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ABSTRACT The current energy strategy of the EuropeanUnion puts the end-user as a key participant in elec-
tricity markets. The creation of energy communities has been encouraged by the European Union to increase
the penetration of renewable energy and reduce the overall cost of the energy chain. Energy communities are
mostly composed of prosumers, whichmay be households with small-size energy production equipment such
as rooftop photovoltaic panels. The local electricity market is an emerging concept that enables the active
participation of end-user in the electricity markets and is especially interesting when energy communities are
in place. This paper proposes an optimizationmodel to schedule peer-to-peer transactions via local electricity
market, grid transactions in retail market, and battery management considering the photovoltaic production
of households. Prosumers have the possibility of transacting energy with the retailer or with other consumers
in their community. The problem is modeled using mixed-integer linear programming, containing binary and
continuous variables. Four scenarios are studied, and the impact of battery storage systems and peer-to-peer
transactions is analyzed. The proposed model execution time according to the number of prosumers involved
(3, 5, 10, 15, or 20) in the optimization is analyzed. The results suggest that using a battery storage system
in the energy community can lead to energy savings of 11-13%. Besides, combining the use of peer-to-peer
transactions and energy storage systems can potentially provide energy savings of up to 25% in the overall
costs of the community members.

INDEX TERMS Local electricity market, local energy community, optimization, peer-to-peer transactions,
prosumers.

I. INTRODUCTION
Distributed and renewable generation has emerged as a solu-
tion for the depletion of fossil fuel energy and for meet-
ing energy sustainability targets, namely the greenhouse
gas emissions limits imposed in some areas. For example,
the European Union (EU) is targeting a reduction of at
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least 40% of greenhouse gas emissions by 2030, an incre-
ment of at least 32% share for renewable energy, and an
improvement of at least 32.5% in energy efficiency, tak-
ing as basis 1990 levels [1]. In 2018, renewable genera-
tion accounted for 18.9% of the energy consumed in the
EU [2], which already represents about 50% of the imposed
levels. At the residential level, households can install smart
devices and distributed energy resources (DER) such as pho-
tovoltaic (PV)modules, small scale wind turbines, and energy
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storage including plug-in electric vehicles (EV), to increase
energy efficiency and reduce energy bills [3]. However,
due to the increasing maturity of renewable energy produc-
tion capabilities, the feed-in tariff which incentivized local
generation sales to the grid is being reduced. In consequence,
the reduction of feed-in tariffs may impact the motivation
of consumers, slowing down the penetration of renew-
able sources and ultimately, failing in achieving the agreed
targets.

Due to feed-in tariff reduction, in several locations, it is
now more attractive for households to use generation sur-
plus for self-consumption than selling to the grid [4]. Self-
consumption is different among individuals depending on
daily consumption profiles, which can vary with the habits
and with the used electrical equipment.

The European Commission Strategic Energy Technology
Plan [5] states that energy consumers are envisioned at the
center of the future energy systems and shall be encouraged to
install energy production sources. Peer-to-peer (P2P) energy
trading emerges as a promising solution to empower the
role of the end-users in energy systems [6]. Basically, P2P
energy trading is a recent technology of energy management
mechanism in smart grids [6]. In the scope of an energy
community, P2P energy trading enables flexible energy trades
between peers. In other words, in a P2P market, the excess
of energy generation coming from many small-scale DERs
is traded among local customers [7]. The prosumers can
achieve a ‘‘win-win’’ situation by searching for a satisfactory
trading price and by reaching an agreement in a seamless
way. Themarginal price of P2P electricity transactions should
be cheaper than the retailer tariff and higher than the feed-
in tariff (i.e., the price of electricity export to the grid) so
that P2P can provide savings for buyers and profit for sell-
ers [8]. The work in [9] highlights potential benefits of P2P
energy trading: the maximization of renewable energy usage,
the reduction of electricity cost, the shaving of peak load,
the empowerment of the prosumers, and the minimization of
network operation and investment costs. Although the poten-
tial benefits are fairly significant, research on P2P energy
trading is still at an early stage and there is no consensus
on what type of data sharing and processing infrastructure is
more efficient and yields to the best results [3]. It is expected
to reach an investment of USD25 billion inmicrogridmarkets
by 2025 in USA [10], which will inevitably lead to the devel-
opment of P2P market applications to empower prosumers
and fulfill the niche market void.

In this article, a P2P market structure is proposed to allow
energy transactions between users at a price that provides
better benefits than current feed-in tariffs. In this way, con-
sumers become active participants of the local market, having
the possibility to take advantage of their surplus electricity
without being limited by retailers.

Figure 1 presents the trading architecture proposed for a
local community with N prosumers considering a conven-
tional retail electricity market and a P2P market between the
community members.

FIGURE 1. Proposed methodology.

As can be seen in Figure 1, we propose a local community
scheduling considering the possibility of transacting energy
with the retailer and in a market within the community with
P2P transactions. The local community is composed by pro-
sumers, each of them with a PV-battery system which is
also scheduled in the optimization process. The community
members have two different possibilities, namely, buy/sell
electricity to the grid or transact energywith other community
members. The optimization is used to determine the set of
prosumers in each period that performed P2P transactions.

As the main contributions of this work, we highlight five
aspects:
• An optimization model that determines the best P2P
energy transactions in a local energy community with
prosumers equipped with PV generation and energy
storage systems;

• A deterministic mixed-integer linear programming
(MILP) method, implemented in TOMLAB,1 to deter-
mine the decision-making;

• The model includes realistic constraints, customer load
profiles, PV systems, battery energy storage systems and
market transactions constraints. Real Portuguese tariffs
are used to generate realistic case studies;

• The presented model considers the active involvement
of households in the electricity markets, in line with the
goals of governmental institutions to reduce energy costs
and carbon emissions;

• The proposed methodology considers an optimal solu-
tion combining demand side management (DSM) and
P2P transactions integrated into the optimization pro-
cess, characteristic that, to the best of the authors’
knowledge and according to the analysis made by the
authors in section II, is not proposed in the current
literature.

The rest of this paper is divided into six sections:
Section 2 presents the background on the DSM and P2P
models. Section 3 shows the proposed methodology and the

1TOMLAB is a language for solving optimization problems considering
MATLAB language (https://tomopt.com/tomlab/).
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mathematical formulation developed in this research work.
Section 4 describes the case study used to test the proposed
methodology. Section 5 discusses and analyzes the results.
Finally, Section 6 presents the conclusion of this work and
provides future research directions.

II. BACKGROUND
This section presents a background on the energy costs opti-
mization in smart grids. DSM applications in smart grids can
be considered as one of the most innovative steps to minimize
the operation costs [11]–[13]. These applications consider
the optimization of house consumption by rescheduling the
loads to periods when the electricity price is lower [14], [15].
With the installations of PV generators in residential houses
and the development of load controlled systems for demand
response, more comprehensive and complex approaches are
emerging [16]. In previous referred works, authors consider
the rescheduling of controllable loads and the use of PV
generation and battery storage systems. A similar work is
presented in [17], where authors reduce the computational
effort by adopting evolutionary computation algorithms to
solve the optimization problem. A different technique was
implemented in [18] using case-based reasoning based on
historical data to determine the reduction value for a demand
response application. More recently, works that address the
energy commerce between groups within smart grids have
been proposed. In [19], a trading environment between neigh-
bor microgrids was presented. In the case study, a smart
grid with three microgrids was considered, and apart from
the inter-micro-network market, six different markets were
analyzed for trading electricity.

Energy transaction between households has emerged in
recent years as a promising trend that should be adapted
to minimize the costs of the electric bill. Reference [20]
introduces a local market into the simulation. The prob-
lem was solved using a two-stage stochastic programming
approach. The authors optimize the electricity costs of all
microgrids members, allowing local transactions between
microgrids and the possibility of buying energy into the
wholesale market. Publication [21] determines the best port-
folio option for the electricity transaction, considering the
possibility of transacting electricity in local electricity mar-
kets. The authors in [22] consider an energy sharing approach
between prosumers. The problem is solved considering a
bi-level programmingmethod using a function called demand
and supply ratio. A Mixed Integer Non-linear Programming
(MINLP) is used in work [23] to determine the P2P transac-
tion considering 2 households and a horizon time of 8 periods
(1h each). The influence of battery storage systems in P2P
trading within a microgrid was explored in reference [24].
Works [22]–[24] consider the problem of local electricity
transaction but do not consider the coordination of DSM
with local transaction scheduling. In other words, these works
cannot provide a coordinate solution of the local transaction
to take themaximumbenefits of households loads and storage
systems. DSM approaches are used to optimize energy costs

and are typically formulated as linear or non-linear prob-
lems [3]. Linear optimization is usually used to solve short
periods of time and usually have a very short resolution time
when compared with non-linear optimizations resolutions.
Researchers to reduce the computation time burden of non-
linear models are using approximate methods to reduce the
resolution time [25]–[27].

TABLE 1 presents a comparison between works published
considering P2P energy trading within an energy community.
The proposed work is also included in TABLE 1 highlighting
its contributions concerning the current literature.

A similar method to the one presented in this work was
proposed in [26]; authors used a distributed approach to
implement a DSM system combined with P2P trading. Due
to the use of an approximate solution approach the work
in [26] does not guarantee optimal solutions to the prob-
lem. In contrast, by using a deterministic solution approach
(MILP), our method provides an optimal solution considering
up to 20 players combining the DSM with P2P transac-
tions. Typically, optimization methods that determine local
market transaction using centralised approaches consider a
small number of users involved due to the computational
burden [22]–[24]. On contrast, methods that consider a
large number of users use iterative process [3] or deter-
mine the local transaction after the DSM optimization is
finished [8], [25].

The current literature reflects a lack of deterministic solu-
tion methods that include local electricity transactions con-
sidering more than four players. Thus, this work presents a
deterministic method that can solve the problem under a case
study considering up to 20 players. Ourmethod also considers
the coordination between DSM and local transactions, unlike
most of the current approaches.

III. MATHEMATICAL FORMULATION
In this section, the mathematical formulation used to obtain
the optimal social welfare costs of the community is fully
presented. Equation (1) represents the objective function that
minimizes the total cost of the energy community. Indeed,
the objective function is equivalent to the social welfare of
the community members, minimizing their energy costs.

minimize : obf =
Nt∑
t=1

Ni∑
i=1

(
π
buyGrid
t,i × PbuyGridt,i

)
×

1
1t

−

Nt∑
t=1

Ni∑
i=1

(
π sell Gridt,i × Psell Gridt,i

)
×

1
1t

(1)

where t represents the period, i represents the prosumer, Nt
the total number of periods,Ni the total number of prosumers,
π
buyGrid
t,i represents the price of buying electricity from the

grid (time-of-use tariff), PbuyGridt,i represents the amount of
electricity purchased from the grid, π sell Gridt,i represents the
selling price of electricity to the grid (feed-in tariff) and
Psell Gridt,i represents the amount of electricity sold to the grid.
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TABLE 1. P2P energy trading works comparison.

The term 1t is used to adjust the tariff price to the optimiza-
tion time intervals (e.g., 15 min). Equation (2) represents the
power balance for each prosumer.

Pgent,i + P
buyGrid
t,i + Pdcht,i +

Nj∑
j=1,j6=i

Pbuy p2pt,i,j

= Ploadt,i + P
sell Grid
t,i + Pcht,i +

Nj∑
j=1,j6=i

Psell p2pt,i,j

∀i ∈ Ni, ∀j ∈ Nj, ∀t ∈ Nt (2)

where Pgent,i represents the generated power, Pdcht,i is the dis-

charged power of the battery, Pbuy p2pt,i,j corresponds to the
electricity purchased in the P2P market, Ploadt,i is the load, Pcht,i
is the power charged by the battery, Psell p2pt,i,j corresponds to
the electricity sold in the P2P market, j is the prosumer and
Nj the total numbers of prosumers. The sum of variable Pp2pt,i,j
over the index j gives the total value of each i buy in P2P
transactions for each t index, whereas the sum in i index gives
the total value of each j sale. Equation (3) and (4) represent
the maximum limits of variables PbuyGridt,i and Psell Gridt,i .

PbuyGridt,i ≤ Pmax buyGrig
t,i × BinbuyGridt,i

∀i ∈ Ni, ∀t ∈ Nt (3)

Psell Gridt,i ≤ Pmax sell grigt,i × Binsell Gridt,i

∀i ∈ Ni, ∀t ∈ Nt (4)

where Pmax buyGrig
t,i represents the maximum amount of elec-

tricity to buy from the grid, BinbuyGridt,i is a binary variable
that enables purchasing electricity from the grid if it is 1,
Pmax sell grigt,i represents the maximum amount of electricity
sold to the grid, and Binsell Gridt,i is a binary variable that
enables selling electricity to the grid if it is 1. Equation (5)
is the constraint applied to the binary variables above.

BinbuyGridt,i + Binsell Gridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (5)

Equation (5) restricts the transactions of electricity to either
buy or sell energy in the same period for the same prosumer.
Equations (6) and (7) represent the maximum limits of vari-
able Pmax buy p2pt,i,j and Pmax sell p2pt,i,j .

Pbuy p2pt,i,j ≤ Pmax buy p2pt,i,j × Binbuy p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (6)

Psell p2pt,i,j ≤ Pmax sell p2pt,i,j × Binsell p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (7)

where Pmax buy p2pt,i,j corresponds to the maximum limit for

P2P purchase transactions, Binbuy p2pt,i,j corresponds to a binary
variable that enables purchasing electricity from j to i in P2P
mode, Pmax sell p2pt,i,j corresponds to the maximum limit for P2P

electricity sale transactions, and Binsell p2pt,i,j corresponds to a
binary variable that enables selling electricity from i to j in
P2P mode. Both indices i 6= j and j 6= i represent prosumers,
and must be different since i = j or j = i would represent
a prosumer negotiating with himself. Equations (8) and (9)
are implemented to restrict actions related to the transactions
with the grid and P2P market.

BinbuyGridt,i +

Nj∑
j=1,j6=i

Binsell p2pt,i,j ≤ 1 ∀i∈Ni, ∀t ∈Nt (8)

Nj∑
j=1,j6=i

Binbuy p2pt,i,j +Bin
sell Grid
t,i ≤ 1 ∀i∈Ni, ∀t ∈Nt (9)

Equation (8) imposes that it is not allowed to buy electricity
from the grid to sell it in P2P mode, whereas equation (9)
imposes that it is not possible to buy electricity in P2P
mode to sell to the grid. The above restrictions were imple-
mented assuming that it is always more expensive to buy/sell
electricity from the grid than in P2P trading. Equation (10)
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corresponds to the balance of the P2P trading market.

Nj∑
j=1,j6=i

Ni∑
i=1,i6=j

Pbuy p2pt,i,j =

Nj∑
j=1,j6=i

Ni∑
i=1,i6=j

Psell p2pt,i,j ∀t ∈ Nt

(10)

Equation (10) imposes that the total amount of electricity
purchased in P2P mode should be equal to the total amount
of electricity sold in the same P2P mode. Equations (11) and
(12) are applied to model the P2P market transactions.

Ni∑
i=1,i6=j

Binbuy p2pt,i,j +

Nj∑
j=1,j6=i

Binsell p2pt,i,j ≤ 2 ∀t ∈Nt (11)

Nj∑
j=1,j6=i

Binbuy p2pt,i,j +

Ni∑
i=1,i6=j

Binsell p2pt,i,j ≤ 2 ∀t ∈Nt (12)

Equations (11) and (12) ensure that each prosumer trade
with another prosumer in each period. The model does not
allow that one prosumer transacts electricity with two or more
prosumers.

Equations (13) and (14) represent the limits for charge and
discharge of the batteries.

Pcht,i ≤ Pmax cht,i × Bincht,i, ∀i ∈ Ni, ∀t ∈ Nt (13)

Pdcht,i ≤ Pmax dcht,i × Bindcht,i , ∀i ∈ Ni, ∀t ∈ Nt (14)

where Pmax cht,i represents the maximum charge power, Bincht,i
is the binary variable associated with the charging state,
Pmax dcht,i represents themaximum discharge power, andBindcht,i
represents the binary variable associated with the discharge
option. Equation (15) represents the limit imposed on the
charging/discharging state. With equation (15), the charge
and discharge actions are controlled so that they do not occur
simultaneously.

Bincht,i + Bin
dch
t,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (15)

Equation (16) presents the state of the batteries in each
period.

EBatt,i =E
Bat
t−1,i+P

ch
t,i×η

ch
i − P

dch
t,i ×

1

ηdchi

∀i∈Ni, ∀t ∈Nt

(16)

where EBatt,i represents the state of the battery, EBatt−1,i repre-
sents the state of the battery in period t − 1, ηchi corresponds
to the efficiency of charge and ηdchi to the efficiency of
discharge. Equations (17) - (29) present the upper and lower
bounds for the variables of the problem.

0 ≤ PbuyGridt,i ≤ Pmax buyGridt,i , ∀i ∈ Ni, ∀t ∈ Nt (17)

0 ≤ Psell Gridt,i ≤ Pmax sell Gridt,i , ∀i ∈ Ni, ∀t ∈ Nt (18)

0 ≤ Pdcht,i ≤ P
max dch
t,i , ∀i ∈ Ni, ∀t ∈ Nt (19)

0 ≤ Pcht,i ≤ P
max ch
t,i , ∀i ∈ Ni, ∀t ∈ Nt (20)

0 ≤ Pbuy p2pt,i,j ≤ Pmax buy p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (21)

0 ≤ Psell p2pt,i,j ≤ Pmax sell p2pt,i,j

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (22)

0 ≤ EBatt,i ≤ E
max Bat
t,i , ∀i ∈ Ni, ∀t ∈ Nt (23)

0 ≤ BinbuyGridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (24)

0 ≤ Binsell Gridt,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (25)

0 ≤ Binbuy p2pt,i,j ≤ 1

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (26)

0 ≤ Binsell p2pt,i,j ≤ 1

∀i 6= j ∈ Ni, ∀j 6= i ∈ Nj, ∀t ∈ Nt (27)

0 ≤ Bindcht,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (28)

0 ≤ Bincht,i ≤ 1, ∀i ∈ Ni, ∀t ∈ Nt (29)

where Emax Batt,i represents the maximum battery capacity.
Equations (17) - (23) bound the continuous variables, while
equations (24) - (29) bound binary variables.

The total energy bill (EB) for each prosumer in the P2P
market can be calculated according to equation IV.

EBi =
Nt∑
t=1

(
π
buyGrid
t,i × PbuyGridt,i

)
×

1
1t

−

Nt∑
t=1

(
π sell Gridt,i × Psell Gridt,i

)
×

1
1t

+

Nt∑
t=1

Nj∑
j=1,j6=i

(
π
p2p
t,i,j × P

buy p2p

t,i,j

)
×

1
1t

−

Nt∑
t=1

Nj∑
j=1,j6=i

(
π
p2p
t,i,j × P

sell p2p
t,i,j

)
×

1
1t
+ FixCosti

∀i ∈ Ni, (30)

where πp2pt,i,j represents the price in the P2P market for the
transaction between prosumer i and prosumer j, and Fix Costi
is the fixed cost that each prosumer must pay to use the
network.
EB contains five terms, as equation IV shows. The first

term represents the costs of purchasing electricity from the
grid; the second term is the revenue of selling electricity to the
grid; the third term corresponds to the costs of buying elec-
tricity in P2P market; the fourth term represents the revenues
of selling electricity in the P2P market and, finally; the fifth
term corresponds to fixed costs paid by each prosumer. The
fixed costs are paid directly to the retailer, and are defined
in the energy supply contract established between retailer
and prosumer. In fact, the sum of the EB of each prosumer
without the fixed costs represents the objective function of
equation (1). The costs and revenues in the P2P market are
not implemented in the objective function since the sum of
costs/profits over all player is 0.

To obtain the P2P price for the transactions, we chose the
mid-market rate method presented in [4]. Themethod of price
determination assumes that the exchange price is the average
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FIGURE 2. Average values of electricity grid prices in the local energy
community.

of the electricity buying price and selling price:

π
p2p
t,i,j =

π
buyGrid
t,i + π sell Gridt,i

2
, ∀i ∈ Ni, ∀t ∈ Nt (31)

When a P2P transaction is executed, the price πp2pt,i,j is deter-
mined by the seller (i).

IV. CASE STUDY
This section presents a case study to illustrate the use of the
methodology proposed in section II. A local energy commu-
nity with 10 prosumers is considered to presents the main
results. To test the scalability of the approach, simulations
were executed considering up to 20 prosumers. Each domes-
tic prosumer is equipped with a PV-battery system installed in
the household. Figure 2 presents the mean value of electricity
prices used to buy and sell electricity within the energy
community.

It is assumed that all consumers have contracted a bi-hourly
tariff from a retailer. The maximum limit for electricity
purchase from the grid is specified in the contract between
retailer and prosumers. The prosumer is free to choose this
limit but should be considered that higher limits have associ-
ated more expensive fixed costs. As can be seen in Figure 2,
the buying price correspond to the average price of the ten
prosumers. This price is always higher than the selling price.
The selling price considered for this case study corresponds to
the feed-in tariff defined by Portuguese legislation.2 Selling
electricity to the main grid is modelled as a constant price
(see Figure 1). Each prosumer complying with the current
Portuguese legislation, which allows small producers (con-
sumers with local generation) to use their energy to satisfy
their own load needs, can inject their surplus of energy to the
grid.

2Defined in Portaria n.◦ 115/2019 of Diário da República n.◦

74/2019, Série I de 2019-04-15, https://data.dre.pt/eli/port/115/2019/
04/15/p/dre/pt/html

FIGURE 3. Average of consumption and generation in the local energy
community.

Figure 3 presents the average consumption and generation
profiles.

Figure 3 shows that the average consumption profile
presents one peak in the morning (period 8) and another in the
afternoon (period 15-17). The generation profile is a classic
PV profile with a generation peak near to period 14h. A total
of 54 kWh capacity for PV production and 128 kWh of capac-
ity for the battery systems is installed. Each prosumer has a
contract with a retailer for a maximum power supply. In the
case study, one prosumer has a contract of 3.45 kVA, one
4.6 kVA, two 5.75 kVA, four 10.75 kVA and two 13.8 kVA.
The prosumers in the case study pay an average of 0.49 eof
fixed costs per day; it is assumed that the retailer has defined
these costs. TABLE 2 presents the input variables used in the
simulations.

For some parameters two different values appeared in
TABLE 2, these correspond to the minimum and maximum
values. The input parameters are different for each case study
in order to consider prosumers with diverse characteristics.

V. RESULTS
This section presents and discusses the results of the case
study presented in Section IV. The experiments were imple-
mented using MATLAB2018a, in a computer with Intel
Xeon(R) E5-2620v2@2.1 GHz processor with 16GB of
RAM running Windows 10. TOMLAB optimization plat-
form with the solver CPLEX has been used. Four different
scenarios are simulated and compared. The scenarios are
defined considering the battery usage and the possibility of
transacting energy with P2P. The set of scenarios is:

• Scenario A – scenario without batteries and without P2P
transactions. This scenario is considered the base case;

• Scenario B – scenario with batteries and without P2P
transaction;

3EDP comercial website: https://www.edp.pt/particulares/energia/
tarifarios/.
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TABLE 2. input parameters of the problem.

• Scenario C – scenario without batteries but considering
P2P transactions;

• Scenario D – scenario with batteries and with P2P
transactions.

The detailed results are presented for a simulation with 10
prosumers. In the end of this section, we have included
simulations varying the number of prosumers to analyze the
scalability of our approach.

TABLE 3 presents the results of the tested scenarios
for 10 prosumers for one day of operation (96 periods of
15-minutes each).

The total costs presented in TABLE 3 correspond to the
evaluation of objective function in equation (1). Also notice
that consumption and production are considered the same in
the four scenarios.

Comparing the scenarios without P2P transactions
(Scenario A and Scenario B), Scenario B presents a cost
reduction of 4.23e, i.e. 11%, in comparison with Scenario A.
When batteries are considered, there is less energy sold to the
grid. This indicates that it is more benefic for prosumers to
use the electricity they produce for their own consumption
by making use of the batteries than to sell the electricity
to the grid. Comparing the two scenarios without battery
(Scenario A and Scenario C), Scenario C presents a reduction
of 12% in total costs (4.48 e) compared with Scenario
A. Without available storage, it is more profitable to sell
electricity in P2Pmarket than to sell it to the grid. Considering
now the scenarios with battery systems (Scenario B and

TABLE 3. Results considering 10 prosumers.

Scenario D), Scenario D has a reduction of 5.05 e(15%)
compared with Scenario B. In the scenarios with P2P trans-
actions (Scenario C and Scenario D), the battery enables a
reduction of 4.80e(13%) in the total operation cost. Compar-
ing Scenario Awith themost complete scenario (Scenario D),
savings account for 9.28 e, i.e. 25%, in the later.

TABLE 4 presents the total electricity transaction for each
prosumer considering all scenarios for the full considered
day.

It is clear that the inclusion of batteries provides additional
flexibility to the prosumers, having a direct influence on the
electricity transactions and on the total costs.

Figure 4 presents the energy bill value for each prosumer
for Scenarios B, and D. EB value is obtained after finalizing
the optimization process using equation IV. The value of
EB for all prosumers decreases when P2P transactions are
enabled. For Scenario B, the average EB for one day of
operation is 3.28 e, whereas for Scenario D it is 2.78 e,
corresponding to a difference of 0.50 erepresenting a 15%
of reduction.

Notice that in Figure 4, prosumer 9 presents an EB negative
value indicating that this prosumer was able to make profits
with P2P transactions. Therefore, his energy bill becomes
negative. On average, comparing the results of Scenario A
with the results of Scenario D, the prosumers have a decrease
in cost of 0.93 e/day. If these scenarios are repeated every
day of the year, a potential annual savings of 338 eper
prosumer can be achieved. Figure 5 presents the contracted
power, the battery capacity, and the P2P transactions of each
prosumer for Scenario D.
Figure 5 presents two different vertical axes; the left-side

vertical axis measures the P2P energy (purchased and sold)
transacted in kWh, and the right-side vertical axis measures
the contracted power and battery capacity in kW.

As explained before the contracted power limits the trans-
actions between the prosumer and the grid in each period
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TABLE 4. Electricity transactions for each individual household considering one day of operation [in kWh].

FIGURE 4. Energy Bill results for each prosumer in Scenario B and
Scenario D for one day of operation.

FIGURE 5. P2P trades in Scenario D with the contracted power and
battery capacity.

and has a direct influence on the P2P transactions. As can be
seen in Figure 5, prosumers 3 and 6 have the same contracted

FIGURE 6. Volume of P2P electricity transactions for one day of operation
in Scenario D.

power, but prosumer 6 presents a higher volume of electricity
sold in the P2P market. Analyzing both figures 4 (showing
the EB) and 5, prosumers 6 and 9 have the smaller energy
bills and the higher values of energy transacted in P2P.

Figure 6 presents the electricity sellers in yy-axis, buyers
in xx-axis and the transacted volume in zz-axis corresponding
to the volume of electricity transacted between prosumers
for the full day in Scenario D. The higher volume of energy
transacted occurs between prosumer 8 (as a buyer) and pro-
sumer 6 (as a seller) with a total of 4.91 kWh. Moreover,
an average of 3.34 kWh was transacted in the P2P market
by each prosumer in the referred day of operation.

Figure 7 presents the electricity purchased from the grid,
the electricity sold to the grid, and the P2P transactions for
Scenario D.

As can be seen in Figure 7, the tariff peak hours are
between 9h to 22h as defined by the bi-horary tariff contracted
with the grid/retailer. In these periods, the price of electricity
is higher than the rest of periods (off-peak). In turn, the
P2P transactions price is also higher in those peak periods.
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FIGURE 7. Accumulated electricity transactions with the grid and in P2P
market for one day of operation in Scenario D.

However, P2P prices are always lower than the retailer’s
selling prices. Therefore, the P2P transactions have been real-
ized during the peak periods, as Figure 7 illustrates. Another
important fact is that the exceeding PV production from 8h
to 20h (Figure 3) can be used to charge the batteries, to be
injected to the grid, or to be traded with other prosumers
(P2P). As can be seen in Figure 7, electricity is sold to the
grid between hours 11h and 16h, which corresponds to the
periods with higher PV production (see Figure 3). The P2P
market is more attractive for the prosumer to sell the surplus
of electricity for a higher profit. However, a part of the surplus
electricity is still exported to the grid because prosumers with
high PV production reach their maximum battery capacity,
and eventually, there are not enough peers to carry out P2P
transactions.

The implemented optimization procedure considering
10 prosumers (with total cost of 27.29 e, as showed in
TABLE 3) took around 142.83 second. Therefore, to test
the scalability of our model, we have run experiments con-
sidering 3, 5, 15 and 20 prosumers to obtain a sensitivity
analysis of the optimization times. Figure 8 presents the
execution time for the optimization process of all scenar-
ios in TABLE 3, varying the number of prosumers from
3 to 20. The yy-axis uses a logarithmic scale. The faster
optimization times are obtained with Scenario A considering
3 prosumers (0.81 s). The most time-consuming optimization
corresponds to Scenario D with 20 prosumers, that took
15,869.68 s (4.41 h).

As can be seen in figure 8, Scenario D presents a higher
optimization time. This is related to the number of vari-
ables involved in the optimization process. When the P2P
transactions are included in the optimization, it is neces-
sary to include all the possibilities that prosumers have
to trade electricity. Also, notice that the number of pro-
sumers does not have an impact in the optimization times
for Scenario A and Scenario B, while having a clear
impact for Scenario C and Scenario D. In Scenario D, an
increment of 4.37 hours was registered in the optimization

FIGURE 8. Optimization time results for one day of operation.

FIGURE 9. Mean results of energy bill considering the scenarios and
number of prosumers.

time when the number of prosumers was increased from
10 to 20.

Finally, Figure 9 presents a comparison of the mean energy
bill considering the four scenarios and the total set of pro-
sumers number. In each scenario presented in figure 9, five
different values are shown corresponding to the different
number of prosumers tested. The mean EB value registered
a reduction when the numbers of prosumers increased. In the
case of Scenario D, corresponding to the scenario with the
best results, the mean value considering 20 prosumers reg-
istered a decrease of 1.07 e(32%) with regards to the case
considering 3 prosumers only.

VI. CONCLUSION
This paper proposes a method for managing the energy
resources of a local community considering P2P transactions,
PV production, and storage systems. With the inclusion of
P2P transactions, looking at the economic aspects, the overall
costs of the energy community were lower and each prosumer
was able to get a reduction in the energy bill. The best option,
as demonstrated by simulation studies, is the combination of

12428 VOLUME 9, 2021



R. Faia et al.: Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions

P2P transactions with the usage of batteries (Scenario D).
In fact, Scenario D led to the minimum overall costs for
the community members, ensuring an average reduction of
electricity costs of 0.93 e/day (9%) per prosumer compared
Scenario D with Scenario A.

The proposed optimization method is consumer-centric
having the ability to enable significant user participation in
energy trading. Hence, enabling P2P transaction in the energy
communities has the potential to encourage households to
shift from consumers to prosumers.

The proposed methodology presents some limitations as it
requires the existence of bidirectional information and phys-
ical energy flows between the involved prosumers. Also, in a
real implementation, long execution times can be a drawback
that needs to be solved. In the case of 20 prosumers, the opti-
mization time was 4.41 h for the best scenario (Scenario D).
Therefore, alternative and efficient methods that run near to
real-time should be proposed.

In the future, we intend to explore metaheuristic meth-
ods (such as evolutionary computation) and decompositions
methods (such as Benders decomposition) to solve the pro-
posed problem and reduce the optimization time. In this
way, the proposed model can be applied considering a higher
number of prosumers.
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