the sparsity of each lateral slice.
Finally, we apply TSC-SAC to synthetic and field data sets,
and compare its noise attenuation effect with four state-of-
the-art methods; thereby proving our model’s competitive
performance.

The rest of this paper is structured as follows. Section II
introduces the notations and preliminaries. Section III pro-
poses the problem statement and our model. Section IV
introduces solutions to TSC-SAC. Section V presents the
experimental results conducted on synthetic data and field
data. We summarize this work in section VI.

II. PRELIMINARIES
A. NOTATIONS
Throughout the paper, real third-order tensors are discussed in
the spaceRN1×N2×N3 . Tensors are represented in boldface cal-
ligraphic letters, i.e., Y; matrices are represented in boldface
capital letters, i.e., Y ; vectors are represented in boldface low-
ercase letters, i.e., y. The xline, inline, and time dimension of
a tensor are indexed by i, j, k , respectively, and i ∈ [N1], j ∈
[N2], k ∈ [N3], where [N ] denotes the set {1, 2, . . . ,N }.

For a third-order tensor Y ∈ RN1×N2×N3 , we use Y(i, :, :),
Y(:, j, :), and Y(:, :, k) to denote the horizontal, lateral, and
frontal slices, respectively. Specifically, we represent

−→
Y j =

Y(:, j, :) and Y (k)
= Y(:, :, k). Furthermore, we use Y(:, j, k),

Y(i, :, k), and Y(i, j, :) to denote the mode-1, mode-2, and
mode-3 tubes, respectively.

Additionally, we introduce the high-dimensional relations
of a tensor given by the concept of the t-product, which is
a natural generalization of matrix multiplication [37]. Next,
we provide its definition and some related definitions.
Definition 1 (t-Product [38]): The t-product of D ∈

RN1×r×N3 and X ∈ Rr×N2×N3 is a tensor whose (i, j)-th tube
Y(i, j, :) is given by

Y(i, j, :) =
r∑

q=1

D(i, q, :) ∗ X (q, j, :). (1)

Definition 2 (Tensor Transpose [38]): The transpose of
a tensor Y is Y†

∈ RN2×N1×N3 obtained by transposing
each of the frontal slices and then reversing the order of the
transposed frontal slices 2 through N3.
Definition 3 (Orthogonal Tensor [38]): A tensor A ∈

RN1×N1×N3 is orthogonal if it satisfies

A†
∗A = A ∗A†

= I, (2)

where the identity tensor I ∈ RN1×N1×N3 is a tensor whose
first frontal slice I(:, :, 1) is the N1×N1 identity matrix and all
other frontal slices I(k), (k = 2, . . . ,N3) are zero matrices.
Definition 4 (f-Diagonal Tensor [38]): A tensor is called

f-diagonal as each frontal slice of the tensor is a diagonal
matrix.

FIGURE 1. The t-SVD of an N1 × N2 × N3 tensor.

Definition 5 (Tensor Singular Value Decomposition
(t-SVD) [38], [39]): The t-SVD of Y is defined as (see Fig. 1)

Y = U ∗ S ∗ V†, (3)

where U ∈ RN1×N1×N3 and V†
∈ RN2×N2×N3 are orthogonal

tensors, and S ∈ RN1×N2×N3 is a f-diagonal tensor. The U
and V of t-SVD obey the orthogonal structures, and the S
satisfies the diagonal property. Note that each frontal slice of
t-SVD is indeed a matrix SVD in the frequency domain.

B. TENSOR SPARSE CODING (TSC)
For the consideration of being self-contained, we summar-
ily review the fundamental idea of the TSC model. For a
third-order tensor Y , the TSC model aims at finding an
overcomplete dictionaryD ∈ RN1×r×N3 and the tensor sparse
coefficient X ∈ Rr×N2×N3 . The tensor dictionary D consists
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FIGURE 2. Tensor lateral slices are represented by the t-product of tensor
dictionary and tubal-sparse coefficient tensors. The blue tubes in the
coefficient tensors stand for the non-zero tubes and the purple ones are
zero tubes.

FIGURE 3. A tensor lateral slice is represented by a t-linear combination
of r tensor dictionary lateral slices.

of r atoms where each lateral slice
−→
D j represents an atom.

Each lateral slices of the tensor sparse coefficientX also con-
sists of r tubes. After that, we give the following definitions
to represent a lateral slice of the tensor Y .
Definition 6 (Tensor-Linear Combination [31]): Given r

tensor lateral slices
−→
D j ∈ RN1×1×N3 , Fig. 3 illustrates a

tensor signal
−→
Y ∈ RN1×1×N3 using the t-linear combination

of the given tensor dictionaries as follows:

−→
Y =

r∑
j=1

−→
D j ∗
−→x j = D ∗

−→
X , (4)

where
{−→x j

}r
j=1 are tubes of size 1×1×N3 and

−→
X ∈ Rr×1×N3

is obtained by aligning all the −→x j.
Definition 7 (Tensor Tubal Sparsity [31]): Let the tensor

tubal sparsity ‖ · ‖TS denote the number of non-zero tubes of
a lateral slice

−→
X in the third dimension.

Invoking the above definitions, one can obtain the TSC
model based on tensor tubal sparsity constraints displayed
in Fig. 2 [31].

min
D,
−→
X j

N2∑
j=1

∥∥∥−→Y j −D ∗
−→
X j

∥∥∥2
F
,

s.t. ‖
−→
X j‖TS ≤ T , j ∈ [N2] . (5)

where T is the threshold dictated by the tensor tubal sparsity
of the solution, and ‖ · ‖F is the Frobenius norm of a tensor,
i.e., ‖Y‖F =

√∑
ijk |Yijk |2. Note that the j-th tubeX (j, 1, :) is

Algorithm 1 TSC-SAC Algorithm
Input: Y , D, µ̄, r , Nit .
1: Initialize: Randomly initialize D ∈ RN1×r×N3 .
2: while n < Nit do
3: // Tensor coefficients Learning
4: X̂ ← TSC-OMP(Y,D, µ̄).
5: // Tensor Dictionary Learning
6: for i = 1, 2, · · · r do
7: εi = Y −

∑
(j6=i)

D(:, j, :) ∗ X̂ (j, :, :), j ∈ [r],

8: wi = {j|X (i, j, :) 6= 0, j = 1, 2, · · · n},
9: Z(:, j, :) = ε (:,wi(j), :),
10: [U ,S,V] = t-SVD (Z),
11:

−→
D i = U(:, 1, :).

12: end for
13: D̂ =

{
−→
D i

}r
i=1

.
14: end while
Output: Ŷ = D̂ ∗ X̂ .

zero indicates that
−→
D j is not being used in the representation

of
−→
Y j.

III. PROBLEM STATEMENT AND FORMULATION
A. PROBLEM STATEMENT
In the process of seismic data acquisition, the ideal tensor
is observed in the presence of random noise [28], thus the
mathematical model is given by

T = Y +N , (6)

where T ∈ RN1×N2×N3 is the measured data containing the
useful information Y and a noise component N . The basic
idea behind most denoising methods is to utilize the concise
structure that only exists in Y to remove N [40]. Following
this key idea, the SC method vectorizes the image, making a
sparse approximation to estimate the useful structure where
the clean image Y obeys the criteria [41].
However, since seismic data has high-dimensional prop-

erties, the vectorization operation of the traditional SC
approach pulls down the original multidimensional structure
of the volume [33]. To overcome this defect, we introduce the
t-product to the SC method [29], [30], whereby equation (6)
can be rewritten as

T = D ∗ X +N . (7)

To obtain the optimal tensor sparse coefficient X , the TSC
model controls the sparsity by different threshold strategies,
seeking best approximations of Y . From the perspective
of the threshold strategy, the conventional TSC model can
be divided into two categories, namely, the fidelity term
constrained model and the tensor tubal sparsity constrained
model. The fidelity term constrained model deals with prob-
lem 1, and the tensor tubal sparsity constrained model deals
with problem 2, where problems 1 and 2 are as follows.
Problem 1 (TheUnknown Tensor Tubal Sparsity): Since the

tensor tubal sparsity is unknown, the TSC model will preset
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FIGURE 4. Flow diagram of the TSC-SAC model that is applied to 3-D seismic data.

a soft or hard threshold based on experience to control the
fidelity term [42]

X̂ = argmin
X
‖X‖TS ,

s.t. ‖Y −D ∗ X‖2F ≤ ε, (8)

where ε is the error threshold ordained by the noise vari-
ance σ 2. Remarkably, the error threshold ε underlying the
TSC model is to remove the noise while retaining the useful
information as much as possible.
Problem 2 (The Unknown Noise Variance): Since the vari-

ance σ 2 of the noise is unknown, the TSCmodel places a hard
threshold on the tensor tubal sparsity [43], [44]

X̂ = argmin
X
‖Y −D ∗ X‖2F ,

s.t. ‖X‖TS ≤ T . (9)

In terms of processing the mentioned problems, the exist-
ing TSC approach can address either problem 1 or 2. Nev-
ertheless, problem 1 arising in seismic data noise reduction
coexists with problem 2, which results in difficulty for the
existing TSC model to solve it.

B. PROBLEM FORMULATION
To overcome the above difficulty, the threshold of sparsity
needs to be independent of the noise variance [45]. For the

consideration of satisfying this condition, [28] exploited the
coherence threshold of residual R with respect to the dictio-
nary D. Extending this to the tensor version, we propose the
TSC-SAC model to solve these two problems, constraining
the sparsity by tensor spatially adaptive coherence.

Unlike equations (8) and (9), our threshold strategy is
chosen adaptively for each slice of the seismic data, rather
than using the same stop criteria for all slices [45]. Fig. 4
provides a diagrammatic representation of our proposed
approach. Different from the coherence in 2-D cases [28],
we use the tensor-linear combination structure to define the
higher dimensional coherence as

µ(
−→
R ,D) = sup

j∈[r]

∣∣∣〈−→R ,−→D j

〉∣∣∣
‖
−→
R‖F

,

= sup
j∈[r]

∣∣∣∣∣∑i,k R(i, 1, k)D(i, j, k)

∣∣∣∣∣(∑
i,k

R(i, 1, k)2
)1/2 , (10)

where
−→
R is a slice of residual volume such that

−→
R =

−→
Y i −

D ∗
−→
X i, and

−→
D j is one of the lateral slices in dictionary D.
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FIGURE 5. The SNR and SSIM comparison with regard to the iteration
number of the proposed and existing methods under the 3-D synthetic
example with noise of constant variance (‘‘©, �,

a
, ×, and ♦’’

correspond to TSC-SAC, K-SVD, MSSA, K-TSVD, and 2DSC, respectively).

Notice that sup(·) is the minimum upper bound of a set, and
| · | denotes the absolute value.

To constraint the tensor tubal sparsity and the tensor coher-
ence, the objective function of the TSC-SAC is given by

(D̂, X̂ ) = argmin
D,X

‖Y −D ∗ X‖2F ,

s.t.

min
X
‖X‖TS ,

µ(
−→
R ,D) ≤ µ̄,

(11)

where µ̄ is the ideal spatially adaptive coherence threshold.
In the coherent constraint term, the dictionary D is found
at the dictionary update step of the previous iteration. [28]
showed that the threshold C(2 log(K )/N )1/2 is ideal for fil-
tering out random noise by coherent denoising with respect to
a redundant dictionaryD ∈ RN×K . Following the same track,
we establish the derivation of µ̄ in the Appendix.

IV. SOLUTIONS
Due to the convolution operator and the highly underdeter-
mined objective function, the problem in equation (11) cannot

be solved directly [32]. Similiar to [24], [31], we split equa-
tion (11) into two iteration optimization stages: 1) Obtain-
ing the tensor coefficient X , and 2) Learning the tensor
dictionary D.

For the first stage, we fix the tensor dictionary D to
learn the tensor sparse coefficient X , and then equation (11)
becomes

X̂ = argmin
X
‖Y −D ∗ X‖2F + ‖X‖TS ,

s.t. µ(
−→
R ,D) ≤ µ̄. (12)

However, since equation (12) is considered as a non-
deterministic polynomial-time (NP) hard problem, which is
difficult to contract to a realistic seismic data size, there-
fore, [17] utilized the coherent matching pursuit algorithm,
which uses the iterative greedy scheme of the orthogonal
matching pursuit (OMP) [36]. Based on this, we propose a
tensor spatial coherence orthogonal matching pursuit algo-
rithm (TSC-OMP) approach to obtain an approximate solu-
tion in the TSC frame.

Algorithm 2 TSC-OMP Algorithm
Input: Y , D, µ̄.
1: function TSC-OMPY , D, µ̄
2: Initialize:R0

= Y , D0
= ∅, X 0

= 0, and t = 0.
3: for j = 1, 2, · · ·N2 do
4: while µ

(
−→
R t

j ,
−→
D t

m

)
< µ̄ do

5:
∣∣∣〈−→R t

j ,
−→
D t

m

〉∣∣∣ = sup
∣∣∣〈−→R t

j ,
−→
D n

〉∣∣∣;
6: D̂t

m =
−→
D t

m −
∑t

t=0

〈
−→
D t

m,D̂t−1
m

〉
∥∥∥D̂t−1

m

∥∥∥2
F

D̂t−1
m ;

7: Dt
= Dt−1⋃{

−→
D t

m

}
;

8:
−→
X j = argmin

Xj

∥∥∥−→Y j −Dt
∗ Xj

∥∥∥2
F
;

9:
−→
R t

j =
−→
Y j −Dt

∗
−→
X j;

10: t = t + 1.
11: end while
12: end for
Output: X̂ =

{
−→
X j

}N2

j=1
.

To learn the tensor sparse coefficient X , the TSC-OMP
algorithm first obtains a matching dictionary set D, and then
learns the tensor sparse coefficientX based onD. For clarity,
we show the details of learning X , as shown in Algorithm 2.

Firstly, in the over-complete dictionary set Dc, we find a
lateral slice

−→
D m that has the largest inner product with

−→
Y j,

namely ∣∣∣〈−→R t
j ,
−→
D t

m

〉∣∣∣ = sup
∣∣∣〈−→R t

j ,
−→
D n

〉∣∣∣ , (13)

where
−→
D t

m,
−→
D n ∈ Dc and

−→
D t

m,
−→
D n 6∈ Dt .

−→
R t

j represents the

residual of the j-th lateral slice
−→
Y j after t iterations.
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FIGURE 6. Denoising comparison of the 3-D synthetic example that adding random noise with constant variance. (a) and (g) Original noise-free data
and noisy data, respectively. (b)-(f) Denoised data using K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively. (h)-(l) Removed noise using
K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively.

Secondly, we orthogonalize the selected slice
−→
D t

m with
other t − 1 selected slices

D̂t
m =
−→
D t

m −

t∑
t=0

〈
−→
D t

m, D̂t−1
m

〉
∥∥∥D̂t−1

m

∥∥∥2
F

D̂t−1
m . (14)

For each iteration, the selected lateral slice is placed
into Dt as

Dt
= Dt−1

⋃{
D̂t
m

}
, (15)

where D0
= ∅. We then find the sparsity coefficient of the

lateral slice
−→
Y j can be written as

−→
X j = argmin

Xj

∥∥∥−→Y j −Dt
∗ Xj

∥∥∥2
F
. (16)

Naturally, we calculate the approximation error for
−→
Y j:

−→
R t

j =
−→
Y j −Dt

∗
−→
X j. (17)

When the tensor spatially adaptive coherenceµ
(
−→
R t

j ,
−→
D t

m

)
is less than µ̄, we can get the tensor sparse coefficient X̂ as
follows:

X̂ =
{
−→
X j

}N2

j=1
∈ Rr×N2×N3 . (18)

For the second stage, we use the updated sparsity coef-
ficient to learn the tensor dictionary D. We note that the
spatially adaptive coherence threshold µ̄ just constrains the
tensor coefficient [45], and then equation (11) becomes

D̂ = min
D
‖Y −D ∗ X‖2F . (19)

To simplify matters, we use the K-TSVD algorithm to
update D [31]. The optimization problem (19) can be solved
as follows:

−→
D i = argmin

D
‖εi −D(:, i, :) ∗ X (i, :, :)‖2F , (20)

where εi represents the representation error of the dictionary
apart from

−→
D i. Then the problem of (20) becomes

εi = Y −
∑
(j6=i)

D(:, j, :) ∗ X (j, :, :). (21)

Since each horizontal of X employs part lateral slices in
D, we select wi in Y and the corresponding tensor column to
get the following variable Zi:

Z(:, j, :) = ε (:,wi(j), :) , j ∈ [wi] , (22)

where wi = {j | X (i, j, :) 6= 0, j = 1, 2, · · ·N2} represents the
set of indices that data Y use dictionary slices D(:, j, :).

In order to minimize the error term, we apply t-SVD onZi:

Zi = U ∗ S ∗ VT , (23)
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FIGURE 7. The 12th crossline section of the 3-D synthetic example. (a)-(e) Denoised data using K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model,
respectively. (f)-(j) The corresponding residuals of K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively.

then we update
−→
D i as follows:

−→
D i = U(:, 1, :), (24)

and we can obtain the tensor dictionary D̂ as below

D̂ =
{
−→
D i

}r
i=1
∈ Rr×N2×N3 . (25)

Finally, we fix D̂ and optimize X in the next iteration until
our termination conditions is satisfied.

V. PERFORMANCE EVALUATIONS
In this section, we use synthetic and field data sets, com-
prising post-stack and pre-stack field seismic data, for eval-
uating the denoising performance of our TSC-SAC model.
In section V-A, we first describe the experimental setup for
the entire evaluation process. Then, we compare our proposed
technique with the K-SVD, MSSA, K-TSVD, and 2DSC
methods using both the synthetic (see section V-B) and field
examples (see section V-C).

A. EXPERIMENTAL SETUP
1) PERFORMANCE METRICS
For evaluation purposes, some metrics will be determined to
measure the quality of the noise attenuation results. Given the

original data Y and the denoised data Ŷ , two quantita-
tive assessments criteria are explicitly described as follows:
one is the SNR, which is defined as

SNR[dB] = 20 log10
‖Y‖F
‖Y − Ŷ‖F

, (26)

and the other is the spatial domain SSIM index [46], in terms
of the similarities structure between the reference image and
distorted image, which is defined as

SSIM(Y, Ŷ) =

(
2µYµŶ + c1

) (
2σYŶ + c2

)
(
µ2
Y + µ

2
Ŷ
+ c1

) (
σ 2
Y + σ

2
Ŷ
+ c2

) ,
(27)

whereµY , σY , and σYŶ are themean, standard deviation, and

cross correlation between Y and Ŷ , respectively. Here c1 and
c2 are used to avoid instability when the means and variances
are close to zero. Note that the whole image SSIM index is
averaging the local SSIM indices as calculated by a sliding
window.

2) COMPARED ALGORITHMS
To reveal the superior performance of our proposed
method, we compared two classes of algorithms,
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FIGURE 8. Denoising comparison of the 12th crossline section of the 3-D synthetic example that adding random noise with varying variance.
(a) and (g) Original noise-free data and noisy data, respectively. (b)-(f) Denoised data using K-SVD, MSSA, K-TSVD, T2DSC, and our TSC-SAC
model, respectively. (h)-(l) The corresponding residuals of K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively.

FIGURE 9. Denoising comparison of the 3-D post-stack field data Y1. (a) Noisy data. (b)-(f) Denoised data using K-SVD, MSSA, K-TSVD, 2DSC,
and our TSC-SAC model, respectively. (g)-(k) Removed noise using K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively.

namely, SC and TSC methods. After considerate evalua-
tion, we selected four state-of-the-art reference approaches
that have published confirmed results and open-source
codes.

• K-SVD [24]: Using t-SVD decomposition for sparse
coding of the examples based on the current dictionary
and updating the dictionary atoms alternately to fit the
data better.
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FIGURE 10. Denoising comparison of the 3-D pre-stack field data Y2. (a) Noisy data. (b)-(f) Denoised data using K-SVD, MSSA, K-TSVD, 2DSC, and our
TSC-SAC model, respectively. (g)-(k) Removed noise using K-SVD, MSSA, K-TSVD, 2DSC, and our TSC-SAC model, respectively.

• MSSA [27]: Decomposing the vector space of the Han-
kel matrix of the noisy signal into a signal and a noise
subspace by truncated t-SVD.

• K-TSVD [31]: Using the Fourier transform and group-
sparsity over multidimensional coefficient vectors to
alternate between estimating a compact representation
and dictionary learning.

• 2DSC [32]: Investigating the input images as tensor-
linear combinations under a novel algebraic model.
It uses the circular convolution operator since the shifted
versions of atoms learned by conventional SC are treated
as the same ones.

In the implementation of TSC-SAC and for comparison
with the approaches, the parameters for the model and the
numerical algorithm need to be set as follows: We use
the ideal coherence threshold µ̄ in our TSC-SACmethod, and
the error threshold ε of K-SVD, MSSA, K-TSVD, and 2DSC
are set to

√
Nσ , where σ is the standard deviation of Gaussian

noise. Note that the maximum number of iterations Nit = 10
during our experiments.

To test our TSC-SAC method, we applied the synthetic
and field data sets to verify the effectiveness of our proposed
approach. Introductions and details of the synthetic and field
data sets are as follows:

• 3-D synthetic data [34]: The 3-D synthetic example is
composed of three crossing linear events in the t-x-y
domain, containing Nx × Ny traces in all. The temporal

length of the data is 600 ms, whereas the sampling
interval is 2 ms.

• Liziba data set [47]: The post-stack field data cover
the Liziba region of the Sichuan Basin in southwestern
China. The Liziba data set consists of 950 inlines by
550 crosslines for a total of nearly 50,000 CDPs, each
sampled at 2 ms.

• Avo Viking data set [48]: A pre-stack seismic data set
containing marine seismic data and well-log measure-
ments of key elastic parameters was compiled from data
acquired in an area containing hydrocarbon reservoirs.

During the experiments, we demonstrated our model under
noise with constant variance and varying variance in the
synthetic example sized 300 × 19 × 19 separately (see
Figs.6, 7, and 8). To illustrate the superior performance of
our method in practice, we selected a field example Y1 with
a size of 200 × 31 × 300 from the Liziba data set (see
Fig. 9). We further verified the effectiveness of the proposed
TSC-SAC approach by applying it to a field exampleY2 sized
600 × 39 × 31 from the pre-stack seismic data set shown
in Fig.10.

B. VALIDATION ON SYNTHETIC DATA
For noise with constant variance, the original noise-free data
is displayed in Fig. 6(a). We add zero-mean white Gaussian
noise to the signal, obtaining noisy data with a signal-to-
noise ratio of 0.1403dB, as shown in Fig. 6(g). The denoising
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results of K-SVD, MSSA, K-TSVD, 2DSC, and TSC-SAC
are revealed in Figs. 6(b)-6(f), respectively. Fig. 6(h)-6(l)
provides information about the removed noise corresponding
to the above methods. For an even better demonstration,
we selected the slice with the crossline section of the 12th
to illustrate the effect in Fig. 7. Figs. 7(a)-7(e) compares
K-SVD, MSSA, K-TSVD, 2DSC, and TSC-SAC in terms
of the denoising results. To observe the performance of
noise attenuation more intuitively, we calculated the residuals
between the denoised data and the original noise-free data
of each method, which are shown in Figs. 7(f)-7(j), respec-
tively. Compared to our model, we can see apparent useful
information in the residuals of K-SVD,MSSA, K-TSVD, and
2DSC. Through this comparison, in the absence of prior noise
information, our proposed method demonstrate a superior
performance on attenuating the noise of constant variance.

To explicate the effect of noise with varying variance,
we selected the 12th crossline section of the 3-D synthetic
example, as shown in Fig. 8. The original noise-free data is
exemplified in Fig. 8(a).We added noise with a large variance
in the middle of the synthetic data, as displayed in Fig. 8(g).
Fig.8(b)-8(f) compare K-SVD, MSSA, K-TSVD, 2DSC, and
TSC-SAC in terms of the denoising performance. Similar to
the test of noise with constant variance, we calculated the
residuals between the denoised data and the original noise-
free data of each method, which are revealed in Fig.8(h)-8(l),
respectively. Fig. 8(h)-8(k) illustrate the denoising aftermath
ofK-SVD,MSSA,K-TSVD, and 2DSC,where obvious noise
remained, this is because the Frobenius norm of noise in
these places is higher than the error threshold we set. For
numerical purposes, the SNR and SSIM of the denoising
results are shown in Fig. 5, illustrating that the performance
of our proposed method is better than the other four reference
approaches.

C. VALIDATION ON FIELD DATA
For the 3-D post-stack field data Y1, the noisy data is illus-
trated in Fig. 9(a). The denoised data of K-SVD, MSSA,
K-TSVD, 2DSC, and TSC-SAC are shown in Fig. 9(b)-9(f),
respectively. Fig. 9(g)-9(k) show the removed noise corre-
sponding to the above methods. To highlight the denoising
result, we chose the slice with the crossline section of the 9th
to expose the effect in Fig. 11. The black boxes show that
the denoising upshot of K-SVD,MSSA, K-TSVD, and 2DSC
is that obvious noise remained, as can be seen in Fig. 11(a),
Fig.11(c), Fig.11(e), and Fig.11(g). In numerical, we com-
puted the variance of the two noise data blocks with the
size of 20 × 20 × 20 as shown in Fig. 11(b) where the
variance of σ2 is 2.6 times larger than the variance of σ1.
This demonstrate that TSC-SAC can attenuate the noise of the
varying variance in the actual 3-D post-stack data. The black
boxes in Fig. 11(b), Fig.11(d), Fig.11(f), and Fig.11(h) clarify
that an apparent part of the useful information is contained in
the removed noise of K-SVD, MSSA, K-TSVD, and 2DSC.
In the case where the noise variance is varying, this leads us to

FIGURE 11. The 9th crossline section of the 3-D post-stack field data Y1.
The left column is the denoising performance using K-SVD, MSSA, K-TSVD,
2DSC, and our TSC-SAC model, respectively. The right column is the
residual corresponding to the left column.

the conclusion that the proposed approach can achieve better
denoising results than the other four methods.

Furthermore, we tested the denoising performances on the
3-D pre-stack field noisy data Y2 as indicated in Fig. 10(a).
Fig. 10(b)-10(f) compare K-SVD, MSSA, K-TSVD, 2DSC,
and TSC-SAC in terms of the denoising results. The
removed noise corresponding to the abovemethods are shown
in Fig. 10(g)-10(k), respectively. For an even better demon-
stration, we selected the slice with the crossline section
of the 15th to illustrate the effect in Fig. 12. The black
boxes show that the denoising upshot of K-SVD, MSSA,
K-TSVD, and 2DSC is that noise remained, as can be seen
in Fig. 12(a), Fig. 12(c), Fig. 12(e), and Fig. 12(g). The black
boxes in Fig. 12(b), Fig. 12(d), Fig. 12(f), and Fig. 12(h)

12226 VOLUME 9, 2021



X. He et al.: 3-D Seismic Noise Attenuation via TSC-SAC

FIGURE 12. The 15th crossline section of the 3-D pre-stack field data Y2.
The left column is the denoising performance using K-SVD, MSSA, K-TSVD,
2DSC, and our TSC-SAC model, respectively. The right column is the
residual corresponding to the left column.

exhibit that the removed noise of K-SVD, MSSA, K-TSVD,
and 2DSC still contained useful information. This show that
the denoising performance of TSC-SAC is superior to the
other four methods when the noise variance is varying.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a TSC-SAC model to remove
seismic data noise, whose adaptive threshold controls the
sparsity without the requirement for noise variance. With
the constraint of spatially adaptive coherence, our model
can find an adaptive threshold strategy to reach the optimal
balance between the spatio-temporal noise reduction and
the preservation of detailed information. Then, we devel-
oped a TSC-OMP algorithm to solve the tensor coefficient.

Furthermore, we derived an ideal spatially adaptive coher-
ence threshold, which is used as a stop criterion to find the
sparsity of each lateral slice. Compared with some well-
known noise reduction methods, such as K-SVD, MSSA,
K-TSVD, and 2DSC, we used a synthetic example and
two field examples to illustrate the superior performance of
TSC-SAC in terms of the denoising results.

In future work, we will further investigate the poten-
tial of our proposed method in seismic data reconstruction
[49], [50], and seismic facies analysis [51]. Meanwhile, some
follow-up works can apply the TSC-SAC model to video
processing [5]–[7], and medical image processing [8]–[10].

APPENDIX
DERIVATION OF IDEAL SPATIALLY ADAPTIVE
COHERENCE THRESHOLD
With respect to the over-complete dictionaryD, we derive the
ideal upper bound µ̄ for coherence of the residual signalR:

µ(
−→
R ,D) = sup

j∈[r]

∣∣∣〈−→R ,−→D j

〉∣∣∣
‖
−→
R‖F

,

= sup
j∈[r]

∣∣∣∣∣N1∑
i

N3∑
k
R(i, 1, k)D(i, j, k)

∣∣∣∣∣√√√√(N1∑
i

N3∑
k
R(i, 1, k)2

) ,

= sup
j∈[r]

∣∣∣∣∣
N1∑
i

N3∑
k

R(i, 1, k)
‖R(i, 1, k)‖F

D(i, j, k)

∣∣∣∣∣ , (28)

where the normalized residual signalR(i, 1, k)/‖R(i, 1, k)‖F
follows the Gaussian distribution:

R(i, 1, k)
‖R(i, 1, k)‖F

∼ N
(
0,

1
N1 × N3

)
, (29)

on the basis of the linear combination in [52], the projection
of the normalized residual signal on a dictionary lateral slice
follows the distribution:

R(i, 1, k)
‖R(i, 1, k)‖F

D(i, j, k) ∼ N
(
0,

1
N1 × N3

)
. (30)

The coherence of the residual signal with regard to the dic-
tionary can be reformulated as the maximum of the absolute
value of N2 dependent [53], namely:

sup
j∈[N2]

∣∣∣∣∣
N1∑
i

N3∑
k

R(i, 1, k)
‖R(i, 1, k)‖F

D(i, j, k)

∣∣∣∣∣ ≤
√
2 log (N2)

σ 2 , (31)

combining (30) and (31), the coherence between the residual
signalR and the dictionary D is bounded:

µ(R,D) ≤

√
2 log (N2)

N1 × N3
. (32)
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