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ABSTRACT Hematoxylin and eosin (H&E) stained colors is a critical step in the digitized pathological
diagnosis of cancer. However, differences in section preparations, staining protocols and scanner specifi-
cations may result in the variations of stain colors in pathological images, which can potentially hamper
the effectiveness of pathologist’s diagnosis and the robustness. To alleviate this problem, several color
normalization methods have been proposed. Most previous approaches map color information between
images highly dependent on a reference template. However, due to the problem that pathological images
are usually unpaired, these methods cannot produce satisfactory results. In this work, we propose an
unsupervised color normalization method based on channel attention and long-range residual, using a
technology called invertible neural networks (INN) to transfer the stain style while preserving the tissue
semantics between different hospitals or centers, resulting in a virtual stained sample in the sense that no
actual stains are used. In our method, the expert does not need to choose a template image. More specifically,
we have developed a new unsupervised stain style transfer framework based on INN that is different from
state-of-the-art methods. Meanwhile, we propose a new generator and a discriminator to further improve the
performance. Our approach outperforms state-of-the-art methods both in objective metrics and subjective
evaluations, yielding an improvement of 1.0 dB in terms of PSNR. Moreover, the amount of computation of
the proposed network has been reduced by 33 %. This indicates that the inference speed is almost one third
faster while the performance is better.

INDEX TERMS Color normalization, stain style transfer, invertible neural networks, pathological images.

I. INTRODUCTION
Histopathological analysis has been considered to be the
golden standard step for the affirmation of cancer. Tradition-
ally, pathologist’s diagnosis involve visual analysis of stained
slides to study the presence and characteristics of the disease
under a microscope. Staining provides valuable information
for the pathologist’s diagnosis in clinic. Due to the fact that
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chemical dyes can selectively bind to naturally transparent in
tissues, different structures can be colored differently in tissue
sections [1]. Pathologists study the spatial information and
morphological features to diagnose and characterize the vari-
ous pathological conditions [2]. However, this tedious exam-
ination is time-consuming and prone to be subjective [3], [4].
Several previous diagnosis in histopathological grading have
been shown the poor consistency among pathologists [5]–[7].
Moreover, pathologists may miss small cancer regions [8].
Until recently deep learning has open an access for automated
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and accurate histopathological diagnosis with machine learn-
ing algorithms using whole-slide imaging.Whole-slide imag-
ing is a technique where scanners digitize glass slides at
a very high resolution, resulting in a image with a size in
the order of 10 gigapixels, typically called as whole-slide
images (WSIs). Computer aided diagnosis (CAD) using deep
learning technique can not only alleviate shortcomings of
human diagnosis, but also improve diagnosis by sieving out
obviously benign slides and providing quantitative character-
ization of suspicious areas [9].

Hematoxylin and eosin (H&E) is the most widely used
staining agent in histopathology. Although the same chemical
dye (H&E) is used, many other factors can lead to the varia-
tions in visual appearance of the tissue sections [10]. These
factors mainly exist in the specimen preparations, stain-
ing protocols and slide scanners, including variables in raw
materials, reactivity to staining agents from different man-
ufacturers, concentration of staining agents, inter-patient or
inter-center variations, and difference in scanners [10]. These
variations can hamper the performances of CAD systems,
reducing the robustness of computer algorithm [11]. In clinic,
the appearances of stain style images are different among dif-
ferent hospitals especially their colors, thus affecting the gen-
eralization ability of deep learningmodels. In order to achieve
a robust diagnosis, models trained with datasets from one
center should make a reliable diagnosis when it is utilized on
the data of the other center. However, due to the appearance
differences, the robustness of the algorithms will decrease
when evaluated on the data of another centers. The adoption
of standardized tissue preparations, staining protocols and
scanners may reduce the variations. However, this standard-
ization involve many human operations (e.g., manual tissue
preparations and application of staining agents), resulting in
the subjective variations in pathologists inevitably. Moreover,
the varations become more significant due to the fact that
different scanners are used among centers. This implies that
eliminating all the underlying variations is infeasible in prac-
tice [12]. A more practical solution is to combine a specific
image analysis task with stain normalization task in end-to-
end joint training. The intrinsic stain normalization compo-
nent serves as a pre-processing operation for image analysis
tasks, generating images similar to target version in terms of
stain and to input in terms of context. In this configuration,
the task-specific network (e.g., cancer classification or tissue
segmentation) is trained on target-style images drawn from
target set distribution as well as arbitrary images drawn from
different distribution. Although this task can handle images
with different statistical properties (i.e., different staining
appearances), it also needs to retrain for the task-specific net-
work when new-style images are used as inputs. Additionally,
the intrinsic stain normalization component is invisible. Thus
we are not able to know the quality of these generated images.

Generally, previous automated algorithms mainly address
stain inconsistency by three approaches: (i) ignoring color
information using only grayscale images; (ii) color-based
data augmentation method for synthesizing new images

to enhance the robustness of the model; (iii) relying on
color matching strategy to normalize stain style, where all
images from a given data set is mapped to a reference data
set [13]–[21]. However, the methods that ignores color infor-
mation to learn color-invariant features are biased towards
texture-based features [22]. These methods have the main
limitation of ignoring clinically relevant information captured
through colors. It is uncertain whether data augmentation (i.e,
(ii) above) can capture all variations that occur ‘‘in the wild’’
due to the linear nature of many color/stain augmentations.
This may be an oversimplification of variability in tissue
staining in the real world [23]. Additionally, Most color
matching strategies (i.e, (iii) above) highly dependent on a
template image. However, due to the problem that patho-
logical images are usually unpaired, these methods can not
produce satisfactory results.

In this work, we propose an innovative stain normalization
approach using unpaired datasets based on invertible neural
networks (INN). INN can be used to synthesize high-quality
images [24], and to perform image classification without
losing information of hidden layer [25] through addressing
inverse problems [26]. In our method, experts no longer need
to manually select templates by themselves bypassing cap-
turing special characteristics of unpaired images and making
an mapping between two centers. In addition, the channel
attention and long-range residual schemes are integrated to
further improve the performance of the proposed method.
In the end, our method yields an improvement of 1dB in terms
of PSNR compared to state-of-the-art methods. It’s alsoworth
noting that our proposed framework can be implemented
33 % faster than state-of-the-art methods.

Our contributions are summarized as follows:

1) We develop a novel unpaired stain normalization
framework via introducing the idea of INN using a
technology called additive coupling.

2) We propose a new network structure that includes a
novel generator and a new discriminator to improve
the performance. The channel attention and long-range
residual are used in our proposed framework to yield
better performance.

3) The proposed method has been evaluated using public
available dataset MITOS-ATYPIA14, dataset CAME-
LYON16 and clinical dataset from a local hospi-
tal, yielding superior performance than state-of-the-art
methods while with a faster inference speed.

II. RELATED WORKS
A. STAIN NORMALIZATION
Most previous algorithms to date for stain normalization
can broadly fall into three categories. Histogram-matching
based methods that try to map the histogram distributions of
source images to that of a reference template. For instance,
Reinhard et al. proposed to map distributions of color his-
tograms between source images and a reference template in
LAB color space [16]. This method performed the mapping
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on each separate channel of LAB. However, this may lead to
incorrect color mapping of stain components due to the fact
that dyes have independent contributions to the final colors
of the image, attributed to the chemical nature that dye has its
own specific reaction mode. The problem can be addressed
by Stain separation based methods, where normalization is
performed on each staining channel (i.e, hematoxylin channel
and eosin channel) separately. In this type of methods, color
deconvolution is applied for stain separation to decompose an
image into its staining components. This is done by estimat-
ing a staining matrix that represents the RGB colors of each
stain in the tissue. Khan et al. [15] computed the stain matrix
by assigning each pixel to specific stain components. Santanu
Roy et al. [27] performed color normalization of the source
image by transferring the mean color of the target image in
the source image and also to separate stain present in the
source image. Li and Plataniotis [28] raised a systematical
and analytical solution consisting of a circular color analysis
module and a computation module based on non-negative
matrix factorization. Other approaches for stain separation
using non-negative matrix decomposition [29], [30] to clus-
ter images. These methods for stain separation are super-
vised. Other studies based unsupervised techniques involve
clustering the images using optimization algorithms such as
expectation-maximization [18]. Harsha Bhat et al. [31] pro-
posed an algorithm combining de-staining and wedge sepa-
ration for histopathological images. The method proposed by
Politecnico di Torino et al. [32], named SCAN (Stain Color
Adaptive Normalization), is based on segmentation and clus-
tering strategies for cellular structures detection. The above
two types of methods for stain normalization have obvious
drawbacks, thesemethods did not consider the spatial relation
of the tissue, resulting in improper staining. In addition, these
methods highly depend on a reference template, which may
lead to normalization errors when the color distributions of a
reference template is not proper.

The third category is Generative learning based meth-
ods, these methods exploit the powerful image representation
ability of convolutional neural network (CNN) and image
generation ability of Generative Adversarial Network (GAN)
to normalize stain style, transferring the stain style of refer-
ence images to source images while preserving the context of
source images. They are template-free, and can overcome the
problem of staining errors caused by the previous two types of
methods. For instance, Bentaieb and Hamarneh [33] combine
a image classification task with stain style transfer task for
joint training. In this configuration, the intrinsic stain style
transfer component aims to generate images similar to target
version in terms of stain and to input in terms of context.
Shaban et al. [34] proposed an unpaired stain style transfer
networks called StainGANbased onCycleGAN and achieved
the best performance to date with the highest values in terms
of PSNR and SSIM. Similar to StainGAN, Zhou et al. [35]
proposed an enhanced cycleGAN based method with a
novel auxiliary input for the generator by computing a stain
color matrix for every H&E image in the training set, and

Thomas et al. [23] developed an improved CycleGAN for
segmentation of renal histopathology.

B. GENERATIVE AND ADVERSARIAL NETWORKS (GAN)
Generative and Adversarial Networks was firstly introduced
by Mirza and Osindero [36] in 2014. From then on, GAN
bring significant changes in computer vision. They have
already made great success in image generation [37], [38],
image editing [39], representation learning [38], [40], image
inpainting [41], and image-to-image translation [38], [42],
[43]. The key of GAN’s success is the idea of adversarial
learning that forces the generated images to be indistin-
guishable from target images. It consists of two components,
a generator which generates images from random noise, and
a discriminator to distinguish generated images from real
images. During training, a adversarial loss is introduced.
Generator is rewarded for generating fake image to fool
the discriminator, and discriminator is rewarded to correct
the classifications. Both networks optimize the parameters
through back-propagation algorithms and to update itera-
tively, aiming at the smallest value of the adversarial loss
function. As we all know, GAN is difficult to train because
it needs to strike a balance between different networks.
Several techniques have been proposed for a stable train-
ing, such as spectral normalization [44], WGAN [45] and
PGGAN [46].

C. IMAGE-TO-IMAGE TRANSLATION
Our work we refer to as stain style transfer is closer to image-
to-image translation rather than style transfer, since it is not
necessary for style transfer to preserve context information.
Image-to-image translation is an active area which employs
GAN to synthesize new images in computer vision. It is a
technique that learns a function f: x → y, where x (x ∈ X )
and y (y ∈ Y ) are two corresponding representations of an
image. It can be divided into paired image-to-image transla-
tion and unpaired image-to-image translation according to the
available training data.

Paired datasets consist of aligned images in domain X and
corresponding domain Y. For instance, a landscape photo and
a painting by Monet of the same landscape make a paired of
images. With paired datasets for training, a generator is learnt
to map x (x ∈ X ) to y (y ∈ Y ), and a discriminator is learnt
to discriminate real photo(x), real painting(y) and generating
painting (f(x)). This is called conditional GAN [36], because
the discriminator shows the x in addition to f(x) or y to
judge its authenticity. A image-to-image translation frame-
work called pixel2pixel has extensively introduced the idea
of conditional GAN [38], such as generating photographs
from sketches or from attribute and semantic layouts. How-
ever, in practice, there are usually not paired images in
medical.

Unpaired datasets consist of a image collections from
domain X and another image collections from domain Y.
Image x randomly sampled from X and image y randomly
sampled from Y are not aligned. In this case, it is a problem
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FIGURE 1. The proposed stain style transfer framework. Positive process and reverse process are constructed into invertible structure.

that keeping the content after mapping, attributing to the
lack of ground truth to guide the training process. One trick
for solving this problem is cycle-consistence loss, introduces
another pair of generator and discriminator, which learns a
reverse mapping function g: y→ x. A image translated by f
is translated back to the source domain by g, and vice versa.
That is, the cycle-consistent loss |x−g(f (x))|+ |y− f (g(y))|,
encourages both parties to map from one to another. The
cycle-consistency is introduced in CycleGAN [42]. In fact,
AUTOMAP [47] demonstrated that this approach can be used
for reconstruction of PET, CT, and MRI images in medical
applications.

D. INVERTIBLE NEURAL NETWORKS (INN)
Recent studies has shown that the input images would lost
some important information with depth in convolution neural
networks. [48], [49]. In this case, Multiple invertible neural
networks (INN) have been introduced that are capable of
learning invertible representations to alleviate information
loss under certain conditions [25], [50], [51], and modeling
inverse scenes [26]. Most studies related to INN, including
this study, highly relies on the idea introduced in [52], later
extended in [48]. INN can adjunct to cycle-consistent loss
in our stain style transfer. The advantages of using INN in
our work have two-fold: firstly, semantic context and texture
information of image x should reappear in its corresponding
image f(x), and vice verse. Therefore, the two networks (F, G)
should be closely related rather than completely separate.
Secondly, INN can greatly reduce the amount of network cal-
culations and parameters through parameter sharing. In our
model, inspired by [53], we propose an invertible framework
using additive coupling technology [52]: first we split the
channels of an input feature x into (x1; x2) and then mapping
them using arbitrary functions NN1 and NN2, After that y1
and y2 are merged. Next section will gives the details of our
method.

III. METHODS
In this study, we aim to train a novel network for unpaired
stain style transfer with much better image quality and much
faster inference speed compared to state-of-the-art method
StainGAN. Our proposed method for stain style transfer is
shown in Figure 1, where X and Y represents source domain
and target domain respectively, D1 and D2 are discrimina-
tors in both domains, Enc represents encoding operations
and Dec represents decoding operations, NN1 and NN2 are
two functions which have same network structure. Our work
has three main innovations in generator and discriminator.
Firstly, we designed a new generator architecture based on
UNet [54], where we introduce the channel attention and
long-range residual. On this basis, we obtain an invertible
process among positive generator and oppositive generator
based on [53], using a technique called additive coupling [52].
After that, we develop the discriminator architecture by intro-
ducing channel attention mechanism. We will elaborate our
framework in following sections.

A. OUR FRAMEWORK
At the absence of paired data, StainGAN aims to exploit
the reciprocal relationship between G1 and G2. However, the
problem of StainGAN is that we can insert arbitrary G1 and
G2, missing the idea that G1 and G2 can be approximate
inverse by design. In this work, we design G1 and G2 to
be approximately invertible based on INN, closing to the
ideal reciprocal relationship. The key benefit of inverse is
that we need not have X → Y and Y → X mapping
separately, only requiring a X → Y mapping, which we
can run in reverse to approximate Y → X . The mappings
in both directions have share parameters. More specifically,
we can see that training the X → Y model will also train
the reverse Y → X model, which does not necessarily occur
with separate models, contributing to not only preservation of
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FIGURE 2. The technique called additive coupling used to construct the two generators into invertible neural networks form, positive process is
illustrated in (a) and reverse process is illustrated in (b).

semantic context but also reducing the network computations
and parameters.

Stain style transfer are usually between two domains.
Therefore, it is impossible to be truly reversible in a low-
dimensional image space. Given this situation, we divide the
forward process G1: X → Y and the reverse process G2:
Y → X into three parts respectively which include encoding,
mapping and decoding. As shown in Figure 1, G1 consists
of EncX , C and DecY , G2 consists of EncY , C−1 and DecX .
Among them, EncX encodes image x into high-dimensional
feature space x̃, and C mapping x̃ to ỹ which is decoded
by DecY to y. Similarly, EncY encodes image y into high-
dimensional feature space ỹ, and C−1 mapping ỹ to x̃ which
is decoded by DecX to x. C−1 is the inverse function of
C , where C−1 and C together form the invertible structure.
Mathematical form can be illustrated as following equations:

G1 = DecY · C · EncX (1)

G2 = DecX · C−1 · EncY (2)

In our method, the encoding and decoding parts are irre-
versible functions which both adopt convolutional neural
networks. In this case, G1 and G2 should be approximately
reversible. We obtain an invertible mapping of C and C−1,
using a trick called additive coupling [52]. As shown in
Figure 2, Equation (3) and (4). Figure 2 (a) and Equation (3)
corresponds to function C . Firstly, we split x into x1 and x2
over feature channels equally, thus transforming them into y1
and y2 with arbitrary functionNN1 andNN2 respectively, then
cascading y1 and y2 into y. The inverse function (C−1) can be
seen in Figure 2 (b) and Equation (4).

y1 = x1 + NN1(x2); y2 = x2 + NN2(y1) (3)

x2 = y2 − NN2(y1); x1 = y1 − NN1(x2) (4)

The proposed framework is an unpaired stain style transfer
network based on StainGAN. It consists of two generators
(G1: x → y and G2: y → x) and two discriminators (D1 for
domain X andD2 for domain Y). Each generator corresponds

to a discriminator respectively. For illustration, the forward
pair (G1 and D2), learns to map images from domain X to
domain Y. xi ∈ X where xi servers as the input of G1, which
yields generated image ŷ, ŷ = G1(xi).D2 distinguishes ŷ from
yi where yi ∈Y. This adversarial training process is equivalent
to a min-max optimization with a loss function:

Ladv(G1,D2) = Ex∼pdata(x)[log(1− D2(G1(x)))]

+Ey∼pdata(y)[logD2(y)] (5)

The backward pair (G2 and D1), learns to map images
from Y to X. yi servers as the input of G2, which yields
generated image x̂, x̂ = G2(yi). D1 distinguishes x̂ from
xi. The training process can be formulated as a min-max
optimization process, and the loss function is Ladv(G2,D1) :

Ladv(G2,D1) = Ey∼pdata(y)[log(1− D1(G2(y)))]

+Ex∼pdata(x)[logD1(x)] (6)

Additional, cycle-consistent loss is also introduced to
enforce the two mapping functions to be cycle-consistent
with each other, which reconstructs ˆ̂y from x̂ through G2,
ˆ̂x = G2(G1(x)), and ˆ̂x from ŷ through G1, ˆ̂y = G1(G2(y)).
Its mathematical form is as follows:

Lcyc(G1,G2) = Ex∼pdata(x)[‖x − G2(G1(x))‖1]

+Ey∼pdata(y)[‖y− G1(G2(y))‖1] (7)

Finally, the total training loss can be formulated as:

L(G1,G2,D1,D2) = Ladv(G1,D1)+ Ladv(G2,D2)

+ λLcyc(G1,G2) (8)

B. THE PROPOSED GENERATOR ARCHITECTURE
As shown in Figure 3, we designed a generator architecture
called RC-Net based on UNet and spilt it into three parts
(Enc,NN1 andNN2,Dec). EncX and EncY both use Encwhile
DecX andDecY useDec. In addition,NN1 andNN2 which are
arbitrary functions in additive coupling both use the network
structure in the dotted frame.
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FIGURE 3. We propose the RC-Net and spilt it into three parts which include encoding function, mapping function and decoding function.

RC-Net consists of a coding phase and a decoding phase.
The channel sizes and numbers are written in the side and
upside of every layer respectively. The coding phase has
four downsampling and the decoding phase includes four
upsampling. All downsampling or upsampling followed by
two stride-1 convolutional layers with 3×3 kernels where the
second layer uses the channel attention mechanism. Shortcuts
in the form of summation are used to add the features from
the coding phase to the decoding phase in all corresponding
layers.

Compared to UNet, RC-Net has two main differences
which result in a better performance in image quality: 1) To
assist the decoding process, skip connections copy feature
maps from the encoder to the decoder in UNet. Differently,
as shown in Figure 3, the copied feature maps combined
with decoding feature maps through summation, instead of
concatenation used in UNet. A 3 × 3 convolutional layer
with a stride of 1 is used for processing copied feature maps
before the summation operation. It has two advantages to
use summation [55]. First, the summation does not increase
the number of feature maps, thus it can reduce the number
of trainable parameters in the following layer; Second, the
summation operation can be regarded as a long-range residual
connection, which can facilitate model training. Moreover,
we aim to convert the stain style while keeping the image
content unchanged, which is exactly in line with our residual
idea. It will be helpful that the encoding features are com-
bined with the residual features to form the decoding feature.

2) We introduce the channel attention mechanism into our
generator architecture based on the assumption that different
feature channels contribute differently to the results. Channel
attention mechanism [56] gives different weights to different
feature channels, resulting in more accurate features in the
following layers.

C. DISCRIMINATOR WITH CHANNEL ATTENTION
MECHANISM
Although L1 loss which is a pixel-wise loss contribute to
low-frequency information reconstruction, they are usually
unable to generate high-frequency information. It will gen-
erate blurry results on image generation tasks if only L1 loss
is used [57]. For capturing both low-frequency and high-
frequency information, a patch-level classifier called Patch-
GANwhich is good at capturing high-frequency features [38]
was additional used as the discriminator. The combination
of PatchGAN and L1 loss guides the generators to generate
high quality images with high-frequency and low-frequency
details. In addition, PatchGAN outputs a 30×30 matrix after
several convolution layers firstly, where each element has a
70×70 receptive field, and then provides a value by averaging
the matrix.

Given that the discriminator is based on the style of
the image to distinguish true or false, the style feature
channels should be given greater weights and the content
feature channel should be given less weights. Therefore,
we introduce channel attention mechanism used in [56] to
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FIGURE 4. Visual comparisons of results using RC-Net and other different
generators.

PatchGAN, after that, we adopt this network as the discrimi-
nator architecture. The structure of each layer of the discrim-
inator is shown in Table 1, where k means the kernel size,
s means the stride, BN represents batch normzlization and
LeakyRelu(0.2) means LeakyRelu function with a 0.2 slope
to all negative values. We add a channel attention mechanism
in front of the last convolutional layer, assigning different
weights to different channel features that directly affect the
discriminant value.

TABLE 1. The components of each layer of the discriminator architecture.

IV. EXPERIMENTS AND RESULTS
Wemake fair and extensive comparisons as follows: 1) Anal-
ysis of the effect of channel attention mechanism and long-
range residual on the proposed generator. 2) Analysis of the
advantages of RC-Net and comparisons of results using dif-
ferent generators. 3) Analysis and comparisons of the impact
of adding invertible neural network on the image quality,
network parameters and calculations. 4) Experimental com-
parisons to show that the introduction of channel attention
mechanism in the discriminator can improve the discrimina-
tory ability of the discriminator, thereby improving the image
generation ability of the generator. 5) Comparisonswith state-
of-the-art methods. More detail descriptions about training,
dataset, metrics and results will be given in the following
subsections.

A. DATA AND EXPERIMENTAL SETUP
1) DATASET
The dataset comes from the MITOS-ATYPIA14 challenge.1

It consists of 424 pairs of pathological images scanned
by 2 different scanners (A and H). More specifically, a slide
stained with hematoxylin and eosin scanned by 2 different

1https://mitos-atypia-14.grand-challenge.org

scanners will form a pairs of images. This dataset was split
into two parts, which is training dataset includes 300 pairs and
test dataset includes 124 pairs. Images from scanner H were
resized to the identical size (1539 × 1376) of images from
scanner A. We randomly extracted 9000 unpaired training
patches and 620 paired test patches from training dataset and
test dataset respectively. All sizes of the patches are 256×256.
We regarded the patches from scanner H as ground truth.

2) TRAINING DETAILS
The number of training iterations for all experiments was
approximate 50000 and the number of training epochs for
all experiments was approximate 10. We adopted Adam opti-
mizer to update the parameters with a learning rate of 0.0002,
λ in Equation (4) was set to 10. This value was optimally cho-
sen to control the range of gradient values in back propogation
during each training iteration since the weight values were big
in the network. And least-squares loss [58] was introduced
to replace the original negative log likelihood objective in
LGAN and a image buffer includes previous 50 images rather
than one images was used to update the parameters of the
discriminators.

3) EVALUATION METRICS
Results were compared to the ground truth with two simi-
larity metrics: Peak Signal-to-Noise Ration (PSNR), Wasser-
stein Distance (WD) and Structural Similarity index (SSIM).
WD measures differences in brightness, contrast, and colors
by calculating the shortest distance between two histogram
distributions averaged across the RGB channels [59], and
the lower value indicates the better results. Furthermore,
to illustrate the role of INN, we additionally use floating
point calculations and parameter amounts to measure the
inference speed andmemory size of the networks respectively
when performing INN related experiments. Since we used
the reversible convolutional neural network, the parameter
sharing makes the two generators become inverse function
each other, combining with the cycle-consistent to analyze
and solve stain style transfer which belongs to reverse task.
It should be noted that the reduction is nearly half but not
half, because the encoding and decoding parts do not use the
additive coupling. This comparison was done to show that the
use of INN not only improves image quality, but also reduces
the amount of network calculations and parameters.

B. THE PROPOSED GENERATOR WITH CHANNEL
ATTENTION AND LONG-RANGE RESIDUAL
As shown in Table 2, Model1, Model2, and Model3 are all
our proposed methods, where Model1 means the UNet struc-
ture, as shown in Figure 3, but lacks channel attention and
uses skip connection instead of summation. Model2 based
on Model1 uses summation instead of skip connection, and
Model3 means RC-Net which is the proposed generator in
the paper. Using long-range residual idea, the PSNR value
increases from 22.21 to 22.47, the SSIM value increases from
0.812 to 0.825, and the WD value decreases from 2.96 to
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TABLE 2. The impact of long-range residual and channel attention
mechanism. Model1 is a baseline method using UNet. Model2 is based
on UNet and long-range residual. Model3 is the proposed RC-Net based
on long-range residual and channel attention.

TABLE 3. The improvement brought by invertible neural networks on
different evaluation metrics.

2.32. Futher, by adding channel attention mechanism, PSNR
value increases from 22.47 to 22.52, the SSIM value increases
from 0.825 to 0.826, and the WD value decreases from 2.32
to 2.28. Above results illustrate the benefit of using long-
distance residual idea and channel attention mechanism in
stain style transfer.

C. COMPARISONS WITH DIFFERENT GENERATORS
Several networks was used as the generator to make a com-
prehensive comparison with RC-Net, which includes UNet
[54], Res-UNet [60], DenseNet [61] and Dense-UNet [61].

As shown in Table 3, they can not achiever higher PSNR
value, higher SSIM value and lower WD value than RC-Net.
And the visual comparisons are shown in Figure 4, demon-
strating the superiority of RC-Net in producing much better
images which have closer colors, contrast and texture com-
pared to ground truth.

D. IMPROVEMENT OF USING INVERTIBLE NEURAL
NETWORKS
The performance of using invertible neural networks is illus-
trated in Table 3, where INN means reconstructing the gen-
erators into the form of invertible neural networks using
additive coupling technology. By adding INN, the Stain-
GAN and our proposed method can be improved 0.27dB and
0.07dB respectively in terms of PSNR. This was resulted
from the parameter sharing of positive and opposite gener-
ators by additive coupling technology. The parameter sharing
instead of separation training makes the two generators
become inverse function each other, combining with the
cycle-consistent to analyze and solve stain style transfer
which belongs to reverse task. Another benefit of using addi-
tive coupling technology is the significant reduction in the
amount of network parameters and calculations. After using
the additive coupling, the amount of parameters and calcula-
tion of StainGAN and ours are reduced by nearly half, which
greatly speeds up the training and inference process of the
network. It should be noted that the reduction is nearly half
but not half, because the encoding and decoding parts do not

TABLE 4. The improvement of evaluation metrics attributing to adding
channel attention mechanism in discriminator.

use the additive coupling. The computation and parameters
are reduced due to the use of the channel split operation in
additive coupling, as shown in Figure 2. In medical diagnosis,
the speed of diagnosis is particularly important to the clinic,
which can greatly reduce the burden on doctors and improve
work efficiency. In addition, the reduction of network param-
eters also can reduce storage space.

E. ADVANTAGE OF THE PROPOSED DISCRIMINATOR
In this section, we introduced channel attention into the dis-
criminators which uses PatchGAN structure. As illustrated
in Table 1, we added a channel attention mechanism before
the last convolutional layer. After that, we analyzed the effect
of adding channel attention mechanism to the discriminators
on StainGAN and our method. Results are shown in Table 4,
where DCAmeans the discriminators which were introduced
the channel attention mechanism. After introducing the chan-
nel attentionmechanism to discriminators, StainGANand our
method achieved an improvement of 0.46 and 0.12 respec-
tively in terms of PSNR, demonstrating that the channel
attention mechanism can improve the discriminatory ability
of the discriminators in stain style transfer.

F. COMPARISONS BETWEEN THE PROPOSED METHOD
AND STATE-OF-THE-ART METHOD
We aim to transform the stain style of images from domain A
to domian H while keeping the semantic context unchange,
where domain A andH consists of images scanned by scanner
A and H respectively. To alleviate the problem that keeping
the semantic context unchanged when training images are
unpaired, cycle-consistent loss [42] was introduced to map
images between domain A and domain H.

Structure Preserving Color Normalization (SPCN) [29] is a
method based on stand separation. SPCN scheme can change
color of one image (source) to match that of another (tar-
get) while reliably keeping source structural information
intact. A key step in SPCN scheme is an accurate stain
separation of both source and target images based on sparse
regularized NMF. StainGAN [34] is one of state-of-the-art
methods. We have made three main diffenences compared
to StainGAN. Firstly, we proposed a new generator called
RC-Net, while StainGAN adopted the structure proposed by
Johnson et al. [62] as generator. Compared to the generators
of StainGAN, RC-Net has more downsampling layers and
upsampling layers, which can generate a higher level of
semantic information. Moreover, the introductions of long-
range residual instead of skip connection contributing to
faster training and better optimization. Further, the addition

VOLUME 9, 2021 11289



J. Lan et al.: Unpaired Stain Style Transfer Using INN Based on Channel Attention and Long-Range Residual

FIGURE 5. Visual comparison of results produced by RC-Net and
StainGAN.

TABLE 5. Comparisons between the proposed method and
state-of-the-art method on stain style transfer.

of channel attention mechanism avoids the problem that each
channel contributes the same to the results, assigning adaptive
weights to different channels, contributing to a more rea-
sonable representation. Therefore, the introduction of long-
range residual and channel attention mechanism is helpful to
producemore detailed texture and color information. It shows
that the great superiority of the proposed RC-Net in stain
style transfer. Figure 5 provides their visual comparisons.
Secondly, we used additive coupling technology to construct
G1 and G2 as reversible functions, after that, G1 and G2
shared the same parameters (NN1 and NN2). This technology
not only achieved lower values in terms ofWD, higher values
in terms of PSNR and SSIM but also reduced the amount of
parameters and calculation of our networks by nearly half.
Finally, we introduced channel attention into the discrim-
inators which uses PatchGAN structure. After adding this
scheme, our method has been further improved in terms of
PSNR, SSIM and WD. The visual comparisons can be seen
in Figure 6. PSNR, SSIM and WD metrics are illustrated in
Table 5. The visual comparisons demonstrate that the results
produced by the proposed method are much more closer to
the ground truth than the results using StainGAN or SPCN
in terms of color, texture and context. Finally, the PSNR
and SSIM values of the proposed method are higher than
those using SPCN, while the WD is lower, indicating better
results. Our method can achieve an improvement of 1.01dB
in terms of PSNR, an inprovement of 0.03 in terms of SSIM
and a depress of 2.55 in terms of WD than StainGAN, while
increasing the inference speed by one third.

FIGURE 6. Comparisons between the proposed method and
state-of-the-art method on stain style transfer.

G. ASSESSMENT ABOUT THE COLOR NORMALIZATION
EFFECT ON COMPUTER-AIDED DIAGNOSIS
We used the public available CAMELYON16 dataset2 to
verify the impact of our color standardization method on
the performance of Computer-aidedDiagnosis(CAD). As this
dataset were collected from 2 independent medical centers,
the staining style variations will hamper the segmentation
performance without color normalization. In camelyon16
dataset, only 110 negative WSIs have mask level label,
of which 70 were from one medical center and 40 from
another. We cut WSIs from two medical centers into
256 × 256 patches and randomly selected 80000 patches
for experiment. 40000 patches were used for training
and 40000 patches were used to verify the segmentation
performance.

The U-Net model was used as the segmented prediction
network. The batch size was set to 16 and Adam opti-
mizer was used with a learning rate of 0.0001. All mod-
els were trained for 300000 iterations. We trained a model
on data from one center, and different color standardiza-
tion methods were used to transform the data from another
center. The mean Intersection over Union(mIoU) and Pixel

2https://camelyon16.grand-challenge.org/
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FIGURE 7. Comparisons of visual segmentaion results among the
proposed method, StainGAN and before color standardization.

Accuracy(PA) of two centers with or without color normal-
ization was used to evaluate our normalization method.

We compared the StainGAN methods and our proposed
model in the pre-processing step of tumor segmentation task.
The mIoU and PA are list in Tabel 6 and the segmentation
results are shown in Figure 7. As shown in Table 6, 40000
patches without color standardization were used for testing,
mIoU was only 0.38, PA was only 0.54. Figure 7 shows the
comparisons of visual results on tumor segmentation among
the proposed method, StainGAN and before color standard-
ization. Compared with the image without color standard-
ization, the segmentation results are significantly improved
after color normalization. Moreover, our method also has
great advantages in tumor segmentation comparedwith Stain-
GAN. Above results have demonstrates that our standardized
method is of great help to improve the robustness of the CAD
systems for tumor diagnosis.

V. STAIN RESTORATION
In this section, we use clinical data from a local hospital to
verify the feasibility of the proposed method in stain restora-
tion.

A. DATA AND EXPERIMENTAL SETUP
1) RESEARCH MOTIVATION
The stain of the pathological slices in hospital will gradually
fade over time, affecting the appearance and the color in

TABLE 6. Influence of different color non-standard methods on
segmentation performance.

TABLE 7. Comparisons between the proposed method and
state-of-the-art method on stain restoration.

pathological images. It can neither be used for pathologi-
cal diagnosis nor as training data for artificial intelligence
algorithms due to its faded color. To alleviate this problem,
we used the proposed method to restore the stain of patho-
logical images, eliminating the cumbersome operations such
as repreparation of specimens and rescanning.

2) DATASET
The datasets are the gastric cancer pathological images from
Fujian Provincial Cancer Hospital. Faded pathological slices
scanned by a scanner are served as original input images
and freshly prepared pathological slices scanned by a scanner
are served as target images. It is noted that these datasets
are unpaired. 20,000 unpaired patches were extracted from
source domain and target domain for training. During testing,
2000 unpaired patches were extracted. The size of these
patches are all 256× 256.

3) EVALUATION METRICS
Due to the unpaired of datasets, we used two different
image similarity metrics which are structural comparison and
wasserstein distance to evaluate the quality of the generated
images. Structural comparison is used to compare the struc-
ture between current images and target images. Its mathemat-
ical form is illustrated in Equation (9), where σxy represents
the covariance of x and y, σx represents the variance of x, σy
represents the variance of y, and c is a constant. The higher
value of s(x, y), the better image quality. In addition, we also
use floating point calculations tomeasure the inference speed.

s(x, y) =
σxy + c
σxσy + c

(9)

4) TRAINING DETAILS
In all experiments, we trained 20000 unpaired patches for
approximate 100000 iterations with a batch size of 1. Other
training details are similar to previous section.

B. EXPERIMENTAL RESULTS
As shown in Table 7, where SC respresents structual com-
parison, and WD represents wasserstein distance. Using the
proposed method, compared with StainGAN, structural com-
parison has increased from 0.935 to 0.945, and wasserstein
distance has reduced from 12.74 to 3.45. In addition, the
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FIGURE 8. Comparisons of visual results on stain restoration between the
propsed method and StainGAN.

floating point calculation amount has reduced from 56.93 to
38.96. Figure 8 shows the comparisons of visual results on
stain restoration between the propsed method and StainGAN.
It shows that the proposed method can not only keep the
content information unchanged, but also get closer to the
target images in colors, brightness and contrast compared
to StainGAN. Moreover, the amount of calculation is also
reduced by 33%, which means that the proposed method can
speed up the stain restoration task by 33%. Above results
demonstrate that our method has great advantages in stain
restoration compared with StainGAN.

VI. CONCLUSION
In our study, a novel framework was proposed to transform
the stain style between two pathological image collections.
The measure of objective indicators and subjective evaluation
of the generated images demonstrate the great superiority
of the proposed method in stain style transfer compared to
state-of-the-art methods. The main contributions of this work
are summarized as follows: i) The generators adopts RC-Net
structure, which increases the number of downsampling lay-
ers and upsampling layers to capture high-level semantic
information. This can result in detailed texture and context
in the constructed images. In addition, the skip connection
operation is replaced with a long-range residual, which com-
bines the copied feature maps and the decoding feature maps
through summation, instead of concatenation in UNet. A 3×3
convolutional layer with a stride of 1 is used for processing
copied feature maps before the summation operation. Long-
range residual can not only reduce the number of trainable
parameters in the following layers, but also facilitate model
training. After that, we introduce channel attention mecha-
nism into our generator architectures based on the assump-
tion that different feature channels contribute differently to
the results. Channel attention mechanism adaptively assigns
different weights to different feature channels, resulting in
more accurate features in the following layers. In addition,

to alleviate the problem that is single encoding and loss
of edge or other information, we replaced the max pooling
operation in UNet with a 3 × 3 convolutional layer with a
stride of 2, and replaced the upsampling operation in the
decoding path with a 3×3 deconvolutional layer with a stride
of 1

2 . ii)We used additive coupling technology to construct
the positive generator and opposite generator into invertible
architecture based on invertible neural networks, which can
not only result in more accurate images, but also accelerate
the inference speed of the network by nearly twice. iii) Given
that the discriminator is based on the style of the image to
distinguish true or false, the style feature channels should be
given greater weights and the content feature channel should
be given less weights. Therefore, we introduced channel
attention mechanism into the discriminator, which has been
shown that it can further improve the discriminatory ability
of the discriminators in stain style transfer.

We performed two different virtual coloring tasks on two
datasets respectively. Firstly, the stain style transfer operation
between the digital pathological images from scannerl A and
scanner H was performed on the datasets from the MITOS-
ATYPIA14 challenge. Secondly, we use CAMELYON16
dataset to assessment about the color normalization effect
on computer-aided diagnosis. Moreover, the stain restoration
operationwas performed on the digital pathological images of
gastric cancer from a local cancer hospital, which was used to
restore image colors that have faded over time. In these three
tasks, the performance of proposed method has greatly out-
performed state-of-the-art methods, which demonstrates the
great advantages of our proposed method. In future, we will
further investigate the reversible structure in low-dimensional
image space instead of the high-dimensional feature space,
and design a loss that is more suitable than the L1 loss for
stain style transfer.

REFERENCES
[1] F. Ghaznavi, A. Evans, A.Madabhushi, andM. Feldman, ‘‘Digital imaging

in pathology:Whole-slide imaging and beyond,’’Annu. Rev. Pathol., Mech.
Disease, vol. 8, no. 1, pp. 331–359, Jan. 2013.

[2] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot,
and B. Yener, ‘‘Histopathological image analysis: A review,’’ IEEE Rev.
Biomed. Eng., vol. 2, pp. 147–171, 2009.

[3] S. M. Ismail, A. B. Colclough, J. S. Dinnen, D. Eakins, D. M. Evans,
E. Gradwell, J. P. Osullivan, J. M. Summerell, and R. G. Newcombe,
‘‘Observer variation in histopathological diagnosis and grading of cervical
intraepithelial neoplasia,’’ Brit. Med. J., vol. 298, no. 6675, pp. 707–710,
1989.

[4] A. Andrion, C. Magnani, P. G. Betta, A. Donna, F. Mollo, M. Scelsi,
P. Bernardi, M. Botta, and B. Terracini, ‘‘Malignant mesothelioma of
the pleura: Interobserver variability,’’ J. Clin. Pathol., vol. 48, no. 9,
pp. 856–860, 1995.

[5] J. I. Epstein, W. C. Allsbrook, Jr., M. B. Amin, and L. L. Egevad, ‘‘Update
on the Gleason grading system for prostate cancer: Results of an inter-
national consensus conference of urologic pathologists,’’ Adv. Anatomic
Pathol., vol. 13, no. 1, pp. 57–59, 2006.

[6] M. H. Stoler and M. Schiffman, ‘‘Interobserver reproducibility of cervi-
cal cytologic and histologic interpretations: Realistic estimates from the
ASCUS-LSIL Triage Study,’’ Jama, vol. 285, no. 11, pp. 1500–1505, 2001.

[7] C. A. Roberts, P. D. Beitsch, C. E. Litz, D. S. Hilton, G. E. Ewing,
E. Clifford, W. Taylor, M. R. Hapke, A. Babaian, I. Khalid, J. D. Hall,
G. Lindberg, K. Molberg, and H. Saboorian, ‘‘Interpretive disparity among
pathologists in breastsentinel lymph node evaluation,’’ Amer. J. Surg.,
vol. 186, no. 4, pp. 324–329, Oct. 2003.

11292 VOLUME 9, 2021



J. Lan et al.: Unpaired Stain Style Transfer Using INN Based on Channel Attention and Long-Range Residual

[8] P. J. van Diest, C. H. M. van Deurzen, and G. Cserni, ‘‘Pathology issues
related to SN procedures and increased detection of micrometastases and
isolated tumor cells,’’ Breast Disease, vol. 31, no. 2, pp. 65–81, Nov. 2010.

[9] G. Litjens, P. Bandi, and B. E. Bejnordi, ‘‘1399 H&E-stained sentinel
lymph node sections of breast cancer patients: The CAMELYON dataset,’’
GigaScience, vol. 7, no. 6, 2018, Art. no. giy065.

[10] D. L. Page, ‘‘Theory and practice of histological techniques,’’ Human
Pathol., vol. 14, no. 10, pp. 925–926, 1983.

[11] F. Ciompi, O. Geessink, B. E. Bejnordi, G. S. de Souza, A. Baidoshvili,
G. Litjens, B. van Ginneken, I. Nagtegaal, and J. van der Laak, ‘‘The
importance of stain normalization in colorectal tissue classification with
convolutional networks,’’ in Proc. IEEE 14th Int. Symp. Biomed. Imag.
(ISBI), Apr. 2017, pp. 160–163.

[12] M. Niethammer, D. Borland, J. Marron, J. Woosley, and N. E. Thomas,
‘‘Appearance normalization of histology slides,’’ in Proc. Int. Workshop
Mach. Learn. Med. Imag. Berlin, Germany: Springer, 2010, pp. 58–66.

[13] D. Magee, D. Treanor, D. Crellin, M. Shires, K. Smith, K. Mohee, and
P. Quirke, ‘‘Colour normalisation in digital histopathology images,’’ in
Proc. Opt. Tissue Image Anal. Microsc., Histopathol. Endoscopy, vol. 100,
2009, pp. 100–111.

[14] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley,
X. Guan, C. Schmitt, and N. E. Thomas, ‘‘A method for normalizing his-
tology slides for quantitative analysis,’’ in Proc. IEEE Int. Symp. Biomed.
Imag.: Nano Macro, Jun. 2009, pp. 1107–1110.

[15] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, ‘‘A nonlinear mapping
approach to stain normalization in digital histopathology images using
image-specific color deconvolution,’’ IEEE Trans. Biomed. Eng., vol. 61,
no. 6, pp. 1729–1738, Jun. 2014.

[16] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, ‘‘Color transfer
between images,’’ IEEE Comput. Graph. Appl., vol. 21, no. 4, pp. 34–41,
Jul./Aug. 2001.

[17] B. E. Bejnordi, N. Timofeeva, I. Otteholler, N. Karssemeijer, and
J. A. W. M. V. Der Laak, ‘‘Quantitative analysis of stain variability in his-
tology slides and an algorithm for standardization,’’ Proc. SPIE, vol. 9041,
Mar. 2014, Art. no. 904108.

[18] A. Basavanhally and A. Madabhushi, ‘‘EM-based segmentation-driven
color standardization of digitized histopathology,’’ Proc. SPIE, vol. 8676,
Mar. 2013, Art. no. 86760G.

[19] P. Bautista, N. Hashimoto, and Y. Yagi, ‘‘Color standardization in whole
slide imaging using a color calibration slide,’’ J. Pathol. Informat., vol. 5,
no. 1, p. 4, 2014.

[20] A. C. Ruifrok and D. A. Johnston, ‘‘Quantification of histochemical stain-
ing by color deconvolution,’’ Anal. Quant. Cytol. Histol., vol. 23, no. 4,
pp. 291–299, 2001.

[21] A. Janowczyk, A. Basavanhally, and A. Madabhushi, ‘‘Stain normal-
ization using sparse AutoEncoders (StaNoSA): Application to digi-
tal pathology,’’ Computerized Med. Imag. Graph., vol. 57, pp. 50–61,
Apr. 2017.

[22] A. Madabhushi and G. Lee, ‘‘Image analysis and machine learning in dig-
ital pathology: Challenges and opportunities,’’ Med. Image Anal., vol. 33,
pp. 170–175, Oct. 2016.

[23] T. de Bel, M. Hermsen, J. Kers, J. van der Laak, ‘‘Stain-transforming cycle-
consistent generative adversarial networks for improved segmentation of
renal histopathology,’’ in Proc. 2nd Int. Conf. Med. Imag. Deep Learn.;
Process. Mach. Learn. Res., 2019, pp. 151–163.

[24] D. P. Kingma and P. Dhariwal, ‘‘Glow: Generative flow with invert-
ible 1x1 convolutions,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10215–10224.

[25] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, ‘‘I-RevNet: Deep
invertible networks,’’ 2018, arXiv:1802.07088. [Online]. Available:
http://arxiv.org/abs/1802.07088

[26] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, ‘‘Analyzing inverse
problems with invertible neural networks,’’ 2018, arXiv:1808.04730.
[Online]. Available: http://arxiv.org/abs/1808.04730

[27] S. Roy, A. K. Jain, S. Lal, and J. Kini, ‘‘A study about color normaliza-
tion methods for histopathology images,’’ Micron, vol. 114, pp. 42–61,
Nov. 2018.

[28] X. Li and K. N. Plataniotis, ‘‘Circular mixture modeling of color distri-
bution for blind stain separation in pathology images,’’ IEEE J. Biomed.
Health Informat., vol. 21, no. 1, pp. 150–161, Jan. 2017.

[29] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust,
K. Steiger, A. M. Schlitter, I. Esposito, and N. Navab, ‘‘Structure-
preserving color normalization and sparse stain separation for histolog-
ical images,’’ IEEE Trans. Med. Imag., vol. 35, no. 8, pp. 1962–1971,
Aug. 2016.

[30] D. Onder, S. Zengin, and S. Sarioglu, ‘‘A review on color normalization and
color deconvolution methods in histopathology,’’ Appl. Immunohistochem.
Mol. Morphol., vol. 22, no. 10, pp. 713–719, 2014.

[31] H. Bhat, A. Kanakatte, R. Nayak, and J. Gubbi, ‘‘A hybrid approach
for nucleus stain separation in histopathological images,’’ in Proc.
39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2017,
pp. 1218–1221.

[32] M. Salvi, N. Michielli, and F. Molinari, ‘‘Stain color adaptive normal-
ization (SCAN) algorithm: Separation and standardization of histological
stains in digital pathology,’’Comput.Methods Programs Biomed., vol. 193,
Sep. 2020, Art. no. 105506.

[33] A. Bentaieb and G. Hamarneh, ‘‘Adversarial stain transfer for histopathol-
ogy image analysis,’’ IEEE Trans. Med. Imag., vol. 37, no. 3, pp. 792–802,
Mar. 2018.

[34] M. T. Shaban, C. Baur, N. Navab, and S. Albarqouni, ‘‘StainGAN: Stain
style transfer for digital histological images,’’ inProc. IEEE 16th Int. Symp.
Biomed. Imag. (ISBI), Apr. 2019, pp. 953–956.

[35] N. Zhou, D. Cai, X. Han, and J. Yao, ‘‘Enhanced cycle-consistent genera-
tive adversarial network for color normalization of H&E stained images,’’
in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham,
Switzerland: Springer, 2019, pp. 694–702.

[36] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial
nets,’’ 2014, arXiv:1411.1784. [Online]. Available: http://arxiv.
org/abs/1411.1784

[37] E. Denton, S. Chintala, A. Szlam, and R. Fergus, ‘‘Deep generative
image models using a Laplacian pyramid of adversarial networks,’’
2015, arXiv:1506.05751. [Online]. Available: http://arxiv.org/abs/1506.
05751

[38] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-Image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[39] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, ‘‘Generative
visual manipulation on the natural image manifold,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 597–613.

[40] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, and
Y. LeCun, ‘‘Disentangling factors of variation in deep representation
using adversarial training,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 5040–5048.

[41] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, andA.A. Efros, ‘‘Context
encoders: Feature learning by inpainting,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–2544.

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired Image-to-Image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[43] T. F. A. van der Ouderaa and D. E. Worrall, ‘‘Reversible GANs for
memory-efficient Image-To-Image translation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4720–4728.

[44] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, ‘‘Spectral normal-
ization for generative adversarial networks,’’ 2018, arXiv:1802.05957.
[Online]. Available: http://arxiv.org/abs/1802.05957

[45] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5767–5777.

[46] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive grow-
ing of GANs for improved quality, stability, and variation,’’ 2017,
arXiv:1710.10196. [Online]. Available: http://arxiv.org/abs/1710.10196

[47] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, ‘‘Image
reconstruction by domain-transform manifold learning,’’ Nature, vol. 555,
no. 7697, pp. 487–492, Mar. 2018.

[48] L. Dinh, J. Sohl-Dickstein, and S. Bengio, ‘‘Density estimation using
real NVP,’’ 2016, arXiv:1605.08803. [Online]. Available: http://arxiv.
org/abs/1605.08803

[49] A. Mahendran and A. Vedaldi, ‘‘Visualizing deep convolutional neural
networks using natural pre-images,’’ Int. J. Comput. Vis., vol. 120, no. 3,
pp. 233–255, Dec. 2016.

[50] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever,
and M. Welling, ‘‘Improved variational inference with inverse
autoregressive flow,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 4743–4751.

[51] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier,
‘‘Parseval networks: Improving robustness to adversarial examples,’’
2017, arXiv:1704.08847. [Online]. Available: http://arxiv.org/abs/1704.
08847

[52] L. Dinh, D. Krueger, and Y. Bengio, ‘‘Nice: Non-linear independent
components estimation,’’ 2015, arXiv:1410.8516. [Online]. Available:
https://arxiv.org/abs/1410.8516

VOLUME 9, 2021 11293



J. Lan et al.: Unpaired Stain Style Transfer Using INN Based on Channel Attention and Long-Range Residual

[53] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, ‘‘The reversible
residual network: Backpropagation without storing activations,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 2214–2224.

[54] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[55] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[56] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, ‘‘CBAM: Convolutional
block attention module,’’ 2018, arXiv:1807.06521. [Online]. Available:
http://arxiv.org/abs/1807.06521

[57] A. Boesen Lindbo Larsen, S. Kaae Sønderby, H. Larochelle,
and O. Winther, ‘‘Autoencoding beyond pixels using a learned
similarity metric,’’ 2015, arXiv:1512.09300. [Online]. Available:
http://arxiv.org/abs/1512.09300

[58] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, ‘‘Least
squares generative adversarial networks,’’ inProc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 2794–2802.

[59] H. Ling and K. Okada, ‘‘An efficient Earth Mover’s distance algorithm for
robust histogram comparison,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 5, pp. 840–853, May 2007.

[60] X. Xiao, S. Lian, Z. Luo, and S. Li, ‘‘Weighted res-UNet for high-quality
retina vessel segmentation,’’ in Proc. 9th Int. Conf. Inf. Technol. Med. Edu.
(ITME), Oct. 2018, pp. 327–331.

[61] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[62] J. Johnson, A. Alahi, and L. Fei-Fei, ‘‘Perceptual losses for real-time style
transfer and super-resolution,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 694–711.

JUNLIN LAN received the B.S. degree from the
School of Physics and Information Engineering,
Fuzhou University, in 2018, where he is currently
pursuing the Ph.D. degree. His research interests
include image recognition and processing, and
computer aided diagnosis.

SHAOJIN CAI received the B.S. degree from
the School of Optoelectronics and Information
Engineering, Fujian Normal University, in 2017,
and the M.S. degree from the School of Physics
and Information Engineering, Fuzhou University,
in 2020. His research interests include medical
image analysis and reconstruction.

YUYANG XUE received the M.D. degree from
the School of Computer Science, University of
Southampton, U.K., in 2017, and the M.D. degree
from the School of Computer Science, Fuzhou
University, in 2016. He is currently pursuing the
Ph.D. degree with the Graduate School of Sci-
ence and Technology, University of Tsukuba. His
research interests include computer vision and
image processing.

QINQUAN GAO received the B.S. degree in
automation from Xiamen University, China,
in 2008, the M.S. degree in systems engineering,
in 2010, and the Ph.D. degree from Imperial Col-
lege London, in 2014. He is currently an Associate
Professor with Fuzhou University, working on
model compressing, machine learning, biomedical
image processing, and computer vision.

MIN DU received the Ph.D. degree in electri-
cal engineering from Fuzhou University, Fuzhou,
China, in 2005. Since 2007, she has been an
Associate Director of the Fujian Key Laboratory
of Medical Instrumentation and Pharmaceutical
Technology. She is currently a Professor and a
Ph.D. Supervisor with Fuzhou University. Her
research interests include smart instrument and
photoelectric.

HEJUN ZHANG received the M.A. degree in
medicine from FujianMedical University, in 2009.
He currently works as a Doctor with the Depart-
ment of Pathology, Fujian Cancer Hospital &
Fujian Medical University Cancer Hospital. His
research interest includes diagnostic pathology of
tumors.

ZHIDA WU received the B.S. degree from
the Fujian University of Traditional Chinese
Medicine, in 2018. He is currently pursuing the
master’s degree with Fujian Medical University.
His research interests include diagnosis and treat-
ment of gastric cancer.

YANGLIN DENG received the B.S. degree from
the School of Information Engineering, Jimei Uni-
versity, in 2019. He is currently pursuing the
master’s degree with the School of Physics and
Information Engineering, Fuzhou University. His
research interests include medical image process-
ing and few-shot learning.

YUXIU HUANG received the B.S. degree from
the School of Physics and Information Engineer-
ing, Fuzhou University, in 2019, where she is cur-
rently pursuing the master’s degree. Her research
interests include medical image analysis and
bioinformatics.

11294 VOLUME 9, 2021



J. Lan et al.: Unpaired Stain Style Transfer Using INN Based on Channel Attention and Long-Range Residual

TONG TONG received the Ph.D. degree from
Imperial College London, in 2015. He was a
Research Fellow with the MGH/Harvard Medical
School, in 2016. He is currently a Full Professor
with the College of Physics and Information Engi-
neering, Fuzhou University. His research interests
include machine learning, medical image analysis,
and computer aided diagnosis.

GANG CHEN is currently the Director of
the Department of Pathology, Fujian Provincial
Cancer Hospital. He is also the Director of the
Molecular Pathology Laboratory of the Fujian
Cancer Institute. He has engaged in tumor patho-
logical diagnosis and research for 20 years. His
research interests include lymphoma, obstetrics
and gynecology and soft tissue pathology, espe-
cially good at the diagnosis and differential diag-
nosis of lymphoma.

VOLUME 9, 2021 11295


