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ABSTRACT Hospital-acquired pressure injury is difficult to identify in the early stage, accompanied with
increased morbidity but considered to be preventable. For helping the nurses to monitor the status of the
patients’ skin, the infrared thermal imaging and the convolutional neural networks were integrated to identify
and prevent pressure injury. In the first stage, infrared thermal images were shoot and labelled with the
normal group and the pressure injury group by the clinical nurses. In the second stage, the convolutional
neural networks and two machine learning algorithms, the random forest and the support vector machine,
were applied to classify these two classes of the collected images. The classification model was trained on
164 images and was tested on the special image dataset consisted of 82 infrared thermal images of 1 day
before pressure injury. Gray level co-occurrence matrix was utilized to extract the texture features of the
infrared thermal images and we chose the pearson correlation coefficient and the Chi square test as the
feature selection methods. The classification accuracy of the proposed convolutional neural networks model
was 95.2% and the area under curve was 0.98. Moreover, the classification results from the test dataset were
conformed to the experience of the experts. After feature selection, variance and entropy were proved to
the best distinguishable features. Finally, we concluded that combining the infrared thermal imaging and
convolutional neural networks could contribute to the prevention of pressure injury. This measure should be
performed in high-risk populations to reduce the incidence of pressure injury.

INDEX TERMS Convolutional neural networks, thermal image, pressure injury.

I. INTRODUCTION
Pressure injury (PI), formerly known as Pressure ulcer (PU),
is a local injury to the skin and soft tissue located at the bulge,
medical or other instruments, and can be expressed as intact
skin or openness ulcer, may be accompanied with pain [1].
Data show [2] the current PI prevalence rate of inpatients
is 1.4%-120%, accompany with the PI prevalence rate was
increasing year by year in the past ten years. PI has become a
global health problem. It decreases health-related quality of
life and is associated with fatal septic infections and higher
mortality. Patients with PI have prolonged hospitalization and
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increased hospital costs. The rapid development and long
treatment cycle of PI have brought huge economic burdens to
society, medical institutions and families. Researches show
that tissue damage in an area of intact skin has been pene-
trated from the deep to the surface within 48 hours, within 7
to 10 days for further deterioration into a necrotic. PI pro-
gresses rapidly without interventions. Thus, early detection
and prevention is the only way to reduce the incidence of PI.
However, there are some difficulties in clinical care carrying
out the PI precaution. For one thing, the present clinical
application of risk assessment scales are unable to achieve an
objective and accurate assessment for early detection of the
risk of pressure injury [3]. For another thing, the judgment
of PI mainly depends on the evaluators’ perception of vision
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and touch on spot. But inflammatory and apoptotic (necrotic)
changed in the epidermal and dermal layers can precede
surface changes by 3 to 10 days, hence the hysteresis of
subjective judgment would lead tomisunderstandings in early
detection of pressure injury [4].

Currently, Infrared thermal imaging technology is the best
way to solve this problem, which takes advantage of receiv-
ing infrared radiation from some parts of the scene itself.
In the early stage of PI, metabolic abnormalities are caused
by partial or complete occlusion of capillaries at the com-
pression site that destroys the local thermal radiation bal-
ance, which can be recognized clearly in infrared thermal
images [5] and affect the temperature of the lesion area [6].
Prior studies have noted the practicality of infrared thermal
imaging in prevention of skin damage and underlying tissues.
Stephanie L et al. [7] employed thermal imaging conjunction
with image processing to monitor a patient’s risk of PI dur-
ing 112 days, reporting the temperature changes in patient’s
heels and malleolus over time. Harvey N et al. [8] assessed
sacral skin temperature by thermal image and concluded the
connection between the risk of PI (or vascular disease) and
the certain temperature. And for detecting the underlying
mechanisms of skin thermal damage and the optimization of
clinical thermal therapies, it is believed that infrared ther-
mal imaging technology could provide more information
than biopsy and tissue histology [9]. Unfortunately, for the
infrared thermal imaging, the mistakes cannot be avoided
with the problems from the image quality, diagnostic expe-
rience, or shooting equipment. In order to assist doctors and
nurses to better identify the patients’ skin status and obtain
more diagnostic information by the infrared thermal image,
deep learning represented by Convolutional Neural Net-
works (CNN), an approach prevalent in Computer Vision and
Pattern Recognition (CVPR), can be a better solution [10].
For instance, T. Jakubowska et al. [11] developed a breast
cancer classification system based on nonlinear artificial neu-
ral network to distinguish healthy and pathological cases in
infrared thermal images. The most discriminative features
based on wavelet transformation in breast tumor images were
obtained. Roslidar et al. [12] have introduced the application
of CNN in the breast cancer based on thermal images, pro-
viding the summary of the current work on thermal images
and an overview of the availability of breast thermal images.
Juan Zuluaga-Gomez et al. [13] proposed a CNN hyper-
parameters fine-tuning optimization algorithm, identifying
the breast cancer through infrared thermal imaging and the
classification accuracy is 92%. Several medical research of
pressure ulcers applying CNN have already been probed, but
the study objects focus on PI visible images [14] which is
unable to prevent early PI. While WenXue Tan [15] proposed
a CNN classification model based on lesion thermal images
for early warning. He summarized a self-adaptive momentum
rule to update CNN parameters and the recognition accuracy
is up to 96%.

Nevertheless, CNNhas been prevalent in the thermal image
classification task, enlightening us to apply it for the early

prevention of pressure injuries. For assisting the nurses, this
research shed new light on PI prevention applying infrared
thermography and CNN. For the experienced nurses, the total
time to complete the image acquisition and the image pro-
cessing was about four to five minutes, which meeting the
requirements of real-time observation. With the 4-months
project, over three thousand infrared thermal images were
collected and analyzed through the infrared thermal imager
FLIR PRO ONE and its software support. However, only
82 patients occurred PI during hospitalization, hence our PI
image dataset was small. With the original image dataset
which has too little samples to train the deep learning model,
it is indispensable to employ data augmentation to over-
come the data insufficiency and data unbalance. After image
processing mainly including image resizing and data aug-
mentation, we proposed the PI predictive model based on
collected images and CNN. In addition, to evaluate the per-
formance of the obtained CNN model, we applied two of
the machine learning algorithms to build the predict model
as well. Support vector machine (SVM) and random forest
(RF) are two classic and powerful algorithms to deal with
the classification task of the small dataset. All the training
process were employed 4-fold cross validation to test the clas-
sification results. In this procedure, Gray level co-occurrence
matrix (GLCM)was used to extract the original image texture
features like variance, entropy, and so on. Two methods of
feature selection were also involved to assess the importance
of the extracted features. Finally, comparing with other two
predictive models in terms of the classification accuracy and
the receiver operating characteristic curve (ROC), the perfor-
mance of the CNN model was the most competitive, which
were 95.2%. The main contributions of this article could be
summarized in the following points: firstly, nurses can assess
patients’ skin condition more reliably contrasting with the
traditional approaches; secondly, CNN was employed in the
PI thermal image classification at first time and an elemen-
tary and reliable CNN model was attained with the limited
dataset.

The rest of this article is organized as follows:
Section 2 presents the main methods used in this article.
The experimental details are described in Section 3. And
Section 4 discusses the results concretely. Section 5 summa-
rizes the concluding remarks and our future works of PI.

II. METHODS
A. CONVOLUTIONAL NEURAL NETWORKS
CNN, a multi-layer and non-fully-connected artificial neural
network, is characteristic of convolution algorithm and suc-
cessively separated into the convolutional layers, the pooling
layers, the fully-connected layers, and the output layers. Two
computation processes including forward propagation pro-
cess and back propagation process are underwent in thewhole
deep learning algorithm. Two critical and classical CNN
architectures are referred in our study, which are Le-Net [36],
AlexNet [28], and VGGNet [29]. AlexNet has 5 convolu-
tional layers, 3 pooling layers and 3 fully-connected layers

15182 VOLUME 9, 2021



Y. Wang et al.: Infrared Thermal Images Classification for PI Prevention Incorporating the Convolutional Neural Networks

FIGURE 1. The proposed CNN architecture for the PI classification.

while VGGNet is much deeper, 11 to 16 layers, with fixed
and small kernels in each convolutional layer.

The CNN architecture of this work is shown in FIGURE 1,
assembling by two convolutional layers (Conv1 and Conv2),
two pooling layers (P1 and P2), two fully-connected layers,
and the softmax [16] classifier as the output layer.

In the two convolutional layers, the features of the infrared
thermal image are extracted and analyzed by convolution
computation. The equation is as follows:

Y (i, j) = X (i, j)∗H (i, j)× {i = 0, 1, . . . , I ; j = 0, 1, . . . , J ;

imagesize ∈ [I , J ]} (1)

where Y (i, j) represents the output results of convolution
computation between the input images and the convolution
kernels, which transferring the three-channel RGB images
into two-dimension feature map with given convolution ker-
nels. And for the activation function, rectified linear unit
(ReLU) [17] is chosen to complete the initialization of each
convolutional layer. After convolution computation, the num-
ber of the output features is too considerable to exploit,
therefore, another pooling layer have to be deployed to reduce
the characteristic dimension. The max-pooling algorithm that
is to compute the maximum values from the obtained feature
map is used in this work. And for the softmax classifier,
the function is:

P =
exp(vectorc)∑C
i=1 exp(vectori)

(2)

where P points the probability that the computed feature
vector (vectorc) belongs to the class C . And the loss of the
P is defined as below:

E = −
C∑
c=1

qlogP (3)

where E represents the cross-entropy loss that assesses the
performance of the training process, in which the neural
networks are trained to make the output vectorc close to its
correct output vector from q. The qmeans the correct class of
vectorc.

B. DATA AUGMENTATION
Affine transformation as the method of image augmentation
is a critical and prevalent method of computer image pro-
cessing in the field of image recognition exploiting artificial
intelligence. Four types of data generation are chosen. Image
rotation and image dilation are the main data generation
approach in this article. Other methods are flip including

horizontal and vertical, and normalized noises which are salt-
and -pepper noise and Gaussian noise [18].

C. MACHINE LEARNING TECHNIQUES USED
TEXTURE FEATURES
1) GRAY LEVEL CO-OCCURRENCE MATRIX
Gray level co-occurrencematrix (GLCM) is a join probability
matrix to describe the probability of the gray value from each
pixel of image, obtained by statistically computing the spatial
relationship of two pixels keeping a certain distance on the
image based on gray level histogram [19].

F(a, b|d, q) =
L−1∑
a=0

L−1∑
b=0

((x, y)|f (x, y) = a,

f (x + dx, y+ dy) = b) (4)

where (a, b) are the image pixel pairs with the distance d
and the angle θ equal to 0◦, 45◦, 90◦, and 135◦. And L is the
maximal gray level value number of an image sized N ∗N .
Thus, F(a, b|d, θ) is defined that the emergence probability
of the certain pair pixels which locate in the image, shown as
(a, b)|a = f (x, y)&b = f (x + dx, y + dy). Texture features
extracted from the GLCM like contrast, correlation, dissimi-
larity, variance, and entropy [20] are employed. In the infrared
thermal image, the temperature changes of the objects in the
scene are collectively reflected, and the gray level distribution
is concentrated, the range is narrow. Correspondingly, texture
details are not rich enough. Hence, the chosen texture features
should fully represent the gray level distribution of the image
and reflect the gray correlation between the different regions
of the image.

Contrast =
L−1∑
a=0

L−1∑
b=0

F∗(a, b)|a− b|2

(F∗(a, b) = normalizeF(a, b)) (5)

Correlation =

L−1∑
a=0

L−1∑
b=0

(a− u1)(b− u2)F∗(a, b)

√
s1s2

(6)

u1 =
L−1∑
a=0

L−1∑
b=0

aF∗d (a, b) (7)

u2 =
L−1∑
a=0

L−1∑
b=0

bF∗d (a, b) (8)

s1 =
L−1∑
a=0

L−1∑
b=0

(a− u1)2F∗d (a, b) (9)

s2 =
L−1∑
a=0

L−1∑
b=0

(b− u2)2F∗d (a, b) (10)

Dissimilarity =
L−1∑
a=0

L−1∑
b=0

F∗(a, b)|a− b| (11)

V ariance =
L−1∑
a=0

L−1∑
b=0

F∗(a, b)× (a−Mean)2 (12)

VOLUME 9, 2021 15183



Y. Wang et al.: Infrared Thermal Images Classification for PI Prevention Incorporating the Convolutional Neural Networks

Mean =
L−1∑
i=0

L−1∑
j=0

F∗(a, b)× a (13)

Entropy = −
L−1∑
a=0

L−1∑
b=0

F∗(a, b) lnF∗(a, b) (14)

2) SUPPORT VECTOR MACHINE AND RANDOM FOREST
Support vector machine (SVM) [21] as a supervised learning
technique that prefers to solve the two-class classification
problems whether are from linear or non-linear data tasks.
Through creating a hyperplane in a high-dimensional space,
SVM seeks the best optimal parameters to determine the best
hyperplane which divides the data into different classes with
the maximize distance between two classes. Several kernel
functions (for instance, linear, polynomial, and radial basis)
can estimate the margins and the kernel, polynomial, is the
commonest choice.

And random forest (RF) [22] is a concept of ensemble
learning, made by various decision trees in the training pro-
cess. For RF, the output class label is determined by the mode
of the class output by the individual tree. Numerous decision
trees can handle the different feature subsets and produce
independent results, and with optimal split times, RF can
tackle outliers and noise in the dataset. Another advantage
of RF is less susceptible to overfitting, which is attractive to
use with the small dataset.

D. FEATURE SELECTION AND EVALUATION
Feature selection is an efficient approach to shrink feature
dimensions through choosing the effective features from the
original feature dataset in image processing. And the more
valuable characteristics could be selected in this process.
Pearson correlation coefficient[23] and Chi square test[24]
are two correlation criteria in this article considering the
applicability and simplicity of our dataset.

The classification performance is evaluated by the receiver
operating characteristic curve (ROC) and the area under curve
(AUC) [25]. and other metrics are accuracy, specificity, sen-
sitivity, which are shown as follows:

Accuracy =
TP+ TN

S
(15)

Accuracy is the kernel evaluation metric and describes the
total number of the true positive cases and true negative cases
in the whole cases (S). In the test results, TP means that the
predict label of the case is consistent with the actual label and
TN means that the predict label of the case is opposite with
the actual label. Thus, there are also FN and FP.

Specificity =
TN

TN + FP
(16)

Specificity is computed as TN divided by the total number
of the cases labeled with negative, which evaluates the per-
formance of the model towards to the negative cases. And
specificity is called TNR as well, meaning the true negative

rate.

Sensitivity =
TP

TP+ FN
(17)

Contrary to the specificity, sensitivity evaluates the perfor-
mance of the model about the positive cases, meaning the true
positive rate (TPR).

III. EXPERIMENTAL DETAILS
A. DATASETS
From August 2018 to April 2019, 349 patients, who were fol-
lowed up continuously for 10 days, from some departments
of intensive care unit (ICU) were selected in the first affiliated
hospital of Wenzhou Medical University.

The infrared device used for the acquisition of skin thermal
images is from the FLIR ONE PRO [26], with which an opti-
cal camera (visible light resolution up to 1440 ∗ 1080 dpi) and
an infrared camera (thermal resolution up to 160 ∗ 120 dpi)
supported with the software provided by FLIR ONE. And
the temperature resolution is 0.1 ◦C with a temperature range
of −20 ◦C to 400 ◦C. The manual of the device could learn
from [37].

Apart from the unqualified samples, over three thousand
infrared thermal images of sacral region were acquired from
349 cases. With an incidence rate of pressure injury of 23.5%
which was accord with the study [27], there were 82 cases
in PI in the whole process. Thus, there were 82 PI infrared
thermal images. And in order to the data balance, another
82 normal infrared thermal images were selected from all
shot images. In addition, all abnormal ones belonged to
status 1 of PI merely, making the warning values of tissue
damage more practical. Especially, because all the images
of patients’ skin condition were collected for 10 consecutive
days, the images of the 82 patients 1 day before the pressure
ulcer were recorded as well. For the prevention of the PI, it is
significant to explore the patient’s skin condition before the
PI occurring. Therefore, 82 infrared thermal images of 1 day
before patient occurring PI were marked as the test dataset to
verify our framework. However, the 82 images in test dataset
were not sure to label with PI, thus, we hypothesized that all
of them were PI. In this way, there were two image datasets
in this article, which were the train dataset (82 PI infrared
thermal images and 82 normal infrared thermal images)
and the test dataset (82 infrared thermal images of 1 day
before PI).

The details of thermal image acquisition were as follow:
The preparation of environment mainly included tempera-

ture and humidity inside ward which were 22◦C to 26 ◦C and
50% to 60%, respectively.

For the preparation of patients, participants were prohib-
ited to have physical therapy. Then, participants were asked
not to take any activities likewise move, eat, wash, and bath
within 30 minutes before measurement. During the shooting
process, patients need to stay in bed with the 90 degrees
lateral position lasts 4 minutes, exposing the area required
for the sacral region and lower back completely. Meanwhile,
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FIGURE 2. Process for the PI thermal image collection through infrared
thermal camera and tablet personal computer.

the device kept at 30cm from the sacral area when taking
the thermal images. Make sure that the infrared thermal
imager was parallel to the body, it was perpendicular to
the bed surface, and the lens was at the same height as
sacrum.

B. IMAGE PREPROCESSING
In imaging procedure, all the obtained thermal images are
546∗386 pixels, and each one has a related file containing
temperature value of each pixel.

There are twomain steps in the image preprocessing which
are the ROI segmentation and data augmentation. For ROI
segmentation, nurses experienced and mastered in infrared
thermal image software could separate the ROI from the
original thermal image easily and quickly with FLIR software
and label the original thermal image with normal or pressure
injury. And for the data augmentation, we expanded the
raw dataset 14 times through rotating in 5 different angles
(60◦, 90◦, 120◦, 180◦, 270◦); flipping in horizontal and ver-
tical; dilating 5 different seeds in the same ROI; and adding
gaussian noise and salt pepper noise into the raw images with
parameters (in the Gaussian noise, the mean was 0.1 and the
variance was 0.05; in the salt & pepper noise, the parame-
ter was 0.03). Thereby, the number of the original images
increased from 164 to 2296.

C. DETAILS OF CNN LAYERS AND TRAINING
Each image of size 546∗386 is resized to 256∗256 after image
preprocessing and data normalization. In the first convolu-
tional layer (Conv1 layer), 16 convolutional kernels of size
3∗3 are applied to work with the input images (256∗256).
Successively, the output (the images still size in 256∗256)
of Conv1 layer will be fed into the first pooling layer
(P1 layer) that is component of one convolutional kernel sized
in 3∗3. And the second convolutional layer (Conv2 layer) and
the second pooling layer (P2 layer) are same as the first ones.
However, the input patches in Conv2 layer and P2 layer are
which is exactly the results of the first convolutional layer.
The activation function used in twoConv layers and two pool-
ing layers is ReLU. Both of the fully-connected layers have
128 neurons, transforming the output features computed from

FIGURE 3. Pipeline of the proposed CNN architecture based on classifier.

TABLE 1. The Setting Parameters in Training Procedure

Conv2 layer and P2 layer into vectors correspond to the two
targeted classes, normal and PI. And for supervising the fine-
tuning during back propagation, ‘‘AdamOptimizer’’ is used as
well [28]. For training the model using CNN, 2296 infrared
thermal images after preprocessing were separated into two
groups, which were test group including 20% and the train
group including 80%.

Tensorflow3.0 and MATLAB 2016A work on the devel-
opment environment, windows10. And the framework of
the PI infrared thermal image classification is illustrated in
FIGURE 3. Steps of the whole image processing are as
follows:

1) Select and label the skin infrared thermal images by
nurses and doctors;

2) Segment the ROI from the original infrared thermal
images;

3) Resize the input images into 256∗256;
4) Apply data augmentation to expand the original image

dataset; separate the augmented dataset into train
dataset and test dataset by assigning the images
randomly;

5) Train the CNN model and evaluate the CNN model.

TABLE 1 illustrates the specific setups of the proposed
CNN model and the significant setups of training param-
eters. ‘‘Stride’’ and ‘‘Padding’’ (the strategy is ‘‘SAME’’)
determine the size of the feature maps in each layer. And
during an unbroken training processwhich needs around from
3,600 seconds to 4,000 seconds, the basic learning rate is
0.001, the batch size is 64, and the epoch is 751.
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D. IMPLEMENTATION AND PARAMETERS OF SVM
AND RF CLASSIFIERS
After image preprocessing, 5 texture features from all the
infrared thermal images were extracted using GLCM. And
the strategy of the dataset separation is same as the CNN
pipeline, 20% for test and 80% for train.

The implementation of SVM was performed using
LIBSVM [29] package. The two most important parameters
are the optimum parameter of cost and the kernel width. And
with the polynomial kernel, automatic optimization in 4-fold
cross validation was employed to find the best parameters
according to a stride of 0.5 and ranging from −10 to 10.
Eventually, the best parameter of cost was 1024 and the
best parameter of the kernel width was 724.0773. And the
implementation of RF was used the python package ‘‘scikit-
learn’’. Some default parameters of the RF classifier set in our
task were derived from [30]. The main parameters changed
were the number of trees which was 15 and the number of
random sampling regions was 10. All texture features based
on GLCM were taken as input features.

IV. RESULTS AND DISCUSSION
After the whole study, we have proposed a novel solution
for the PI problem that is focus on the diagnosis and pre-
vention. The proposed method integrates infrared thermal
imaging and artificial intelligence to assess skin condition
of critically ill patients, suggesting a new assessment as a
complementary index to improve the level of care for criti-
cally ill patients. Firstly, several significant discoveries have
been found through comparing the differences between the
normal skin infrared thermal images and the pressure injury
infrared thermal images. Recent research demonstrates that
different color gradations represents different temperatures
in thermal image: red for hot zone, yellow for warm zone,
green for cool zone, blue for cold zone, and purple for
supercool zone [31]. Generally, as blood perfusion and tissue
metabolism are constant at one anatomical region, implying
color gradation distribution should be uniform. As adipose
tissue generally does not transmit heat, the subcutaneous fat-
rich parts have lower skin temperatures (such as the hip) [32].
Therefore, the hip area appears as yellow warm zone com-
pared to red hot zone of sacrum in thermal images. When the
injury occurs, the red zone of sacrum presents a yellow abnor-
mal color gradation. Moreover, the whole change process
takes place before the skin abnormality is recognized by the
naked eye. As tissue damage aggravate, yellow-green color
gradation appears, finally changing into a green abnormal
color gradation. Correspondingly, the subjectivity and indi-
rectness of risk assessment scales hinder nurses to identify
local skin changes sensitively and timely. And it is easy for
clinical nurses to become complacent over time for scale
score, which results in poor triggers for taking preventive
measure.

Secondly, although using GLCM could obtain several
texture features from images, entropy and variance are
the most distinguishable features to the infrared thermal

FIGURE 4. Two samples of the sacral region infrared thermal images: A is
the pressure injury in status 1, appearing yellow or green abnormal color
gradation in the top region of sacrum; and B is a normal infrared thermal
image.

FIGURE 5. The scores of the 5 texture features extracted from 3 datasets
using GLCM.

images [8], [33], which is also accord from FIGURE 5.
FIGURE 5 presents the mean of the 5 texture features
extracted from the normal dataset, the PI dataset, and the
test dataset. Generally, contrast, correlation, dissimilarity, and
entropy can describe the image sufficiently, but in the infrared
thermal images, mainly because of the image quality and
image content, the difference of the three features is not
conspicuous. FIGURE 5 also describes that the entropy from
PI images is the highest score, suggesting the PI images are
more complex.

Through the feature selection step, the conclusion that
the entropy and variance are the most efficient texture fea-
tures for the infrared thermal images has been verified
again. In TABLE 2, the texture features are the image data
applied in the classification model. Variance and entropy
value 0.092 and 0.084 using pearson coefficient correlation,
respectively. Both of the two features are lower than other
three features, pointing out the variance and entropy are
more efficient. And for Chi square, the higher the score is,
the stronger the connection between the features and images.
Another index RF value is come from the process of training
model in RF algorithm, which indicates that except vari-
ance or entropy, dissimilarity is also an important feature
for building the classification model. However, other two
feature selection methods do not denote that, thus, we merely
concluded that the dissimilarity was more important than
contrast or correlation in building our models using random
forest algorithm.

FIGURE 6 shows the ROC curves of the three classi-
fication models building by the SVM algorithm, the RF
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TABLE 2. The Scores of the 5 Texture Features Using Random Forest
Values, Pearson Correlation Coefficient, and Chi Square

FIGURE 6. The ROC of the three algorithms.

TABLE 3. The Details of the 3 Classification Models

algorithm, and the proposed CNN framework. According to
the ROC curves, the CNN model has the best classification
performance and the corresponding AUC is 0.98. Despite
the two traditional methods, SVM and RF, have an inferior
classification results, the AUC of the two model is still higher
than the existing models [34] of the infrared thermal images.
In addition, although comparing other deep CNNmodel [14],
our CNN framework has a more simple and concise structure,
the computational efficiency of the proposed CNN method is
still lower than other two machine learning methods which
just need 1200 seconds to 1500 seconds.

TABLE 3 presents the specificity, sensitivity, accuracy, and
AUC of the three classificationmodels. The details of the pro-
posed CNNmodel show a higher performance than other two
machine learningmethods. And as compared with other CNN
applications in thermal images [11], the accuracy of 95.2% is
also better than the existing CNNmodels. In the threemodels,
the specificities are all lower than the sensitivities, suggesting
that the classification models have a stronger ability to iden-
tify positive cases. And in general, with the same five texture
features, the model using SVMmethods is equal to the model
of RF. Both of our two methods overperform some models
applying traditional machine learning methods like artificial
neural network [35] (our classification accuracy is 86% to
89%, while other systems scored around 80%), indicating the
advantages of our works.

However, when we used the test dataset including 82 ther-
mal images of 1 day before PI to test the obtained three

FIGURE 7. The first row (A to D) are the vision images of 1 day before PI;
the second row (E to H) are the thermal images of 1 day before PI; and
the third row (I to L) are the thermal images of the day of PI occurred. The
black circle area represents the ROI.

models, the CNN was still the most competitive, but the
model using the RF method was obviously superior to
the model of SVM, which implies the ensemble learning
algorithm has a great potential as well. In test dataset,
most cases were not diagnosed even by experienced nurses,
but the CNN model distinguished 66 PI infrared thermal
images, which assisted nurses to assess the patient’s skin
condition.

Some examples of the test dataset are presented in
FIGURE 7. Four examples displayed in FIGURE 7 which
were in doubt in the labelling process, because we could not
diagnose the patient’s skin condition positively by the observ-
ing situation on site or even through the infrared thermal
imaging. The first row of FIGURE 7 acquired through the
infrared thermal imaging accordingly are the visible images
of 1 day before PI, but only the FIGURE 7A and FIGURE 7B
could be diagnosed by nurses. On the contrary, the second row
of the FIGURE 7 could describe the patient’s skin condition
clearly, which are also the best examples that can repre-
sent the dataset. While encountering these cases before PI
occurred, the professional nurses will hesitate to determine
whether to take protective measures or not only with the
naked eye skin observation. However, PI just occurred after
several hours, and this change was shown from the third
row of the FIGURE 7 obviously, compared with the infrared
thermal imaging of 1 day before PI. We can point out that
the abnormal change (appeared yellow or green zone) of
sacral region in FIGURE 7E to FIGURE 7H is early warning
signal of skin injury, which were verify the reliability of
early warning further when PI occurred with the color zone
turned colder. Therefore, we made a hypothesis that how
deep learning works in this application may be based on it.
Eventually, 66 infrared thermal imaging samples of 1 day
before PI in in this dataset were identified as PI by CNN
model, which is also supported by the nurses.

Overall, from FIGURE 7 and TABLE 4, the infrared
thermal images and the classification results of the three
models indicate the dilemma of the infrared thermography
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TABLE 4. The Classification Results of the 3 Classification Models on Test
Dataset

and the deficiency of the artificial intelligence applied to
PI: acquiring images at a single point in time is not suf-
ficient to prevent PI, neither for nursing staff nor artificial
intelligence. Thereby, in order to prevent PI effectively and
modify our CNN model, more thermal images of the poten-
tial areas where PI occur ought to be collected in different
point-in-time. Another limitation of our work lies in the ROI
segmentation process, it is still a subjective process to delete
the background and other redundant information from the
original infrared thermal images by manual. As a conse-
quence, it took us a great deal of time to discuss the thresholds
of some ambiguity images, especially in the dataset of the
1 day before PI occurred.

V. CONCLUSION
In this article, infrared thermal imaging technology was
employed to prevent PI rather than the conventional risk
assessment scales, providing more objective and directive
diagnostic method. And integrating the infrared thermal
imaging with the CNN, we presented a CNN model to iden-
tify the infrared thermal images. As far as we know, CNN has
been applied in many different images, but when it comes
to the infrared thermal image of which the gray level is
more concentrated and the content is coarser, the existing
CNN models should be adjusted to use. A specified CNN
architecture for thermal image ought to be more concise and
more convenient to train. Test results have shown that our
proposed framework achieves competitive capability in the
train and test datasets. And comparing with the SVM and RF,
the CNN model performs better, and we also verify the more
significant features for the infrared thermal images, which
are variance and entropy. Promising results indicate there
are great potential value in the prevention of pressure injury
with exertion of infrared thermography and CNN. In future
works, our project is still continuing and more PI cases will
be gathered in our datasets. We will increase the number of
PI thermal images to train more models with other CNN
architectures for obtaining the more satisfied and reliable
results.
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