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ABSTRACT Image hashing embeds the image to binary codes which can boost the efficiency of approx-
imately nearest neighbors search. F-measure is a widely-used metric for evaluating the performance of
hashing methods. However, it is non-differentiable and hence it has not been used as an object function
for hashing. Heuristic algorithms, e.g. evolutionary computation and particle swarm optimization (PSO),
are good at optimizing non-differentiable objectives, while they are inefficient in very high-dimensional
variables which are commonly used in hashing models. To address this contradict, we propose a scheme
to bridge hashing methods and F-measure objective using PSO. The hashing methods are used to generate
real-valued codes for images and then the parameters of quantization procedure are optimized by PSO.
Our scheme can incorporate a wide range of hashing methods, heuristic optimization algorithms and non-
differentiable metrics. Experimental results demonstrate that our scheme can be used to further improve the
performance of existing hashing methods.

INDEX TERMS Image hashing, approximately nearest neighbor search, particle swarm optimization,
F-measure.

I. INTRODUCTION
Due to the large amount of images available on Internet,
hashing that embeds images to binary codes has attracted a lot
of interests. As digital computers handle binary codes much
more efficiently than any other types of numbers, hashing can
boost the speed of approximately nearest neighbor search.

Classical hashing methods are generally modeled as opti-
mization problemswhose object function are differentiable so
as to iterative gradient-based algorithms can be used. To con-
struct a differentiable objective, traditional hashing methods
commonly generate real-valued codes as an intermediate and
then adopt a quantization method to generate the final binary
hashing codes. Although F-measure is a widely-used metric
for evaluating hashing methods, it has not been used as an
objective in hashing methods because it is non-differentiable.
However, directly maximizing F-measure is an intuitive way
to improve the performance of classical hashing methods.

Although optimizing non-differetiable metrics have
attracted interests in classification problem, they have never
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been used as objective in hashing problem. Recent works on
optimizing non-differentiable metrics for classification prob-
lems focus on continuous approximation of F-measure [1]
and learning surrogate losses [2]. They all need ground-truth
labels in training data sets. However, there are no ground-
truth hashing codes. Hence, these methods cannot be directly
used for hashing problem.

Heuristic algorithms are good at non-differentiable objec-
tives, but they lack of ability in handling high-dimensional
variables. For a simple hashing method, such as ITerative
Quantization [3], the dimension of variables is l×l, where l is
the code length. For a medium length, say 64 bits, the dimen-
sion of variable is 4096, which is difficult to optimize only
using heuristic algorithms.

To solve this dilemma, we propose a scheme to bridge
traditional hashing methods and non-differentiable objec-
tives. Our scheme consists of two stages, as shown
in Fig. 1. First, we generate real-valued codes using
traditional hashing methods. Then, we calculate the param-
eters of the proposed quantization method by maximizing
F-measure using Particle Swarm Optimization (PSO). Our
scheme is available for a wide range of hashing methods,
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FIGURE 1. The scheme of our proposed method. We randomly select a subset from training set as validation set. We adopt a traditional
hashing method without quantization as an embedding method to generate real codes. We propose a parameterized quantization method
to generate binary hashing codes. The parameters are learned by optimizing the metric, such as F-measure.

heuristic optimization algorithms and non-differentiable
metrics.

The main contribution of our work is a scheme that can
optimize non-differentiable metrics for hashing problem.
By directly optimizing the metrics, the proposed method can
avoid the impacts of correlated hashing bits and defects of
methods that try to de-correlate hashing bits, such as orthog-
onality (details in Subsection III-E).

This paper is organized as following. The related works
are reviewed in Section II. The proposed method is described
in Section III. The experimental results are reported in
Section IV. The conclusive remarks are given in Section V.

II. RELATED WORKS
In this section, we will briefly review the representative
hashing methods and efforts have been made for optimizing
non-differentiable metrics.

A. HASHING METHODS
Hashing methods can be divided into two categories based
on whether they depend on data. Locality-sensitive hashing
(LSH) [4] is a well-known data-independent hashing method.
To handle nonlinear data structure, kernels are adopted in
LSH [5], [6].

The key idea of data-dependent hashing methods is maxi-
mizing the correlation between structures of data and hashing
codes. Directly maximizing the correlation need to compute
affinity matrix which requires to compute mutual distances
between any pairs of data. For large scale dataset, it becomes
intractable. Spectral Hashing (SH) [7] solves a relaxed math-
ematical problem to avoid computing affinity matrix.

Anchor Graph Hashing (AGH) [8] uses anchor points to
construct a sparse matrix to approximate the affinity matrix.
Discrete Graph Hashing follows this idea and project hashing
code matrix to orthogonal and balanced solution space to
de-correlate hashing bits.

Minimizing quantization errors is a promising way to gen-
erate hashing codes due to its computation efficiency. ITera-
tive Quantization (ITQ) [3] rotates the principal components

by an orthogonal matrix to minimize the quantization errors.
The variances of each principal component are different,
which means the importance of each principal component
is different. IsoH [9] balances the principal components by
dividing their corresponding variances. Besides Principal
Component Analysis (PCA), Linear Discriminant Analy-
sis can be also used [10]. These methods pre-compute
the projections of original data. Neighborhood Discriminant
Hashing [11] computes the projections of original data during
the optimization procedure. Nonlinear embedding methods
are also used to handle the nonlinear data structure. Inductive
Manifold Hashing (IMH) [12], [13] learns a nonlinear man-
ifold on a small subset and inductively insert the remaining
data.

Orthogonality and balance constraints are expected to be
good regularizations for hashing codes [7]. However, they
are difficult to be fulfilled because the binary code matrix
cannot be directly optimized by gradient-based algorithms.
DGH projects code matrix to orthogonal and balanced space
in each iteration. By setting a parameter to infinity, it can
generate orthogonal and balanced code matrix. Nevertheless,
it is impractical to set the parameter to infinity.Methods based
on minimizing quantization errors apply orthogonality and
balanced regularizations on the intermediate real matrices
of hashing code matrices. However, it has been proven that
quantization will break the orthogonality and balance except
for some extremely ideal cases [14].

Matrix factorization is also widely used in hashing meth-
ods. Ding et al. [15] use collective matrix factorization for
multimodal hashing. Lu et al. [16] use matrix decomposition
to extract latent semantic features for generating discrimina-
tive binary codes. Liu et al. [17] notice the sparsity of data
structure and propose an adaptively sparse matrix factoriza-
tion for hashing.

Although the performances of the above-mentioned shal-
low hashing methods can be improved by extracting features
using deep neural networks, deep hashingmodels can achieve
better performances. Deep transfer hashing (DTH) [18]
substitutes the principal coefficients and orthogonal rotation
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matrix in ITQ with a deep neural network. Deep binary
descriptors (DeepBit) [19] uses VGGNet [20] to extract
the features of images and learns the hashing codes with
a combined object function of quantization loss, balanced
regularization and rotation invariant objective. Stochastic
generative hashing (SGH) [21] learns hashing codes by min-
imum description length principle so as to maximally com-
press the dataset as well as regenerate outputs from the codes.
Semantic structure-based unsupervised hashing (SSDH) [22]
uses two half Gaussian distributions to estimate pairwise
cosine distances of data points and assign any two data points
with obviously smaller distance as semantically similar pair.
A pairwise loss function to preserve this semantic structure
are used to train the neural network. DistillHash [23] learns
confidence similarity signals first to ‘‘supervise’’ the subse-
quent hashing code generating. Lu et al. [24] integrate the
quantization process and ranking process into a unified archi-
tecture. Shen et al. [25] found that graphs built from original
data introduce biased prior knowledge of data relevance and
therefore they propose a twin-bottleneck autoencoder to trace
the code-driven similarity graph.

B. OPTIMIZING NON-DIFFERENTIABLE METRICS
In classification problem, different thresholding strategies
usually lead to different precision and recall. To com-
prehensively evaluate the performance of classifiers,
metrics like mean average precision (MAP), F-measure
are widely-used. Because they are non-differentiable, they
are rarely used as object functions. Recently, directly
optimizing thesemetrics attracts interests inmachine learning
community.

Pioneer works on maximizing F-measure focus on
empirical utility maximization and decision-theoretic
approach [26]. Later on, optimal thresholding of clas-
sifiers are used to maximize F-measure [27], [28].
Parambath et al. [29] use cost-sensitive classification to max-
imizing F-measure. Recent works try to optimize the tight
bounds of F-measure [30] and use continuous and differen-
tiable approximation of F-measure [1], [31].

Another promising way to optimizing non-differentiable
metrics is relaxed surrogates. Eban et al. [32] define relax-
ation forms of building blocks of a confusion matrix, e.g. true
positives, true negatives, etc and combine the building block
relaxation to create a final surrogate for area under curve
(AUC) metric. Berman et al. [33] use Lovasz softmax loss to
approximate the Jaccard index metric. Grabocka et al. [2] use
surrogate neural network to approximate non-differentiable
metrics. Their method can be used to optimize many metrics,
e.g. AUC, Jaccard Index, F-measure, etc.

All the above-mentioned methods focus on classification
problem where ground-truth labels are available. For exam-
ple, the computation of the continuous approximation of
F-measure proposed in [1] use both of ground-truth labels and
outputs of classifiers. To learn the surrogate neural network
in [2], the ground-truth labels are also required in the objec-
tive function. Nevertheless, there are no ground-truth hashing

codes for any data and hence we cannot estimate F-measure
in such ways.

III. METHODOLOGY
Let us define some notations. For simplicity in mathematical
description, we treat a datum as a vector and all the data in
a dataset forms up a data matrix X ∈ Rn×d , where n is the
number of data and d is the dimension. Although image data
are usually three-dimensional tensors, they can be flatten to
vectors. For example, an 128× 128× 3 image can be flatten
to an 1×41952 row vector.Y ∈ Rn×l is the real-valued codes
generated by traditional hashing methods, where l is the code
length. B ∈ {−1, 1}n×l is the binary hashing code matrix.
F-measure is defined as:

β ·
precision · recall
precision+ recall

, (1)

where β is a positive constant. Without losing generality,
we set β as 2 in our paper. The precision is defined as:

retrieved true positives
number of all retrieved items

, (2)

and the recall is defined as:
retrieved true positives

number of all true neighbors
. (3)

precision and recall are used to evaluate the retrieval per-
formance in two different views. precision focuses on the
accuracy of retrieved results, while recall focuses on how
many true neighbors are retrieved. F-measure is a balanced
metric combining precision and recall.

A hashing method can be seen as a function that maps
images to binary codes:

f : X→ B (4)

A. GENERATING REAL-VALUED CODES
As an example, ITQ is used for generating real-valued codes.
ITQ is modeled as a minimization problem:

argmin
B,R

‖B− XWR‖2F

s.t. R>R = I,B ∈ {−1, 1}n×l, (5)

where W is principal component coefficients corresponding
to the top l variances and I is the identity matrix. Eq. (5) is
minimized by iteratively updating B and R. B is updated by

B = sign(XWR). (6)

To update R, the singular value decomposition (SVD) is
used, i.e. B>XW = U6V>. Then, R is updated by

R = V>U. (7)

sign() function in Eq. (6) acts as a quantization step. We use
Y to represent the real-valued codes generated by hashing
methods, i.e. Y = XWR in Eq. (5). It is defined as

sign(x) =


1, if x > 0
0, if x = 0
−1, if x < 0

. (8)
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Algorithm 1 Algorithm for Calculating F-Measure
Require: Bv,Bd ,S.
Ensure: F-measure.
1: Calculate the mutual Hamming distance between each

pair of data in Bv and Bd to make up matrix D ∈

{0, 1, . . . , l}(n−m)×m.
2: Select those pairs whose Hamming distances are no

greater than the preset Hamming radius, say 2.
3: Calculating precision and recall using Eq. (2) and

Eq. (3), respectively.
4: Calculating F-measure using Eq. (1).

We substitute sign by

Q(xi) =

{
1, if aixi + ci ≥ 0
−1, if aixi + ci < 0

, (9)

where xi is the i-th element of vector x of length l and i =
{1, 2, . . . , l}. ai and ci are the i-th element of vector a and c
which are two variables to be optimized by PSO.

B. F-MEASURE AS OBJECT FUNCTION
We randomly select m data points from the training dataset
as a validation set. The F-measure is calculated using these
m data points as queries which make up Xv ∈ Rm×d and
corresponding Yv ∈ Rm×l and the remaining n − m data
points as database which is denoted as X(n−m)×l

d and corre-
sponding Y(n−m)×l

d . First, the real-valued codes Yd and Yv
are quantized by Eq. (9) and get binary code matrix Bd ∈
{−1, 1}(n−m)×l and Bv ∈ {−1, 1}m×l . Second, the F-measure
is calculated by Algorithm 1.

In Algorithm 1, S ∈ {0, 1}(n−m)×m is the groundtruth
matrix. If the i-th data point in the database is the true
neighbor of the j-th data point in the query set, then Sij =
1, otherwise Sij = 0. S can be calculated in two different
ways. If the labels are available, then S can be calculated
directly by matching the labels of two data points. On the
other hand, if the labels are unavailable, we can define the top
p%neighbors searched by Euclidean distances in raw data are
true neighbors. The mutual Hamming distance matrix D can
be efficiently calculated by (1− B′d )B

′
v
>
+ B′d (1− B′v)

>

B′d =
Bd + 1

2
,B′v =

Bv + 1
2

(10)

C. OPTIMIZATION
Let t = {a1, a2, . . . , ai, . . . , al, c1, c2, . . . , ci, . . . , cl} be a
2l-dimensional variable. To find t that maximize F-measure,
we use PSO as the optimization algorithm. PSO updates the
variable t and a auxiliary variable v called velocity by{

vk+1 = vk + α1r1(pbest − t)+ α2r2(gbest − t)
tk+1 = tk + vk+1

, (11)

Algorithm 2 Overall Scheme
Require: X, the maximum iteration K
Ensure: B

repeat
1. Split X to database Xd and query set Xv.
2. Using a traditional hashing method trained onXd to
generate real-valued code matrix Yd and Yv.
3. Calculate F-measure using Algorithm 1.
4. Find the current best solution pbest and the best
solution ever emerged gbest .
5. Update T using Eq. (12).
6. k = k + 1

until k = K

FIGURE 2. How quantization breaks orthogonality. The real code matrix is
orthogonal. After it is quantized by function, the resulting binary code
matrix is not orthogonal.

where α1 and α2 are two constants, r1 and r2 are two random
numbers sampled from a certain probabilistic distribution,
pbest is the best solution in current iteration (the k-th itera-
tion), gbest is the best solution ever emerged in the previous
k iterations. PSO will randomly initialize q variables and
each variable is updated using Eq. (11). Let T ∈ Rq×2l be
the matrix of which each row corresponds to an instance of
variable t. Let V ∈ Rq×2l be the matrix of which each row
is the corresponding velocity of an instance of t. PSO can be
written in matrix form:{
Vk+1

= Vk+1
+ α1r1(1q×1pbest− T)+ α2r2(1q×1gbest− T)

Tk+1 = Tk + Vk+1 .

(12)

Our overall scheme is shown in Algorithm 2.

D. IMPLEMENTATION DETAILS
Parameter setting and initialization: In Eq. (12), α1 and α2
are set as 2, and r1 and r2 are sampled from uniform distribu-
tion U (0, 1). The maximum iteration K = 500. We use 10%
data points as validation set, i.e. m = 10%n. T are randomly
initialized using samples from normal distribution N (0, 0.1).
V is initialized as a zero matrix.

E. WHY DOES IT WORKS?
As the code length increases, the correlation between hashing
code bits may degrade the retrieval performance. Researchers
generally add an orthogonality constraint on the code matrix
to handle this problem. However, most hashing methods
apply the orthogonality constraint on the real code matrix
to avoid solving an NP-hard problem. Even though one can
get an orthogonal real code matrix, the quantization will
completely break the orthogonality (Fig. 2).
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FIGURE 3. Orthogonality is not optimal all the time. The optimal
quantization for data in the figure results in a non-orthogonal code
matrix. In this case, the F-measure is maximal, i.e. equal to 1. It is
impossible to find an orthogonal code matrix to achieve the same
performance.

On the other hand, even an orthogonal hashing code matrix
may have poor retrieval performance (Fig. 3). By directly
maximizing F-measure, our method can avoid the impact
from orthogonality as well as the correlation among hashing
code bits.

IV. EXPERIMENTAL RESULTS
Our methods are evaluated on three benchmarks, CIFAR10,
MIRFlickr and NUSWIDE. Two kinds of experiments were
conducted, hashing lookup andHamming ranking. The hash-
ing lookup experiments are evaluated by F-measure, while
the Hamming ranking experiments are evaluated by mean
average precision (MAP).

A. DATASETS
CIFAR10: consists of 50,000 training images and 10,000
testing images. They are belonging to 10 classes. The ground-
truth neighbors for a query are defined as those in the same
category.
MIRFlickr: is comprised of 25,000 images each of

which are annotated with at least one of 24 labels.
2,000 images are randomly selected as queries and the
remaining 23,000 images are used as retrieval set. Ground-
truth neighbors are defined as those sharing at least one label.
NUS-WIDE: contains 269,648 images. 81 concepts are

provided for the entire dataset. 10 most common concepts are
selected for labels. Hence, 186,577 images are left. 5% of the
186,577 images are used as queries and the remaining images
are used as training set. Ground-truth neighbors for a query
are defined as those sharing at least one label.

For all images, we use VGG16 [20] to extract
4,096-dimensional features for shallow hashing methods.

B. BASELINES
We incorporate five state-of-the-art traditional hashing meth-
ods to our scheme, i.e. ITQ [3], GHS [34], IMH [12],

SGH [21] and SSDH [22]. ITQ, GHS and IMH are shallow
hashing methods, while SGH and SSDH adopts deep neural
networks.We evaluate the performance improvement brought
by our scheme on these five methods.

C. EVALUATION
The Hamming ranking experiments are evaluated by MAP.
The average precision (AP) is defined as:

AP =
1
n

R∑
r=1

P(r)δ(r), (13)

where R is the radius of Hamming distance, P(r) is the pre-
cision of the top r retrieved images and δ(r) = 1 if the
r-th retrieved image is a true neighbor, otherwise δ(r) = 0.
MAP is the mean of APs for all queries. The maximum of
MAP is 1 or 100%. The closer the MAP to 1, the better the
performance.

The hashing lookup experiments are evaluated by
F-measure. The Hamming radius is set to 2 for all experi-
ments. That is, the hashing codes whose distances to a query
are equal or less than 2 are retrieved to estimate F-measure.

D. RESULTS AND DISCUSSION
The MAP results are given in Table 1. In Table 1, we use ∗
to represent the proposed modification on original hashing
methods. Results in Table 1 demonstrate that our scheme
can improve the performance of the original hashing meth-
ods. Our scheme works better on deep hashing methods, i.e.
SGH and SSDH. A possible explanation is that our method
is equivalent to add a full-connected layer on the top of
the deep neural networks. The ground-truth neighbors are
determined by the labels and the information of ground-truth
neighbors are incorporated in computing F-measure. That is,
the label information is implicitly incorporated to the original
unsupervised hashing methods. However, for shallow meth-
ods, even though we implicitly incorporate label information,
the improvement on performance is relatively incremental
because the features are extracted by the pre-trained VGG16.
The label information are not used to fine-tune the weights
of VGG16. For deep methods, the label information used to
refining all the weights so that the performance are greatly
improved.

The F-measure is shown in Fig. 4. It can be seen that
the F-measure is greatly improved by the proposed scheme,
especially on long-bit experiments. For traditional hashing
methods, the main reason of low F-measure values in long-
bit experiments is low recall values. As our objective function
is F-measure, the F-measure declines slowly as the code bit
increases.

E. ABLATION STUDIES
In this subsection, we tested the effects of α1 and α2 param-
eters in the PSO algorithm. It is conventionally to set α1
and α2 as 2. α1 controls the weights of local searches, while
α2 controls the weights of global searches. For an extreme
case, i.e. α1 = 2 and α = 0, each particle becomes an
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TABLE 1. MAP results on Wiki, MIRFlickr and NUS-WIDE datasets.

FIGURE 4. Results of Hash Lookup Experiments on CIFAR, MIRFlickr and NUS-WIDE datasets.

FIGURE 5. Average MAP results of ITQ? on CIFAR10.

independent searcher. On the other hand, when α1 = 0
and α2 = 2, all the particles will be attracted to one point
and they will completely lose independence. We tested the
ITQ∗ on CIFAR10 dataset by setting α1 and α2 in a range
from 0.5 to 5 by step 0.5. For each setting, we did hamming
ranking experiments for 20 times to calculate the mean of
MAP. The final MAP results are interpolated by cubic spline
to look smoother. The results are shown in Fig. 5. It is
safe to increase α1. However, when increasing α2, the MAP
decreases dramatically. The reason is that a larger α2 leads to
higher dependence among particles so that they tend to move
to one point and this point certainly is not the best one. PSO
itself relies on multiple particles. Even though these particles
are completely independent searchers, PSO still can choose

the best result from these searchers. However, if all particles
move to one point, PSO will have no choice.

V. CONCLUSION
In this paper, we proposed a scheme to further improve
the performance of traditional hashing methods by directly
maximizing F-measure. Particle Swarm Optimization (PSO)
is used as an exemplary algorithm to maximize the
non-differentiable objective. The proposed scheme can
incorporate a wide range of hashing methods, heuris-
tic optimization algorithms and non-differentiable metrics.
Experimental results on three widely used benchmarks
demonstrated that our scheme could further improve the per-
formance of traditional hashing methods.
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