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ABSTRACT Deep learning has become a research hotspot in the field of network intrusion detection. In order
to further improve the detection accuracy and performance, we proposed an intrusion detection model based
on improved deep belief network (DBN). Traditional neural network training methods, like Back Propagation
(BP), start to train a model with preset parameters such as the randomly initialized weights and thresholds,
which may bring some issues, e.g., attracting the model to the local optimal solutions, or requiring a long
training period. We use the Kernel-based Extreme Learning Machine (KELM) with the supervised learning
ability to replace the BP algorithm in DBN in a bid to ameliorate the situation. Considering the problem
of poor classification performance usually caused by randomly initializing kernel parameters with KELM,
an enhanced grey wolf optimizer (EGWO) is designed to optimize the parameters of KELM. In order to
improve the search ability and optimization ability of the traditional grey wolf optimizer algorithm, a novel
optimization strategy combining the inner and outer hunting is introduced. Experiments on KDDCup99,
NSL-KDD, UNSW-NB15 and CICIDS2017 datasets show that the proposed DBN-EGWO-KELM algorithm
has greater advantages in terms of its accuracy, precision, true positive rate, false positive rate and other
evaluation indices compared with BP, RBF, SVM, KELM, LIBSVM, CNN, DBN-KELM and other intrusion
detection models, and can effectively meet the requirements of intrusion detection of complex networks.

INDEX TERMS Intrusion detection, deep belief network, kernel-based extreme learning machine, grey wolf

optimizer.

I. INTRODUCTION

With the rapid development of network technologies such
as 5G [1], cloud computing [2], and the Internet of Things
[3], the massive amount of data generated by the network
has brought huge difficulties and challenges to network secu-
rity, a research topic which has attracted more and more
attention. Intrusion Detection (ID) [4], a process of marking
and identifying intrusions to a network, is a key technique
which mainly includes two functions: 1) Analyze the existing
network data, record the information characteristics of the
existing attack data, and then match it with the data in the
host or network. This is a process referred to as misuse detec-
tion. 2) Establish a connection between the network data and

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inicio

16062 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the normal behavior trajectory characteristics in the sample
database. Any deviations from the behavior characteristics
are regarded as intrusion behaviors. This is a process referred
to as anomaly detection. Misuse detection can record the
behavioral characteristics of known cyber attacks, with a
low false alarm rate, but it lacks learning ability. Therefore,
the matching database must be constantly updated to adapt to
the changing environment. In addition, the misuse detection
usually has a poor detection effect for new attacks. On the
other hand, anomaly detection can effectively detect unknown
attacks, but its false alarm rate is high.

The-state-of-the-art of intrusion detection technology
mainly focuses on three aspects.

1) Intrusion detection based on data mining. Salo et al. [5]
identified 19 independent data mining technologies for
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intrusion detection based on custom methods, analyzed
and compared on their detection performance.

2) Intrusion detection based on machine learning. Wang
et al. [6] designed a cloud intrusion detection system
combined with stacked compression autoencoder and
support vector machine. Experimental results show that
the system has stronger detection capabilities. Gao
et al. [7] designed an integrated intrusion detection
algorithm with adaptive ability by using decision tree,
random forest, neighbor algorithm (KNN) and other
basic classifiers, which effectively improved the detec-
tion accuracy.

3) Intrusion detection based on neural network. Ahmad
et al. [8] introduced the Extreme Learning Machine
(ELM) to the field of intrusion detection, which can
reduce the false alarm rate and improve the detection
rate. Naik et al. [9] used the teaching-learning meta-
heuristic optimization algorithm to optimize the param-
eters of the neural network. The optimized neural net-
work has good results in indicators such as execution
efficiency and classification accuracy.

In the intrusion detection system, the network traffic is
first identified, and abnormal traffic is blocked. The net-
work attack type is then identified, and the characteristic
database of the attack type is continuously improved, thereby
improving the system’s own defense. In this regard, network
anomaly detection can be attributed to binary class classifica-
tion and multi-classification problems. In recent years, data
mining, machine learning, and neural networks have been
used by researchers in network anomaly detection and have
achieved positive results. However, data mining and tradi-
tional machine learning methods rely heavily on the feature
extraction and selection of data, which in many cases cannot
achieve sufficiently good performance. Therefore, the data
processing techniques for, e.g., the accuracy and precision
of classification, need to be improved significantly. Hinton
[10] successfully reduced and classified MNIST dataset using
a deep learning model in 2006, and found that a network
model with a deep neural network structure can discover more
essential data features in the dataset. Meanwhile, deep learn-
ing made remarkable progress in many areas, e.g., control
[11], natural language processing [12] and emotional analysis
[13], proving the great potential of the framework in the field
of data classification. In this regard, some scholars proposed
applying deep learning to the field of network security. Khan
et al. [14] applied deep neural network to network intrusion
detection and designed a two-stage deep learning model.
The model first uses probability scores to classify network
traffic as normal or abnormal, and then uses the scores as
an additional feature to detect normal traffic and other attack
categories in the decision-making stage. Although the model
is able to obtain useful feature representations from unlabeled
data to improve the detection accuracy, the disadvantage
is that the computing time increases with the size of the
dataset. The model proposed in this paper is suitable for large-
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scale datasets and can process data efficiently in batches.
Nie et al. [15] established a deep learning model based on
convolutional neural network for Internet of Things (IoT)
security issues, and designed a data-driven intrusion detection
system. This method has higher detection rate and lower
false alarm rate, but the learning rate is slow. Su et al. [16]
proposed a traffic anomaly detection model combined the
attention mechanism and the bidirectional long short-term
memory network (BLSTM). The model can quickly obtain
the key characteristics of network traffic and improve the
ability to detect abnormal behaviors, but the generalization
ability of the model needs to be improved. While the model
proposed in this article does not depend on specific data,
it is applicable to different datasets and has strong gener-
alization capabilities. Zhu et al. [17] designed a multi-task
LSTM neural network intrusion detection system based on
the vulnerability of the Internet of Vehicles, and detected
abnormal behavior from two dimensions, i.e., the time and
the data. This model improved the real-time performance of
detection. However, the proportion of the two dimensions is
different in different time periods. If the dimensional weight
allocation mechanism is not ideal, the detection effect of the
intrusion detection system will be adversely affected. Alluri
et al. [18] proposed a modified binary grey wolf optimi-
sation (MBGWO) feature selection algorithm, which uses
support vector machine (SVM) to classify the dataset NSL-
KDD. Although the accuracy of intrusion detection is greatly
improved, it only verifies the effectiveness of the algorithm on
one dataset. It has not been verified by experiments on multi-
ple or newer datasets. However, this paper conducts exper-
iments on four datasets, including large datasets, datasets
with many unknown attacks, datasets with many types of
attacks, and newer datasets to verify the effectiveness and
performance of the model proposed in this article. Riyaz
etal. [19] proposed a new feature selection algorithm, namely
conditional random field and linear correlation coefficient-
based feature selection (CRF-LCFS) algorithm, to select the
most significant features and classify them using the existing
convolutional neural network (CNN). The classification pro-
cess uses the convolutional layer of CNN to generate feature
maps, and the pooling layer to reduce the feature map size,
hence shorten the processing time at the expense of reducing
the detection accuracy. The model proposed in this paper has
no feature map conversion process and uses DBN to reduce
the dimensionality of high-dimensional data features, and the
corresponding time cost is greatly reduced.

In summary, there are three limitations in the aforemen-
tioned research outcomes. Firstly, intrusion detection systems
must detect and feedback network traffic in real time, while
reducing latency and improving detection efficiency. Sec-
ondly, the accuracy and generalization of intrusion detection
have much room for improvement. A good model can detect
more types of attacks and improve the performance of the
intrusion detection system. Incorrectly classified attack data
will affect the establishment of intrusion detection models.
Thirdly, most of the aforementioned studies are applicable
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to the situation where the type of network traffic is known.
In the face of unknown attacks, traditional classifiers often
cause misjudgments, leading to the degradation or even dete-
rioration of the performance of intrusion detection systems.
At this time, the learning ability of the intrusion detection
system becomes particularly important. It must have the abil-
ity to recognize unknown attacks. In order to solve the above
problems, in view of the advantages of deep neural networks
in the field of intrusion detection, this paper proposes an
intrusion detection model, namely deep belief network based
on enhanced grey wolf optimizer and improved kernel based
extreme learning machine (DBN-EGWO-KELM). The DBN
model is improved to reduce the dimensionality of high-
dimensional data features, and then the KELM algorithm
is used to replace the traditional BP algorithm for super-
vised classification, finally the purpose of enhancing the data
classification performance of DBN is achieved. In order to
improve the generalization ability of the KELM classifier
for different datasets, we use the enhanced grey wolf opti-
mizer to optimize the E, s and other parameters of KELM.
Experimental results on different datasets show that the DBN-
EGWO-KELM model can effectively shorten the training and
detection time, and significantly improve the classification
accuracy, precision, and true positive rate.

Il. RELATED WORK

The security issues of network-based intrusion detection sys-
tems (NIDS) coexist since the birth of computer science.
Recently, researchers and experts have focused on apply-
ing machine learning and neural network-based solutions to
NIDS (cf. [20] for a survey). This section mainly discusses
network-based intrusion detection systems and our solutions.

A. NETWORK-BASED INTRUSION DETECTION SYSTEMS
(NIDS)

Self-learning system is one of the effective methods to deal
with current network attacks. It uses the supervised, semi-
supervised and unsupervised mechanisms of machine learn-
ing, and uses a large number of normal and attacking network
events to learn patterns of various normal and malicious
activities. However, existing solutions based on machine
learning have a high false positive rate and high computa-
tional cost. This is because the machine learning classifier
simply learns the characteristics of TCP/IP locally. Deep
learning is a complex machine learning subnet. It learns
feature representations and order relationships by passing
TCP/IP information on multiple hidden layers. Deep learning
has achieved remarkable results in long-standing artificial
intelligence tasks in the fields of image processing [21],
speech recognition [22], and natural language processing
[23]. Meanwhile, these capabilities have been transformed
into various network security tasks, such as intrusion detec-
tion, android malware classification, traffic analysis, network
traffic prediction, ransomware detection, encrypted text clas-
sification, malicious URL detection, anomaly detection, and
malicious domain detection [24]. The focus of this work is to
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analyze the performance of various classic machine learning
and deep neural networks (DNNs) on feature extraction from
the network-based intrusion datasets, and the effectiveness of
NIDS.

A standard benchmark dataset KDDCup99 is used
to improve the efficiency of intrusion detection. KDD-
Cup99 was used in the Third International Knowledge Dis-
covery and Data Mining Tools Competition [25], the dataset
was created in 1998 in the DARPA Intrusion Detection (ID)
Evaluation Network. The purpose of the competition is to
create a predictive model that divides network connections
into two categories: normal connections and attack connec-
tions. Attacks are divided into denial of service (DoS), detec-
tion (Probe), remote to local (R2L), user to root (U2R) and
other categories. In the KDDCup99 competition, the mining
audit data for automated models for ID (MADAMID) was
used as feature construction framework. MADAMID out-
puts 41 characteristics: the first 9 characteristics are basic
characteristics of the package, 10-22 are content character-
istics, 23-31 are traffic characteristics, and 32-41 are host-
based characteristics. The choices of available datasets are:
(1) Complete dataset and (2) complementary 10% data. The
Competition task has since remained as a baseline job. After
this competition, many machine learning solutions have been
discovered, most published results use only 10% of training
and test data, and very few custom datasets are used. Recently,
a comprehensive literature survey of ID-based machine learn-
ing was conducted using the KDDCup99 dataset. In [26],
the performance of the ID model based on shared nearest
neighbor (SNN) is studied, and it is reported as the best
detection rate algorithm. By reducing the dataset, they were
able to conclude that SNN performed well in the K-means
of the U2R attack category. However, their work failed to
show results on the entire test dataset. In [27], the naive
Bayesian network with root nodes is used to represent con-
nected classes, and leaf nodes are used to represent connected
features. Subsequently, a genetic algorithm is proposed based
on NIDS [28], which can model time and space information to
identify complex abnormal behaviors. In [29], the integrated
learning technology is reviewed, and in [30], the swarm intel-
ligence technology of ant colony optimization, ant colony
clustering and particle swarm optimization is studied. A com-
parative study in such research works shows that the descrip-
tive statistics was predominantly used.

In general, a comprehensive literature review shows that
few studies use modern deep learning methods for NIDS. The
commonly used experimental analysis benchmark datasets
are KDDCup99 and NSL-KDD [31]-[33].

B. THE WORK FLOW

The network intrusion detection model we proposed is mainly
composed of three stages. The first stage is to process the
dataset, the second stage is the establishment of the classifi-
cation model, and the third stage is the intrusion recognition
process. By combining the three stages, we obtain a specific
process which is able to improve the structure of the DBN

VOLUME 9, 2021



Z. Wang et al.: DBN Integrating Improved KELM for Network 1D

IEEE Access

I .
Data The first stage:data processing I
EGWO 5-CV
; DBN |
|

Normalization

!

Training set
data

IThe third stage:intrusion detectio

Lo = .

Standard data N Pre- Validation
set training set data e:modeling

___________________ Tn
A o
! Test set data I :
| | |
| | I
g E - - — = T T T -
|
i

FIGURE 1. Overall framework.

model, while retaining the ability of DBN to reduce the
dimensionality of high-dimensional data features, using the
KELM algorithm to replace the traditional BP algorithm for
supervised classification to enhance the data classification
performance of DBN. The enhanced Grey wolf optimizer is
used to optimize the parameters, such as E and s of KELM,
to improve the generalization ability of KELM classifier for
different datasets. The overall framework is shown in Fig 1.

Ill. NETWORK MODEL

In this section, we will focus on the network model pro-
posed in this paper by introducing the DBN and KELM first.
According to the structure and characteristics of the network
model, some improvement ideas and methods are presented
in detail.

A. DEEP BELIEF NETWORK

As Hinton proposed in 2006, the deployment of DBN is com-
posed of multiple Restricted Boltzmann Machines (RBM)
stacked [34]. The network first uses the Contrastive Diver-
gence (CD) algorithm for unsupervised training of the stacked
RBM, and then uses the Back Propagation (BP) algorithm to
fine-tune the node parameters in the entire DBN network. The
structure is shown in Fig. 2. DBN training mainly includes
two stages: pre-training and fine-tuning. The pre-training
stage uses each layer of RBM to perform unsupervised train-
ing on unlabeled sample data, and at the same time uses
the CD algorithm to tune each layer of RBM parameters.
After training at each RBM layer is over, the parameters
obtained from the training of a RBM layer are sent to the next
RBM layer for training, until all RBM layers have completed
training. After the pre-training, DBN calculates the network
errors of each layer through the BP algorithm, and adjusts
the parameters of each layer node through back propagation,
so as to realize the global fine-tuning of the node weights
of the entire DBN network. Compared with the traditional
neural network, the weights of each layer of DBN are trained
before the test, instead of random initialization. Therefore,
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the model can overcome the shortcomings of the traditional
neural network such as being easy to fall into the local opti-
mum, and a long training period. However, because the ini-
tial parameters of the BP algorithm are randomly generated,
the amount of iteration calculation in the network is large.
This brings defects such as random parameters when the BP
algorithm fine-tunes the DBN node parameters. This process
not only increases the training time, but also leads to poor
stability of the network.

1) Restricted Boltzmann Machines (RBM): The undi-
rected graph model includes the visual layer and the
hidden layer. Each layer has several nodes. There is no
connection between nodes in the same layer, while the
nodes between the visible layer and the hidden layer
are fully connected. The structure is shown in Fig. 3.
RBM is an energy-based model, and energy function
is defined by the visible layer v = (v;),, and the hidden
layer h = (h)),,:

ny, ny n, np
E@ (V, h) = — Zaivi — ijhj — Z Z V,‘W,‘jhj (1)
i=0 Jj=0 i=0 j=0

a; is the bias of the i-th neuron in the visible layer
and b; is the bias of the j-th neuron in the hidden
layer;0 = [w = (Wi/)nxm’ a=(a),, b= (b/)m] is the
parameters of the RBM model; w;; is the connection
weight between the visible layer v; and the hidden layer
h;; n, represents the number of visible layers, and ny
represents the number of hidden layers.

The joint probability distribution of state (V, H) can be
obtained from the energy function by Eq. (1):

1
Pg (v, h) = 7 (—=Ep (v, ) @

Among them, Zy is the normalization factor by Eq. (2):

Zy=7 > exp(—Eg (v, h)) 3)
v h

For RBM, all neuron states in the hidden layer are
independent of each other. When the state v of the
neuron on the visible layer is given, the probability that
the j-th neuron 4; in the hidden layer is activated (with
probability 1) is

ny

i=0

When the state h of the neuron on the hidden layer
is given, the probability that the i-th neuron v; in the
visible layer is activated (with probability 1) is

ny
Py (v = 1| h) = sigmoid | a;+ Y wjihj | (5)
j=0

In Eq. (5), sigmoid (x) = (14 exp(—x))~! is the
activation function, where x is in the interval (0,1).

16065



IEEE Access

Z. Wang et al.: DBN Integrating Improved KELM for Network 1D

2)

3)

16066

For an RBM model with a given number of neurons
in the visible layer and hidden layer, it is necessary to
train the RBM to determine the parameter 6, to ensure
that the RBM model controlled by the parameter 6 fits
the given training data as much as possible. Due to the
existence of the normalization factor Zy, it is difficult
to use the naive method to calculate Py (v, h),while the
CD algorithm can be used to quickly train the RBM
model in an unsupervised mode with fewer samples,
to achieve the purpose of obtaining the optimal solution
of the parameter 6.

According to CD algorithm, the parameter update
method is as follows:

JU— 07,0 _ 1l
AWU =¢ (<vi hj >a’am <vi hj >recon>

Aa; = ¢ (<v?)data - <vt1 )recon) (6)

Abj=¢ ((hﬁ) >dam - <hfl >,emn)

Among them: ¢ is the learning rate of the algorithm,
(-)data 1s the mathematical expectation of the training
dataset, and (-) con 1S the target mathematical expecta-
tion calculated by the CD algorithm.

Deep belief neural network pre-training: The DBN
model is formed by stacking multiple RBMs, including
an input layer, multiple hidden layers, and an output
layer composed of a BP neural network. The network
structure is shown in Fig. 4. In DBN, every two adjacent
layers form an RBM, and the input layer of DBN is
the first layer RBM, the hidden layer neuron hg of
this layer is taken as the visible layer neuron v; of the
next layer RBM 1, and so on. In the last visible layer
RBM, neuron vy is the hidden layer neuron hy_; of
the layer RBM y_1. The top layer of the DBN is the BP
algorithm, which maps the data features extracted from
the original data by the RBM to the categories to be
classified.

DBN pre-training process: Firstly, the unlabeled sam-
ple data is used to train the stacked RBM layer by layer.
In this process, the CD algorithm is used to obtain the
parameter 6y of the first layer RBMjy. Secondly, input
the value of 6 into the next layer to continue training
RBM;j, until the parameter 6; is obtained, and so on,
to obtain the bias and weight of the entire DBN.
Supervised fine-tuning based on BP algorithm: Since
the training between each RBM is completed inde-
pendently, it can only ensure that the node parameter
values obtained by the training are optimal within the
respective RBM. Therefore, after the DBN pre-training
is completed, the parameters in each RBM need to be
fine-tuned. The sample dataset {a, b} is given, the rela-
tionship between input and output is:

bi = f (ai, 0) 7

Among them: Z;, is the i-th sample of the DBN mapping,
f is a non-linear function, and g; is the i-th sample in
the training sample dataset a = [x1, X2, . .. ,X,].

RBM,
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FIGURE 3. RBM structure.

The error loss function is represented by the average
cross entropy between the predicted value and the
actual value:

, 1 Y N
J@=N;mmm (8)

b; in Eq. (8) is the actual value of the i-th sample in the
sample dataset.

In DBN, the supervised fine-tuning based on the
BP algorithm generally adopts the gradient descent
method. This type of method is difficult to obtain a
learning rate, and it is easy to fall into the local opti-
mum and the amount of iteration is very large [35],
hence a long delay. According to literature [37]-[41],
the kernel-based extreme learning machine can effec-
tively solve the problems of BP neural network, and
has a strong classification ability. Therefore, this paper
uses the kernel-based extreme learning machine instead
of BP algorithm to achieve supervised classification.
Later, we will explain in detail the benefit of using the
kernel-based extreme learning machine in place of the
BP algorithm.
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B. KERNEL-BASED EXTREME LEARNING MACHINE

Extreme Learning Machine (ELM) was proposed by Huang
[36] through the theory of generalized inverse matrix. Com-
pared with traditional neural networks, ELM improves the
learning speed while maintaining good generalization capa-
bilities of the network, and has strong nonlinear fitting
capabilities, which can effectively reduce the amount of cal-
culation as well as the search space. Based on the above
advantages, ELM has been applied in many fields, such as
information collection [37], big data application [38], logo
recognition [39], language recognition [40]. Kernel-based
Extreme Learning Machine [41] combines the kernel func-
tion on the basis of ELM. The linearly inseparable high-
dimensional information is projected to the high-dimensional
feature space through nonlinear mapping to achieve linear
separability, in order to achieve the purpose of improving the
accuracy of classification. However, due to the combination
of the kernel function, KELM is sensitive to parameter set-
tings. To tackle this problem, this paper uses the swarm intel-
ligence optimization algorithm to optimize the KELM param-
eters to improve the efficiency of parameter tuning. Extensive
experiments, and comparisons with other swarm intelligence
algorithms, demonstrate that the grey wolf optimizer has out-
standing capabilities. This work improves the grey wolf opti-
mizer strategy and enhances its performance. The improved
grey wolf optimizer will be described in detail below.

IV. ENHANCED GREY WOLF OPTIMIZER AND KERNEL
PARAMETER OPTIMIZATION MODEL

In this section, we will explain the use of the enhanced grey
wolf optimizer, and introduce the model of the enhanced grey
wolf optimizer to optimize the kernel parameter.

A. ENHANCED GREY WOLF OPTIMIZER
As a meta-heuristic algorithm [42], GWO was first proposed
by Mirjalili and others in 2014. The algorithm divides the
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FIGURE 5. Grey wolf social hierarchy pyramid.

wolves into four levels, from high to low as «, 8, § and .
Among them, o, §, and § are the three levels closest to the
prey, that is, the three highest levels in the grey wolf hierarchy
in Fig. 5. The remaining grey wolf individuals are w, which
has the lowest level. The higher three levels lead w to hunt
prey. Itis worth noting that the social hierarchy of grey wolves
is not fixed. With the progress of the encirclement, all grey
wolves will be reclassified according to the distance between
themselves and their prey, that is to say, they will be re-
layered according to the fitness value update result. In the
process of re-layering, the position of the head wolf may not
be optimal when the grey wolf position vector is updated, so it
is difficult to balance the global and local search capabilities,
which leads to problems such as the GWO algorithm falling
into the local optimum and slower convergence speed in the
iterative process. In this regard, this article improves the orig-
inal grey wolf optimizer. According to reference [43],when
;\‘ < 1, the grey wolf population will narrow the search
range and perform a fine search in a local area, which is the
development capability of the GWO algorithm. when ‘A ‘ > 1,
the grey wolf population will expand the search range to find
a better candidate solution, which is the global exploration
capability of the GWO algorithm. In order to improve the
convergence performance of the algorithm, we designed an
enhanced grey wolf optimizer (EGWO) by strengthening the
development capabilities of GWO. In EGWO, we divide the
grey wolf population strategically. Half of the grey wolves
are responsible for the inner hunting, while the other half
are responsible for the outer hunting. The inner hunting is
used to enhance the grey wolf’s ability to attack prey, i.e.,
the algorithm development ability. Outer hunting is used to
maintain the global exploration capabilities of GWO. In order
to further improve the optimization accuracy of the algorithm,
the Tent mapping [43] is used to enrich the diversity of the
initial population. The schematic diagram of the inner and
outer hunting is shown in Fig. 6.

1) The outer hunting: The global search process means
that the grey wolf population needs to explore a wider
search area in order to find the global optimal solution.
Therefore, the grey wolves carrying out the outer encir-
clement order approach the prey from all directions and
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FIGURE 7. Grey wolf location update.
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from far to near. In order to avoid the algorithm falling
into the local optimum, the grey wolves performing
the outer encirclement must obey the commands of ¢,
B and §. Fig. 7 is a schematic diagram of the grey
wolf update location, the location of «, 8 and § wolves
are used to simulate the approximate position of prey.
When w receives the command to kill, it moves closer
to the prey to update its position. The distance between
w and «, B and § is expressed by the following formula:

ba: 61'}?0((1‘)_)?0)(1‘)

Dg = |C2-Xp (1) — X, (1) ©)
Ds = |C3 - X5 (t) — X,, (1)

Ci=2-7%

G =27 (10)
C3=2-73

Among them, 13 represents the distance between o and
w, and so on for Dﬁ, Dg X (1) 1 is the posmon of a in
the t-th iteration, and so on for Xﬂ(t) Xw(t) C1 is the

zizimuth variable when w moves to «, and so on for 6’2,
Cs. 71 is a random number of [0,1].

After w knows the distance to «, B and §, it will
approach each with a certain step length, and its posi-
tion update can be expressed as follows:

-

X1 =Xy — A1 - Dy
X, =Xp —Ay-Dp (11)
S N

A] =2a-r4—a

Ay =2a-Fs—a (12)
232261-?6—&

t
a=2—2<?> (13)

- X +X +X
X(t+1)=—1+32+ 3 (14)

X represents the updated position of w if only « is the
prey, and so on for )}2, )}3. t is the current number of
iterations, T is the maximum number of iterations, a
is the convergence factor, and its role is to reduce the
distance between the grey wolf and its prey as the iter-
ation progresses. ;\1 is the step vector of w moving in
the direction of «, and so on for ;12, ;13 Under the joint
leadership of «, B and 4, its position can be expressed
as the arithmetic mean ofX;, X, and X3. The population
location update strategy of outer encirclement is carried
out by formula (9-14).

The inner hunting: The local development ability uses
the existing information to influence other search, and
then agents to perform fine searches in certain search
space, which greatly affects the convergence perfor-
mance of the algorithm. Therefore, EGWO focuses on
improving the development capabilities of the algo-
rithm. In the EGWO algorithm, the change of « has
positive impact on the hunting strategy by making
the algorithm more intelligent in the hunting process.
A more detailed encircle order is arranged for the grey
wolf group. The distance between the grey wolf group
and the prey that executed the inner hunting command
is short, just follow the order of «. The position of «
is used to simulate the position of the prey. Therefore,
the grey wolf group that executes the inner-layer encir-
cle only needs to move around «. Its position update
strategy is similar to GWO, though still different. The
grey wolf location update strategy is shown in formula
(15):

D/a = |Cq - Xy (1) — Xq (1)

64 =27

X' :)?a —A4-D/a (15)
Ay =2a-Ts—a

Xt+) =X,
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TABLE 1. Enhanced grey wolf optimizer.

Algorithm : Enhanced Grey Wolf Optimizer

TInout: Ponulation size N. maximum number of iterations
Output: Grey wolf X,
1 Initialize the grey wolf population vector W by

Xt
) 06 0<x<06
Y17 )11-x, 06<x <1
04 ’
2t=1
3 while 1< Tdo

4 Initialize/update a. 4 and C
5 Calculate the fitness value of W by

fitness = fit(X)
The best grey wolfin W as X,
The second best grey wolf in W as Xj
The third best grey wolf'in W as X
9 fori=1toN/2do
10 Calculate D,, Dg, Ds, X1, X>and X3by Egs. (9-13)
11 Update the position of w by Eq. (14)
12 end
13 for i=N/2+1to Ndo
14  Calculate and by Eq. (15)
15  Update the position of w by Eq. (15)
16 end
17 t=t+1
18 end

o< o)}

It can be seen from the above formula that the update
strategy is similar to GWO. The difference is that in
the inner hunting, we cancel the influence of 8 and §
on w, and wobeys the command of « uniformly. ﬁfx is
the distance betweenﬂw and «, 77 is a random decimal
vector within [0,1], Cy4 is the corresponding direction
vector, and 24 is the corresponding step vector.

3) The EGWO pseudo code: Based on GWO, inner hunt-
ing and outer hunting strategies, the pseudo code of
EGWO is shown in the following table.

Assume that the maximum number of iterations of the
algorithm is T, the size of the population is N, the dimension
of the optimization problem is D, and the time complexity
of the initialization of the population is O(ND). In GWO,
first of all, the fitness value of each grey wolf needs to be
calculated and the best three grey wolves are found, with
a time complexity of O(N). Later, the location of all grey
wolves is updated, and its time complexity is O(V). The total
time complexity of each iteration is O(NN + N), so the total
time complexity required by GWO is O(T(N + N)+ND),
which is at the level of O(TN). Compared with GWO, EGWO
adds an inner-layer encircle mechanism to the location update
strategy, and the time complexity of the grey wolf population
location update is still O(N). In addition, the composition
structure of GWO and EGWO is the same. Therefore, no
additional time complexity is added, so the time complexity
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of EGWO is consistent with GWO, which is O(TN). However,
from the experimental results of the benchmark test function,
the EGWO algorithm has higher solution accuracy, faster
convergence speed and better stability. The details of the
experiment are described in the next paragraph.

The performance of the four optimization algorithms
of EGWO, GWO, PSO and FPA were tested under three
single-peak benchmark functions, Sphere, Schwefel2.22, and
Rosenbrock, and three multi-peak benchmark functions Rast-
rigin, Ackley, and Griewank. The initial value and dimension
of the population are both set to 30, the maximum number of
iterations is 500, other parameters are the same. Each group
of experiments were run for 20 times, and then the average
value was taken for comparison. The experimental results are
shown in Fig. 8. It can be seen that the EGWO algorithm has
the best performance in terms of solution accuracy, conver-
gence speed and stability.

B. KERNEL PARAMETER OPTIMIZATION MODEL

The EGWO algorithm is used to optimize the kernel param-
eters of KELM (c.f. part B of II), the experiment in part A
of III also proved that the EGWO algorithm has good per-
formance in terms of solution accuracy, convergence speed
and stability. In this part, we will design a kernel parameter
optimization model by combining the two algorithms, namely
EGWO-KELM.

The normalization coefficient E and the kernel param-
eter s are the key to KELM parameter optimization. The
KELM classification accuracy rate is recorded as acc (E, s),
the upper bounds of the two parameters are m and n, and the
lower bound is 0. The KELM parameter optimization model
can be expressed as:

maxacc (E,s),E € (0, m],s € (0, n] (16)

In order to obtain the relevant parameters of the KELM
classifier with the highest classification accuracy on the spec-
ified dataset, we use 5-CV [44], [45] to generate random
training set, validation set and test set, and then the average
accuracy of the five training models is used as the evaluation
index of KELM classifier. The cross-validation accuracy rate
is shown in the following formula:

ace (F) = > (3077 (x0) an
i=1

Among them, d (yi, f —k@ (x,-)) is the accuracy of the clas-

sification model after verification on the i-th fold, %@ (x;)
is the classification model trained on the dataset after remov-
ing the i-th fold of the classifier. The average classification
accuracy of each classification model is the cross-validation
accuracy.

As mentioned earlier, KELM is sensitive to its own param-
eter changes, and there are a large number of local extrema.
Since the gradient search method is not effective, the EGWO
algorithm is used for parameter optimization. We combine
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FIGURE 8. Test results graph of algorithm.

5-CV with EGWO algorithm to optimize the parameters of
KELM classifier, the steps are as follows.

1) Initialize the wolf pack according to Tent mapping and
Eq. (10), (12) and (13), and set the maximum number of
iterations T;

2)According to Eq. (9-15), update the location information

of the wolf and carry out the inner and outer hunting
strategy;

3) Using the 5-CV method, calculate the cross-validation
accuracy rate according to Eq. (17) and use this value as the
individual fitness to evaluate the classifier parameters;

4) Judge whether the iteration stop condition is satisfied. If
not, turn to step 2. Otherwise, output the optimal parameters
and the optimal model, and the algorithm ends.

The flowchart of the kernel parameter optimization model
is shown in Fig. 9.

In order to verify the classification performance of the
above-mentioned EGWO-KELM, a classification compar-
ison experiment with the KELM and SVM methods was
done on the UCI Iris, Segment and Diabetes datasets. The
experimental results are shown in Table 2.

It can be seen that on the Iris dataset, the classification
accuracy of the EGWO-KELM model is as high as 96.12%,
and the training time is the shortest, which is 0.326s. On the
Segment dataset, the training time of the BP algorithm is
23.39s, while the training time of the EGWO-KELM model is
only 1.004s, which is 22.386s shorter than the BP algorithm,
and the classification accuracy is still the highest, 95.92%.
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TABLE 2. Classification performance comparison of different methods

under different datasets.

Training  Test

Training

Dataset set sot Algorithm time/s Accuracy/%

BP 2.031 90.61

SVM 0.505 95.56

Iris 100 50 KELM 0.437 95.57
EGWO-

KELM 0.326 96.12

BP 23.39 89.26

SVM 7.985 95.79

Segment 1610 700 KELM 2.368 95.92
EGWO-

KELM 1.004 95.92

BP 8.658 71.68

SVM 0.198 79.88

Diabetes 644 124 KELM 0.089 82.25
EGWO-

KELM 0.046 83.56

Similarly, the classification accuracy of the EGWO-KELM
model on the Diabetes dataset has reached 83.56%, and the
training time is 0.046s, which is the best among the four
comparison models. In summary, the EGWO-KELM model
has shown superior performance to the other three models on
different datasets, in terms of both training time and classifi-
cation accuracy.

To illustrate the sensitivity of the aforementioned KELM
classifier to the normalization coefficient E and the kernel
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FIGURE 9. Parameter optimization based on 5-CV and EGWO.

parameter s, Fig. 10 shows the classification accuracy of the
EGWO-KELM classifier under different parameter values on
the Diabetes dataset.

It is obvious in Fig.10 that when the parameter E= 10e4
and the value of s is 100, the EGWO-KELM model has the
lowest classification accuracy on the Diabetes dataset, which
is 60.29%. When the value of s is 1000, the classification
accuracy is the highest, 71.64%; when the parameter s= 10e4
and the value of E is 10000, the classification accuracy is
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FIGURE 10. Influence of parameter E, s selection on classification
accuracy.

the highest, which is 83.29%, compared with the lowest
classification accuracy of E= 0.1, the classification accuracy
is 17.71% higher. It can be seen that the parameter selection
of the EGWO-KELM model has a remarkable impact on the
classification accuracy, which affects the classification per-
formance of the classifier significantly. Therefore, we choose
to combine 5-CV and EGWO algorithms to optimize KELM
classifier parameters, and designed the kernel parameter opti-
mization model EGWO-KELM.

From the classification results of EGWO-KELM on the test
sets, we know that EGWO-KELM has superior classification
capabilities. Later, we will apply it to DBN to replace the BP
algorithm to enhance the classification capabilities of DBN.

V. INTRUSION DETECTION ALGORITHM
DBN-EGWO-KELM BASED ON IMPROVED DBN

The enhanced grey wolf optimization algorithm can opti-
mize the deep belief network intrusion detection model of
the kernel-based extreme learning machine (DBN-EGWO-
KELM). The first part of the model uses DBN feature dimen-
sionality reduction capabilities to extract key features from
the standard dataset after data preprocessing. The datasets
are divided into training set, validation set and test set, and
used as the input into the second part of the EGWO-KELM
classification model. This part uses the strategy of combining
inner and outer hunting to improve the grey wolf optimizer,
which improves the algorithm in terms of having higher
solution accuracy, faster convergence speed and better sta-
bility. Then the revised algorithm, combined with the 5-CV
method, is applied to the parameter optimization of KELM
to avoid potential defects caused by KELM random initial-
ization parameters. The optimized EGWO-KELM is used to
replace the BP algorithm for network training on the training
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FIGURE 11. DBN-EGWO-KELM structure.

set and validation set, form the EGWO-KELM classification
model to classify the test set.

A. CLASSIFICATION MODEL BASED ON DBN-EGWO-KELM
The original DBN model uses the traditional BP algorithm,
and the direct use of DBN potentially has the following
problems.

1) Random initialization parameters of BP algorithm cause
learning to converge to the local optimal solution;

2) BP algorithm training time is long, the amount of itera-
tion and calculation is large, which leads to the slow learning
process of DBN;

3) The performance of BP algorithm in classification prob-
lem is general, and its feedback network traffic is not strongly
in real time.

Given the superior performance of KELM in the classifi-
cation performance experiment, to solve the above problems,
the EGWO-KELM model is used to replace the BP algo-
rithm for supervised classification. Here, EGWO is used to
enhance the stability of the KELM classifier, and EGWO-
KELM is able to remarkably improve the classification
performance and generalization ability of DBN, and effec-
tively improve the accuracy and efficiency of intrusion detec-
tion. The structure of the DBN-EGWO-KELM classification
model is shown in Fig. 11.

B. DBN-EGWO-KELM INTRUSION DETECTION PROCESS
DBN-EGWO-KELM intrusion detection process includes the
following steps. The flowchart is shown in Fig. 12.

1)Data preprocessing. Numericalize the character fea-
tures in the KDDCup99, NSL-KDD, UNSW-NBI15 and
CIDIDS2017 datasets, and then normalize the data to obtain
numerical data to form a standardized dataset.
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2)Define DBN-EGWO-KELM neural network model
parameters. According to the results of the parameter search
experiment, the network classification performance is the
best when iterates 55 times and the number of hidden layers
is 80.

3)DBN feature dimensionality reduction. Perform pre-
training on the pre-processed dataset, determine the con-
nection weights in the network, and obtain low-dimensional
representation data.

4)Data separation. The data after dimensionality reduction
is divided into training set, validation set and test set in
proportion.

5)Use the parameter optimization model of part B in III to
optimize the parameters of the KELM classifier. Output the
optimal E, s parameters and apply to KELM.

6)Form EGWO-KELM supervised classification model.
The training set and validation set are used as the input to
the EGWO-KELM classification model for training, and the
model is subsequently adjusted

7)Adjust and find the best classification model, and output
the best EGWO-KELM classification model.

8) Use test set to test the model, and output results.

VI. SIMULATION EXPERIMENTS AND ANALYSIS

We did four sets of experiments in total. The experimental
environment is windows7 64-bit operating system, processor
Intel(R)Core(TM)i5-6500 CPU 3.20GHz, installed memory
(RAM) 8.00GB.

1) Parameter setting experiment. Use the test function to
test the convergence performance of the EGWO algorithm,
and search the parameters of the DBN model to determine
the number of network iterations and the number of hidden
layers;

2) EGWO-KELM classification performance experiment.
Using UCI Iris, Segment and Diabetes datasets to do classi-
fication comparison experiments to verify the classification
performance of EGWO-KELM;

3) Binary classification experiment. Binary classification
experiments are carried out on four datasets by different
methods, with their classification performance compared
with multiple evaluation indicators.

4) Multi-classification experiments. Experimental verifi-
cation of the classification performance of the DBN-EGWO-
KELM model on the KDDCup99, NSL-KDD, UNSW-
NB15 and CICIDS2017 datasets.

A. EXPERIMENTAL PARAMETER SETTING
1)The parameters of the enhanced grey wolf optimizer [46]
in the classification model DBN-EGWO-KELM are shown
in Table 3.

2)DBN network parameter setting. The parameters of
the improved DBN classification model are determined by
the classification performance analysis experiment and the
parameter search experiment. The dataset is divided into three
parts for training sample data Train, validation sample data
Validation and testing sample data Test. There is no overlap
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FIGURE 12. Flow chart of DBN-EGWO-KELM intrusion detection.

TABLE 3. Enhanced grey wolf optimizer parameters.

Parameters Values Parameters Values
Population size 30 Inertia weight 1.2
Maximum Self-learning
number of iterations 500 factor 2.4
Shrinkage factor 2-2*%(/T) Group learning 1.6
factor
Convergence accuracy 10e-8 Penalty factor 0.5

between the datasets. In the training stage, the Validation is
used by the DBN for verification, and the error is calculated
by the loss function after the validation. In the verification
stage, the 6-step verification method and training accuracy
limitation method described in the reference [47] are used to
evaluate the training results, which is followed by the testing
stage. The experimental results in Table 4 and Fig. 13 show
that the number of iterations is 55 and the number of hidden
layers is 80 when the model performance is the best. When the
number of hidden layers increases, the training time increases
and the amount of calculation will increase as well.

B. EVALUATION INDICATORS
In the binary classification experiment, the attacks in the
dataset are merged as Abnormal and marked as 2, and Normal
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data is marked as 1. The intrusion detection accuracy rate
(Acc), precision rate (P), true positive rate (TPR), false posi-
tive rate (FPR), F-score, Recall and other indicators are used
for the classification experiment to make an evaluation. The
indicator description is shown in Fig. 14, and the calculation
method is referred to [48], [49].

C. MODELLING THE DATASET

Due to security and privacy issues, most datasets are not
public. In addition, the public data has undergone painstaking
anonymization, without considering the diversity of current
network traffic. We consider the advantages and disadvan-
tages of the existing dataset used in NIDS and discuss how
our dataset is modeled.

1) KDDCup99: KDDCup99 is constructed by processing
the tcpdump data of the 1998 DARPA Intrusion Detection
Challenge dataset. The detailed statistical information of
the dataset is shown in Table 5. The KDDCup1998 dataset
was created by the Lincon Laboratory of the Massachusetts
Institute of Technology using 1,000 UNIX machines and
100 users accessing these machines. The network traffic data
was captured and stored in tcpdump format for 10 weeks.
The first 7 weeks of data are used as the training dataset,
and the rest of the data are used as the test dataset. The
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TABLE 4. Results of parameter seeking experiment.

Hidden Running Number of Cross Training set Validation Test set
layers time iterations entropy Accuracy set accuracy accuracy
rate (%) rate (%) rate (%)
60 21s 206 0.0044 98.5 98.6 98.6
70 9s 69 0.0139 99.2 99.2 99.1
80 6s 55 0.0069 99.8 99.5 99.7
90 10s 73 0.0121 99.6 99.5 99.2
100 19s 139 0.0032 99.5 99.5 99.6
110 22s 78 0.0067 99.7 99.6 99.4
%est Validation Performance is 0.0043713 at epoch 206 Best Validation Performance is 0.01395 at epoch 69
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KDDCup99 dataset that we used contains 8 x 10* pieces of
network data information, 39 types of network attacks, and
each piece of network data has 41 characteristic attributes
and 1 class identifier. The data information includes 1 nor-
mal identification type Normal and 4 abnormal identification
types Dos, Probe, U2R, R2L. Four anomalies contain a total
of 22 attack types. These characteristics can be divided into
the following different categories.

« Basic features: The packet capture (Pcap) files of tcp-
dump are used to extract the basic features from the
packet headers, TCP segments, and UDP datagram
instead of payload. This task was carried out using a
remodeled network analysis framework, Bro IDS.

o Content features: Content features are extracted from
the full payload of TCP/IP packets rooted on domain
knowledge in tcpdump files. The feature analysis of pay-
load has remained as research areas for the recent years.
Wang introduced a deep learning method to analyze
the entire payload data instead of following the feature
extraction process [50]. Content features are mainly used
to identify R2L and U2R attacks.

o Time-based traffic features: Time-based traffic features
are extracted with a specific time window of 2 sec-
onds. They are classified into ““same host” and “‘same
service” based on the connection characteristics in the
past 2 seconds. To deal with slow detection attacks,
the above characteristics will be recalculated based on a
connection window of 100 connections to the same host.
These are usually called connection-based or host-based
traffic characteristics.

2) NSL-KDD is the essence of KDDCup99 invasion data.
The filter is used to delete redundant connection records
in KDDCup99, and delete connection records numbered
136,489 and 136,497 from the test data. NSL-KDD can
protect machine learning algorithms from bias. Compared
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with the KDDCup99 dataset, this dataset is very suitable for
misuse detection. It also reflects the characteristics of real-
time network traffic profile. The NSL-KDD dataset we used
has a total of 11,850 network data, and the data characteristics
and attack types are consistent with the KDDCup99 dataset;
The detailed statistics of NSL-KDD are shown in Table 5.

3) UNSW-NB15: The cyber security research team of Aus-
tralian Centre for Cyber Security (ACCS) has introduced a
new dataset called UNSW-NB15 to resolve the issues found
in the KDDCup99 and NSL-KDD datasets. This dataset is
generated in a mixed way, including normal attack behav-
iors and real-time network traffic using IXIA Perfect Storm
tool, a repository of new attacks and common vulnerability
exposures (CVE), including information security vulnera-
bility libraries and exposures, which are made public. Two
servers are used in the IXIA traffic generator tool. One server
generates normal activities, while the other server generates
malicious activities in the network. The tcpdump tool is used
to capture network packet traces, the tool is also used to
compile all 100 GBs of data into 1000 MB pcaps, which takes
several hours. The Argus and bros-ids are used to extract fea-
tures from the pcap file in Linux Ubuntu 14.0.4. In addition
to the above methods, 12 algorithms developed by C# are
used to perform in-depth analysis on each data packet. The
UNSW-NB15 dataset we used has 175,300 connection data,
and each data contains 49 features. In addition to normal data,
italso contains 9 types of attacks including Fuzzers, Analysis,
Backdoors, Dos, Exploits, Generic, Reconnaissance, Shell-
code and Worms. Table 6 describes the types of simulated
attacks and their detailed statistics.

4) CICIDS2017: This dataset contains benign attacks and
describes real-time network traffic. The main interest is to
collect real-time background traffic by creating this dataset,
and use the B-profile system to collect benign background
traffic. The benign traffic contains the features of 25 users
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TABLE 5. Training, validation and testing connection records from KDDCup99 and NSL-KDD datasets.

Data instances
Attack o
Description KDDCup99 NSL-KDD
category
Train Validation Test Train Validation Test
Normal connection
Normal 7125 2906 4175 923 382 568
records
Attacker aims at making
Dos 3112 1222 1907 1273 496 713
network resources down
Obtaining detailed
statistics of system and
Probe . 19311 7718 11486 2112 882 1323
network configuration
details
Illegal access from remote
R2L 189 70 119 92 36 64
computer
Obtaining the root or
U2R super-user access on a 10263 4048 6313 1525 574 887
particular
Total 40000 16000 24000 5925 2370 3555
TABLE 6. Training, validation and testing connection records of partial dataset of UNSW-NB15.

Class Description Train validation Test
Normal Normal connection records 26906 10920 16327
Fuzzers Attacks related to spam html files penetrations and port scans 9537 3707 5510
Analysis Attacks related to port scan, html file penetrations and spam 159 59 89

Backdoors is a mechanism used to access a computer by
Backdoors . . . 2 2 0
evading the background existing security
Intruder aims at making network resources down and
Dos . . . 1138 458 639
consequently, resources are inaccessible to authorized users
The security hole of operating system or the application
Exploits software is understand by an attacker with the aim to exploit 24806 9988 14858
vulnerability
Generic Attacks are related to block-cipher 19652 7777 11764
. A target system is observe by an attacker to gather
Reconnaissance . : .. 5309 2105 3317
information for vulnerability
Shellcode A small part of pro.graTn termed as payload used in 137 44 %6
exploitation of software
Worms replicate themselves and distributed to other system
Worms 4 0 0
through the computer network
Total 87650 35060 52590

based on HTTP, HTTPS, FTP, SSH and email protocols. The
network traffic is collected for 5 days, with the normal
active traffic discarded on one day, and the attack injected
on another day. The various attacks injected are Brute
Force FTP, Brute Force SSH, Dos, Heartbleed, Web Attack,
Infiltration, Botnet and DDoS. The CICIDS 2017 dataset
contains 103485 pieces of network data information. The
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detailed information of the CICIDS 2017 dataset is shown
in Table 7.

We have randomly selected all connection records in the
NIDS dataset and passed them to t-SNE. The visual rep-
resentations of KDDCup99, NSL-KDD, UNSW-NB15 and
CICIDS 2017 are shown in fig 15-18. The connection record
of CICIDS 2017 is more complicated than UNSW-NB15.
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FIGURE 17. t-SNE visualization of UNSW-NB15.

In addition, the CICIDS 2017 dataset is recently released and
contains new attacks. In addition, the CICIDS 2017 dataset
has the characteristics of real-time network traffic, therefore,
the proportion of normal data is larger.

D. BINARY CLASSIFICSTION EXPERIMENT

The experiment is conducted on the KDDCup99 dataset,
NSL-KDD dataset, UNSW-NB15 dataset and CICIDS2017
dataset for intrusion testing. In the experiment process, the BP
model, DBN model, DBN-KELM model, classic machine
learning model, Multi-classifier LIBSVM, and CNN are
compared with the DBN-EGWO-KELM model we proposed
to compare and verify the superior performance of this algo-
rithm. It can be seen from the visualization of t-SNE of the
four datasets, the UNSW-NB15 and the CICIDS2017 dataset
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FIGURE 18. t-SNE visualization of CICIDS2017.

is relatively scattered and difficult to classify. Fig. 19-
22 shows the confusion matrix of the binary classification
experiment results of the DBN-EGWO-KELM algorithm
model on the four datasets, using the format defined in Fig.14.
Table 8 and Table 9 show the detailed results of binary
classifications of each algorithm model. It is worth noting
that there are many new types of attacks in CICIDS2017, and
they are obtained from real-time traffic, and the proportion of
normal data is large.

From the confusion matrix diagram of the binary classi-
fication results, we can see that for the KDDCup99, NSL-
KDD, UNSW-NB15 and CICIDS2017 datasets, the training
accuracy and test accuracy of the DBN-EGWO-KELM clas-
sification model are between 93% and 99%, the accuracy
rate on the KDDCup99 and NSL-KDD datasets exceeds 98%.
Tables 8 and 9 are detailed results of various machine learn-
ing classifiers, classic neural network algorithms and DBN-
EGWO-KELM binary classification. It can be seen from
Table 8 that in terms of training accuracy, the performance
of the SVM classifier is better than the BP algorithm, RBF
classifier and KELM. In addition, the performance of the
SVM classifier maintains the same range on different datasets
and maintains a high accuracy, however, the accuracy of
the DBN-EGWO-KELM classification model compared with
other methods is the highest and stable on each dataset, which
is 5.58-29.51% higher. In terms of training accuracy, on the
UNSW-NBI15 dataset, the accuracy of the DBN-EGWO-
KELM classification model is 82.54%, and the remaining
algorithms are all below 80%. On the KDDCup99, NSL-
KDD and CICIDS2017 datasets, the accuracy rates of the
model proposed in this paper are as high as 93.50%, 95.30%
and 96.63%, while the accuracy rates of the BP algorithm
and the KELM algorithm are between 60-76%, however,
the precision rates of RBF, SVM, DBN and DBN-KELM
are all higher than 80%, and the best performance is the
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TABLE 7. Training, validation and testing connection records of partial dataset of CICIDS2017.

Class Description Train validation Test
Normal Normal connection records 29813 11981 17594
SSH-Patator Secure shell-Representation of brute force attack 3860 1506 2372
FTP-Patator File transfer protocol-Representation of brute force attack 4876 2027 3017
Dos Intruder aims at making 1.1etwork .resources down and 630 245 136
consequently, resources are inaccessible to authorized users
Web Attacks are related to web 1025 379 646
Hosts are controlled by bot owners to perform various tasks
Bot 3598 1432 2166
such as steal data, send spam and others
Distributed Denial of service(‘DDoS’) is an attempt made to
DDoS make service down using multiple sources. These are 2949 1119 1810
achieved using botnet
Port scan is used to find the specific port which is open for a
PortScan particular service. Using this attacker can get information 4994 2007 3103
related to sender and receiver’s listening information
Total 51745 20696 31044
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FIGURE 19. Experimental results of binary classification on KDDCup99.

DBN-KELM model. The precision rates on the three datasets
are 91.55%, 92.47%, and 90.22% respectively. In terms of
training recall rate, the BP algorithm performed the worst
on the four datasets, with recall rates of 75.21%, 79.65%,
69.24%, and 70.24% respectively. The DBN-EGWO-KELM
classification model proposed in this paper performs best
on the four datasets, with recall rates of 98.90%, 98.70%,
96.60%, and 98.32% respectively. The other algorithms in
recall rates can reach more than 80% on both KDDCup99 and
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NSL-KDD datasets. On the UNSW-NB15 dataset, the recall
rates of the RBF classifier and KELM are 77.94% and
79.54%, respectively. The recall rates of the other algorithms
are all higher than 80%. Compared with the DBN-KELM
model, the DBN-EGWO-KELM classification model pro-
posed in this paper improves 7.28%. When the precision rate
and the recall rate conflict, it will be much more difficult
to compare the performance of the model, and the F-score
can take into account both the precision rate and the recall
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FIGURE 21. Experimental results of binary classification on UNSW-NB15.

rate, which can be regarded as a harmonic average to better EGWO-KELM classification model on the four datasets are
evaluate the model. In Table 8, the F-score of the DBN- 96.12%, 96.97%, 89.02%, and 97.48%, respectively, which
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FIGURE 22. Experimental results of binary classification on CICIDS2017.

are improved by 4.7%, 4.47%, 5.03%, 8.78% compared to
the sub-optimal DBN-KELM model. It can indicate that the
DBN-EGWO-KELM classification model not only shows
high classification performance on each dataset, but also has
high stability.

It can be seen from Table 9 that on the test set, the clas-
sification accuracy, precision and recall rate of the DBN-
EGWO-KELM classification model are all higher than other
algorithms. In the KDDCup99 and NSL-KDD datasets, it can
reach more than 94%. Due to the large amount of data in the
UNSW-NBI15 dataset, it can also be seen through t-SNE visu-
alization that the data in the dataset is relatively scattered, but
the DBN-EGWO-KELM classification model still maintains
its superior performance, with the accuracy rate of 93.42%,
the precision rate is 82.30, the recall rate is 96.40%, and the
F-score is 88.79%. CICIDS2017 is a relatively new dataset.
Although the amount of data is large, it can be seen from the
t-SNE visualization that the dataset is relatively scattered, but
the DBN-EGWO-KELM classification model can still output
very good results, and the classification accuracy rate is as
high as 97.07%. The time spent is only 202s, which can reflect
that the data processing and classification performance of our
proposed model is superior to the classic BP algorithm and
machine learning classifier. The experimental results show
that the SVM classifier performs well, on the KDDCup99 and
NSL-KDD datasets, each evaluation index can reach more
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than 85%, and it has a high evaluation on the UNSW-NB15
dataset. It shows that the SVM method is suitable for binary
classification problems, but the performance of deep neu-
ral networks is significantly better than the classic machine
learning algorithms, and has great advantages in binary clas-
sification.

E. MULTI-CLASSIFICATION EXPERIMENTS

Fig 23-26 shows the confusion matrix of the results of the
DBN-EGWO-KELM algorithm model on the four datasets.
Tables 10 and 11 show the detailed results of multi-
classifications of each algorithm model.

It can be seen from Table 10 that the accuracy of the
DBN-EGWO-KELM classification model on the four train-
ing datasets is the highest 96.5%, 94.0%, 79.5%,97.2%,
respectively. For other algorithms such as BP, RBF, SVM,
LIBSVM, KELM, CNN, DBN and DBN-KELM, the accu-
racy rates on the KDDCup99 dataset are 73.3%, 78.6%,
80.2%, 87.4%, 79.9%, 89.4%, 86.5%, 88.7%, and the accu-
racy rates on the NSL-KDD dataset are 73.0%, 77.1%, 80.2%,
81.6%, 76.8%, 88.4%, 87.1%, 89.2%, the accuracy rates on
the UNSW-NB15 dataset are 50.9%, 45.6%, 52.9%, 55.4%,
65.9%, 70.2%, 68.6%, 75.6%, and the accuracy rates on
the CICIDS2017 dataset are 80.9%, 82.9%, 85.4%, 88.3%,
85.8%, 82.1%, 84.9%, 90.8%. It is obvious that the accuracy
of each algorithm on the UNSW-NB15 dataset is lower than
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TABLE 8. Experimental results of binary classification of each algorithm on training set.

Algorithm I Acc(%) | P(%) I Recall(%) I F-score (%) | Time(s)
KDDCup99
BP 77.16 69.51 75.21 72.23 3214
RBF 82.59 80.92 81.26 81.09 2418
SVM 85.22 90.64 86.24 88.39 646
LIBSVM 84.04 89.54 85.93 87.70 518
KELM 81.46 69.62 80.56 74.69 588
CNN 83.58 79.52 70.68 74.42 1770
DBN 86.77 80.23 86.24 83.13 1264
DBN-KELM 92.56 91.55 91.29 91.42 449
DBN-EGWO-
KELM 98.50 93.50 98.90 96.12 206
NSL-KDD
BP 79.36 72.24 79.65 75.76 618
RBF 82.98 82.19 81.36 81.77 426
SVM 87.21 92.13 87.36 89.68 98
LIBSVM 88.39 87.26 85.77 86.51 106
KELM 83.82 7541 83.24 79.13 168
CNN 84.57 88.24 83.56 85.84 420
DBN 85.23 80.36 84.69 82.47 365
DBN-KELM 93.32 9247 92.54 92.50 227
DBN-EGWO-
KELM 98.90 95.30 98.70 96.97 63
UNSW-NBI15
BP 70.48 60.54 69.24 64.59 5628
RBF 78.25 65.85 77.94 71.38 4652
SVM 84.32 75.22 85.62 80.08 1258
LIBSVM 84.56 78.69 80.47 79.57 1005
KELM 80.98 69.36 79.54 74.10 1154
CNN 79.45 77.26 80.24 78.72 3521
DBN 82.36 72.63 82.26 77.15 2894
DBN-KELM 88.37 79.26 89.32 83.99 995
DBN-EGWO-
KELM 93.54 82.54 96.60 89.02 393
CICIDS2017
BP 67.56 60.23 70.24 64.85 3015
RBF 74.24 82.47 79.17 80.79 2564
SVM 88.29 83.14 86.45 84.76 654
LIBSVM 90.14 80.26 82.44 81.34 542
KELM 88.11 75.89 83.46 79.50 655
CNN 84.12 70.39 84.87 76.95 1574
DBN 86.47 80.36 88.29 84.14 1486
DBN-KELM 90.22 85.22 9247 88.70 489
DBN-EGWO-
KELM 97.07 96.63 98.32 97.48 202

the other two datasets. From the t-SNE visualization of the
dataset in Fig 15-18, it can be seen that the data of the
UNSW-NBI1S5 dataset is scattered, there are many types of
attacks, and the amount of data is huge, which affects the
classification effect of each algorithm. Many datasets are
unbalanced in the sense that the sample size of each category
in a dataset is not equal. Taking the binary classification
problem as an example. Assuming that the number of positive
samples is far greater than the number of negative samples,
then the proportion of the major versus minor samples is close
to 100:1, this dataset is called an unbalanced dataset. The
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learning of unbalanced dataset is to learn useful information
from non-uniform datasets. For these unbalanced datasets,
the intrusion detection performance of each algorithm will be
further analyzed from the view of the precision, false positive
rate, and true positive rate.

It can be seen from Table 10 that in the KDDCup99 dataset,
for the Normal type of data, the detection performance of
BP, RBF and KELM is the worst, the true positive rate
is only 3.9%, 3.6% and 2.3%, compared to DBN-EGWO-
KELM classification model the rate differs by 93.3%, 93.6%
and 94.9%., It is obvious that the DBN-EGWO-KELM
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TABLE 9. Experimental results of binary classification of each algorithm on test set.

Algorithm Acc(%) | P(%) |  Recall®) | F-score(%) | Time (s)
KDDCup99
BP 79.57 70.25 79.23 7447 1751
RBF 83.66 81.36 83.84 82.58 1325
SVM 86.58 89.41 85.99 87.67 313
LIBSVM 85.36 88.24 86.32 87.27 259
KELM 83.37 72.56 82.45 77.19 254
CNN 85.79 87.24 83.21 85.18 905
DBN 88.29 79.89 87.25 83.41 618
DBN-KELM 93.56 90.21 93.54 91.84 247
DBN-EGWO-
RELM 98.60 94.00 98.73 96.31 134
NSL-KDD
BP 80.10 72.53 79.78 75.98 314
RBF 84.28 85.22 82.66 83.92 203
SVM 89.42 92.32 88.46 90.35 54
LIBSVM 85.63 89.24 86.32 87.76 59
KELM 84.28 78.15 82.53 80.28 95
CNN 86.24 84.23 86.24 85.18 222
DBN 87.86 82.67 86.70 84.64 189
DBN-KELM 93.12 93.55 92.20 89.87 112
DBN-EGWO-
KELM 98.60 93.64 98.40 96.06 41
UNSW-NBI5
BP 70.89 59.90 68.78 64.03 2641
RBF 78.55 66.27 76.24 70.91 2248
SVM 85.12 75.25 85.94 80.24 655
LIBSVM 82.34 76.34 70.22 73.15 521
KELM 80.98 68.98 79.33 73.79 589
CNN 80.11 81.29 78.22 79.73 1742
DBN 81.69 73.13 82.10 77.36 1452
DBN-KELM 88.21 80.61 88.34 84.30 552
DBN-EGWO-
KELM 93.42 82.30 96.40 88.79 214
CICIDS2017
BP 72.56 63.24 70.11 66.50 1541
RBF 80.12 66.98 78.98 71.99 1258
SVM 87.36 76.21 89.47 82.31 309
LIBSVM 83.55 74.28 73.29 73.78 267
KELM 82.17 70.32 78.22 74.06 345
CNN 81.22 83.49 83.47 83.48 772
DBN 82.39 75.68 84.55 79.87 785
DBN-KELM 90.95 83.69 89.27 86.39 251
DBN-EGWO-
KELM 97.15 96.80 98.19 97.49 120

classification model performs best under this label. It can
be seen from Fig 24 that the DBN-EGWO-KELM classifi-
cation model misjudged 1152 attacks as normal data, result-
ing in slightly worse accuracy and false positive rates than
DBN-KELM, which were 85.7% and 3.5%. For Dos attacks,
the DBN-EGWO-KELM model has the best detection per-
formance, with a true positive rate of 98.0%, and KELM has
the worst detection performance with a true rate of 54.2%.
The performance evaluation indicators of other methods are
good. Dos account for the largest proportion, and need to
be processed separately when judging by clustering. Since
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this article is based on the difference between normal data
and abnormal data, Dos attacks with a large amount of data
can still maintain good detection results. For Probe attacks,
the performance of BP, KELM, DBN, and DBN-KELM are
similar and far better than RBF, but overall, the performance
of the DBN-EGWO-KELM model is the best, with the true
positive rate of 99.9% and accuracy of 99.4%. For R2L attack
types, only DBN-KELM and DBN-EGWO-KELM perform
well, and the other methods have similarly poor performance.
Among them, the SVM classifier has the worst detection per-
formance and basically cannot identify R2L attacks, because
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FIGURE 23. Multi-classification experimental results on UNSW-NB15.

the sample size of R2L attacks in the training set is very small,
and the R2L attack is carried out by disguising as a legitimate
user, which is similar to the normal data characteristics, mak-
ing detection difficult. However, the DBN-EGWO-KELM
model learns the characteristics of R2L well, and correctly
classify it, which is also reflected in the test set in Table 11.
For U2R attacks, RBF, KELM, DBN, and DBN-KELM have
similarly good performance. The true positive rates are all
above 94%. The true positive rates of BP, SVM and DBN-
EGWO-KELM are all above 88%. Although the detection
capability of DBN-EGWO-KELM model is comparable with
other algorithms in this test, its overall detection performance
is outstanding and meets expectations.

From the results of the multi-classification experiment on
the NSL-KDD dataset in Table 10, it can be seen that the
detection performance is slightly lower than that of the KDD-
Cup99 dataset. This is because the amount of NSL-KDD
sample data is small and the amount of data available for
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training is relatively small. The DBN-EGWO-KELM model
has the highest true positive rates on Normal, Dos, Probe, and
R2L than other methods, which are 92.2%, 96.5%, 98.1%,
and 90.2%, respectively. The false positive rates are as low as
4.9% and 0.5%, 1.1%, 0.2%. In U2R attacks, BP, RBF and
DBN-EGWO-KELM have similar performance, and the true
positive rate is worse than SVM, KELM, DBN and DBN-
KELM, however, the DBN-EGWO-KELM model has the
lowest false positive rate of 1.1%, which is 39.1% lower than
the RBF with the largest false positive rate.

According to the detailed results of multi-classification on
the UNSW-NB15 dataset in Table 10, it can be seen that
for Normal data, the detection performance of BP and RBF
is at an average level, and the true positive rates are only
52.7% and 56.6%, compared with the DBN-EGWO-KELM
classification model, the true positive rate is 39.7% and 35.8%
lower. For the other algorithms, the true positive rate of
KELM is 81.6%; The true positive rate of LIBSVM is 82.6%,
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FIGURE 24. Multi-classification experimental results on KDDCup99.
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FIGURE 25. Multi-classification experimental results on NSL-KDD.
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FIGURE 26. Multi-classification experimental results on CICIDS2017.

the rest are around 90%. The DBN-EGWO-KELM model has
the highest true positive rate, with the false positive rate as
low as 6.2%, and the accuracy rate is the highest at 89.3%.
For Fuzzers and Analysis attacks, the DBN-EGWO-KELM
model also has the best detection performance, not only the
highest true positive rate, but also the lowest false positive
rate. For Backdoors attacks, since the attack sample size only
accounts for 1% of the total sample size, the performance of
the classification performance of all algorithms in this attach
is very poor. The true positive rate of most of the algorithms
is 0, while the highest is SVM, which is only 27.6%. For Dos
attacks, the performance of each algorithm in the evaluation
index is at an average level, while the performance of the
DBN-EGWO-KELM model is the best. For Exploits attacks,
the performance of BP, RBF and KELM are similar, and
worse than SVM, DBN, DBN-KELM and DBN-EGWO-
KELM. Among them, DBN-EGWO-KELM has the best per-
formance, with the true positive rate of 60.4%, and the false
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positive rate only 2.9%, which is 30.9% lower than RBF. For
Generic attacks, the true positive rate of the DBN-EGWO-
KELM model is as high as 99.8%, whose performance is
much better than other algorithms, nearly 20% higher than
the sub-optimal DBM-KELM model. Its false positive rate is
the lowest, compared to BP, RBF, SVM, KELM, DBN, and
DBN-KELM are 1%, 7.5%, 2%, 3%, 16.7%, 14.6% lower,
respectively, and the accuracy of the DBN-EGWO-KELM
model is the highest at 97.7%. For the Reconnaissance attack,
BP and RBF failed to detect the attack. SVM and DBN have
similar performance, but are lower than KELM and DBN-
KELM, which have similar performance. The best perfor-
mance is still the DBN-EGWO-KELM model. For Shellcode
attacks, since the proportion of data in the attack is less than
1%, the true positive rates of BP, RBF, SVM, KELM, DBN,
and DBN-KELM are all lower than 60%. Among them, the
best is DBN-KELM, the true positive rate is 58.9%, and the
false positive rate is 1.3%. Only the true positive rate of the
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TABLE 10. Experimental results of multi classification of each algorithm on training set.

Algorithm I Normal Dos Probe R2L U2R
KDDCup99
Unit(%) | TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P Acc
BP 3.9 0.3 75.2 815 | 50 | 931|975 | 6.7 | 823 | 313 | 02 | 87.5 | 90.2 | 285 | 523 | 73.3
RBF 3.6 0.4 74.3 90.1 | 0.5 | 99.0 | 59.6 | 0.07 | 99.3 | 56.7 | 0.5 | 68.0 | 94.1 | 16.6 | 67.2 | 78.6
SVM 63.7 1.5 90.3 90.2 | 123 | 86.2 | 88.8 | 94 | 754 0 0 NaN | 88.7 | 4.5 | 87.9 | 80.2
LIBSVM | 70.2 4.9 92.3 923 | 74 | 882 | 872 | 103 | 709 | 109 | 0.8 | 71.8 | 89.7 | 6.3 | 90.7 | 874

KELM 23 524 89.5 542 1 14 | 967 | 915 | 72 | 80.2 | 293 | 0.14 | 81.2 | 96.2 | 20.5 | 65.2 | 79.9
CNN 719 | 104 70.9 91.8 | 45 | 955 | 972 | 22 | 926 | 507 | 05 | 932|977 | 58 | 844 | 894
DBN 62.4 14.3 60.3 89.6 | 57 | 935|944 | 2.8 | 89.7 | 542 | 0.11 | 90.2 | 959 | 9.7 | 77.7 | 86.5

oo |2 | 2 889 [ 899 | 23 | 963 | 938 | 33 | 896 | 828 | 04 | 923 | 943 | 72 | 802 | 887
DBN-
EGWO- | 972 | 35 857 | 980 | 006 | 992 | 999 | 055 | 994 | 92.1 | 0.09 | 82.9 | 892 | 03 | 99.0 | 96.5
KELM
NSL-KDD
Unit(%) | TPR | FPR P TPR |[FPR | P | TPR |FPR | P | TPR |FPR | P | TPR | FPR | P | Acc
BP 33 | 06 756 | 802 | 75 | 924 | 966 | 123 | 826 | 312 | 13 | 882 | 872 | 309 | 533 | 73.0
RBF | 42 | L1 721 | 887 | 19 | 977 | 603 | 3.1 | 984 | 555 | 22 | 59.6 | 846 | 402 | 67.9 | 77.1
SVM | 503 | 26 882 | 869 | 194 | 866 | 872 | 139 | 743 | 0 | 0 | NaN | 903 | 69 | 856 | 802
LIBSVM | 583 | 33 908 | 887 | 93 | 897 | 908 | 154 | 809 | 552 | 22 | 69.5 | 88.1 | 175 | 785 | 81.6
KELM | 12 | 543 | 856 | 566 | 62 | 968 | 882 | 89 | 79.5 | 283 | 3.0 | 706 | 956 | 302 | 643 | 76.8
CNN 70.2 10.8 62.7 91.5 3.3 95.4 89.4 1.5 89.4 63.4 2.6 85.9 95.7 14.2 79.4 | 88.4
DBN | 604 | 167 | 553 | 902 | 67 | 921 | 899 | 32 | 853 | 493 | 13 | 823 | 942 | 135 | 754 | 87.1
KDIIZBI{\I]\;[ 653 | 35 809 | 856 | 38 | 972 | 936 | 42 | 89.1 | 815 | 09 | 866 | 956 | 73 | 78.9 | 89.2
DBN-
EGWO- | 922 | 49 787 | 965 | 05 | 982 | 981 | 1.1 | 981|902 | 02 | 865|875 | 1.1 | 965 | 94.0
KELM
Normal Fuzzers Analysis Backdoors Dos
UNSW-NBIS
Unit%) | TPR | FPR P TPR [FPR | P | TPR |FPR | P | TPR | FPR | P | TPR | FPR | P
BP 527 | 25 729 | 276 | 68 | 554 | 447 | 566 | 339 | 00 | 00 | 209 | 10.6 | 240 | 196

RBF 56.6 | 49.3 83.7 146 | 11.2 | 603 | 3.5 | 254 | 259 | 0.8 0.8 | 253 | 235 | 48 | 22.6
SVM 89.2 | 289 76.9 557 ] 95 | 592 | 555 | 36.8 | 448 | 27.6 | 3.2 | 189 | 309 | 2.5 | 34.6
LIBSVM | 82.6 | 30.5 80.7 339 | 253 | 639 | 694 | 23.7 | 55.7 | 22.1 | 29 | 204 | 442 | 54 | 309
KELM 81.6 14.9 71.5 69.6 | 176 | 609 | 1.8 | 448 | 63.2 1.7 2.3 09 ]356 | 00 | 123
CNN 88.6 | 204 81.2 59.6 | 157 | 652 | 249 | 68.4 | 30.1 0.0 19 | 103 | 334 | 0.8 | 29.1
DBN 879 | 235 78.9 543 | 133 | 644 | 7.6 | 69.2 | 258 | 0.0 0.0 05 | 402 | 0.0 | 258

DBN-

KELM 91.5 | 264 89.0 55.6 | 22.3 | 652 | 29.6 | 41.5 | 36.8 | 0.0 0.0 0.0 | 395 | 0.0 | 309
DBN-

EGWO- | 924 6.2 89.3 628 | 47 | 654 | 648 | 1.3 | 100 | 0.0 1.2 00 | 414 | 7.6 7.6
KELM

Exploits Generic Reconnaissance Shellcode Worms

Unit(%) | TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P Acc
BP 45.6 0.0 78.9 509 | 1.9 | 80.7 | 0.0 0.0 | NaN | 445 | 53 33 | 129 | 59 | 0.03 | 50.9

RBF 46.8 | 33.8 75.6 616 | 84 | 788 | 0.0 0.0 | NaN | 23.6 | 83 42 | 256 | 306 | 02 | 45.6
SVM 55.6 | 27.1 82.7 709 | 29 | 81.1 | 33.8 | 53 | 556 | 503 | 39 69 | 335 (213] 09 | 529
LIBSVM | 60.3 154 83.2 804 | 57 | 8.9 | 486 | 94 | 672 | 554 | 59 3.7 |1 40.7 | 20.1 | 29 | 554
KELM 422 | 25.0 80.3 577 1 49 | 885 | 579 | 3.7 | 623 | 49.6 | 3.7 55 | 406 | 159 | 1.3 | 659
CNN 62.1 22.7 89.4 794 | 7.7 | 89.7 | 541 | 5.6 | 52.7 | 592 | 29 64 | 607 | 123 | 3.7 | 70.2

DBN 56.9 3.5 85.6 72.6 | 17.6 | 90.2 | 25.0 | 8.8 | 669 | 573 | 13 79 1459 | 39 2.2 | 68.6
DBN-
KELM 59.6 4.5 86.9 80.2 | 155 | 923 | 609 | 39 | 676 | 589 | 09 | 113 | 483 | 1.2 25 | 75.6
DBN-
EGWO- 60.4 29 90.1 99.8 | 09 | 97.7 | 66.7 | 24 | 68.0 | 62.0 | 0.68 | 152 | 50.0 | 0.08 | 3.2 | 79.5
KELM
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TABLE 10. (Continued.) Experimental results of multi classification of each algorithm on training set.

Normal SSH-Patator FTP-Patator Dos Web
CICIDS2017
Unit(%) | TPR | FPR P TPR |FPR | P | TPR |FPR| P | TPR |FPR | P | TPR | FPR | P
BP 803 | 0.0 754 | 497 | 34 | 842 | 102 | 56 | 304 | 675 | 3.6 | 704 | 678 | 21.6 | 70.1
RBF | 81.6 | 263 | 704 | 509 | 123 | 814 | 250 | 00 | 564 | 742 | 31.6 | 774 | 448 | 408 | 72.5
SVM | 834 | 28 765 | 450 | 00 | 756 | 794 | 00 | 675 | 852 | 125 | 793 | 742 | 552 | 75.1
LIBSVM | 824 | 025 | 804 | 607 | 3.6 | 682 | 807 | 0.0 | 705 | 86,7 | 59 | 751 | 769 | 61.4 | 74.0
KELM | 708 | 553 | 765 | 00 | 00 | NaN | 724 | 0.04 | 68.1 | 746 | 00 | 705 | 715 | 652 | 79.6
CNN | 724 | 648 | 695 | 00 | 00 | NaN | 642 | 05 | 663 | 709 | 23.6 | 824 | 648 | 80.4 | 80.1
DBN | 794 | 452 | 759 | 564 | 2.1 | 672 | 739 | 1.6 | 752 | 788 | 17.9 | 80.6 | 752 | 89.4 | 82.4
IZ?S\;[ 887 | 308 | 778 | 612 | 00 | 604 | 786 | 006 | 79.4 | 83.6 | 106 | 864 | 80.1 | 742 | 799
DBN-
EGWO- | 904 | 109 | 812 | 611 | 1.5 | 709 | 847 | 0.04 | 864 | 90.7 | 35 | 89.1 | 895 | 905 | 90.4
KELM
Bot DDoS PortScan
Unit%) | TPR | FPR P TPR | FPR | P | TPR | FPR | P Acc
BP 667 | 00 544 | 495 | 3.6 | 776 | 692 | 56 | 404 80.9
RBF | 345 | 243 | 692 | 459 | 22.1 | 804 | 706 | 03 | 524 82.9
SVM_ | 758 | 27 21 | 360 | 03 | 736 | 794 | 20 | 666 854
LIBSVM | 784 | 085 | 454 | 603 | 24 | 672 | 827 | 035 | 68.1 883
KELM | 766 | 513 | 623 | 10.0 | 035 | 203 | 725 | 0.04 | 65.7 85.8
CNN | 705 | 468 | 495 | 552 | 002 | 102 | 542 | 06 | 664 82.1
DBN | 728 | 352 | 647 | 564 | 28 | 692 | 749 | 1.6 | 732 84.9
DBN-
oo | 769 | 408 | 738|612 | 32 | 624 | 789 | 016 | 764 90.8
DBN-
EGWO- | 807 | 102 | 843 | 611 ] 05 | 739|867 | 03 | 879 972
KELM

DBN-EGWO-KELM model is higher than 60%, which is
62.0%, the false positive rate is the lowest, 0.68%. For Worms
attacks, the true positive rate, false positive rate, and accuracy
rate are all very low for all algorithms. Among them, the accu-
racy rate is the most obvious, all within 10%. Because the
sample size of Worms attacks in the dataset is very small, only
130, however, DBN-EGWO-KELM model can still maintain
the highest true positive rate, the lowest false positive rate,
and the highest accuracy rate, indicating that the model we
proposed can better learn the characteristics of the data and
perform correct classification in a small amount of data.

It can be seen from Table 10 that on the CICIDS2017
dataset, the accuracy of all algorithms can reach more than
80%, which is very high. Although this dataset has a large
amount of data and many new attacks, from the t-SNE
visualization, there are more normal data and relatively few
abnormal data, which leads to a reduction in classification
difficulty. In this case, the new DBN-EGWO-KELM clas-
sification model still maintains the highest accuracy rate,
regardless of the composition of the abnormal or normal data.

It can be seen from Table 11 that on the test set, the clas-
sification accuracy, true positive rate, and false positive rate
of the DBN-EGWO-KELM classification model are higher
than other algorithms. On the KDDCup99 and NSL-KDD
datasets, they can reach 92 % or more, due to the large amount
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of data. In the UNSW-NBI15 dataset, it can be seen through
t-SNE visualization that the data is relatively scattered and
there are many different types of attacks. Although the overall
accuracy rate has declined, the DBN-EGWO-KELM classi-
fication model still maintains its superior performance, with
an accuracy rate of 79.4%, which is 5% higher than the
sub-optimal DBN-KELM model. In various attacks, the true
positive rate of DBN-EGWO-KELM can be maintained at a
high level, while the false positive rate can be maintained at
a low level, and hence the accuracy rate is generally high.
Compared with the training set, the evaluation indicators of
the DBN-EGWO-KELM model are more stable on the four
datasets and maintained at a high level.

The results of multi-classification experiments show that
the performance of the DBN-EGWO-KELM model is the
optimal in terms of accuracy, which is obviously better than
the classical neural networks and the classical machine learn-
ing algorithms. The advantage of the proposed algorithm is
also reflected in the rest of measures.

VIl. CONCLUSION AND FUTURE WORK

We propose an intrusion detection method based on an
improved deep belief network. A novel kernel extreme
learning machine classification model is designed using
enhanced grey wolf optimizer optimization, which extracts
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TABLE 11. Experimental results of multi classification of each algorithm on test set.

Algorithm I Normal Dos Probe R2L U2R
KDDCup99
Unit(%) | TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P Acc
BP 3.9 0.3 75.2 815 | 50 | 931|975 | 6.7 | 823 | 313 | 02 | 87.5 | 90.2 | 285 | 523 | 73.3
RBF 3.6 0.4 74.3 90.1 | 0.5 | 99.0 | 59.6 | 0.07 | 99.3 | 56.7 | 0.5 | 68.0 | 94.1 | 16.6 | 67.2 | 78.6
SVM 63.7 1.5 90.3 90.2 | 123 | 86.2 | 88.8 | 94 | 754 0 0 NaN | 88.7 | 4.5 | 87.9 | 80.2
LIBSVM | 70.2 4.9 92.3 923 | 74 | 882 | 872 | 103 | 709 | 109 | 0.8 | 71.8 | 89.7 | 6.3 | 90.7 | 874

KELM 23 524 89.5 542 1 14 | 967 | 915 | 72 | 80.2 | 293 | 0.14 | 81.2 | 96.2 | 20.5 | 65.2 | 79.9
CNN 719 | 104 70.9 91.8 | 45 | 955 | 972 | 22 | 926 | 507 | 05 | 932|977 | 58 | 844 | 894
DBN 62.4 14.3 60.3 89.6 | 57 | 935|944 | 2.8 | 89.7 | 542 | 0.11 | 90.2 | 959 | 9.7 | 77.7 | 86.5

oo a2 | 2 889 [ 899 | 23 | 963 | 938 | 33 | 896 | 828 | 04 | 923 | 943 | 72 | 802 | 887
DBN-
EGWO- | 972 | 35 857 | 980 | 006 | 992 | 999 | 055 | 994 | 92.1 | 0.09 | 82.9 | 892 | 03 | 99.0 | 96.5
KELM
NSL-KDD
Unit(%) | TPR | FPR P TPR |[FPR | P | TPR |FPR | P | TPR |FPR | P | TPR | FPR | P | Acc
BP 33 | 06 756 | 802 | 75 | 924 | 966 | 123 | 826 | 312 | 13 | 882 | 872 | 309 | 533 | 73.0
RBF | 42 | L1 721 [ 887 | 19 | 977 | 603 | 3.1 | 984 | 555 | 22 | 59.6 | 846 | 402 | 67.9 | 77.1
SVM | 503 | 26 882 | 869 | 194 | 866 | 872 | 139 | 743 | 0 | 0 | NaN | 903 | 69 | 856 | 802
LIBSVM | 583 | 33 908 | 887 | 93 | 897 | 908 | 154 | 809 | 552 | 22 | 69.5 | 88.1 | 175 | 785 | 81.6
KELM | 12 | 543 | 856 | 566 | 62 | 968 | 882 | 89 | 795 | 283 | 3.0 | 706 | 956 | 302 | 643 | 76.8
CNN 70.2 10.8 62.7 91.5 3.3 95.4 89.4 1.5 89.4 63.4 2.6 85.9 95.7 14.2 79.4 | 88.4
DBN | 604 | 167 | 553 | 902 | 6.7 | 921 | 899 | 32 | 853 | 493 | 13 | 823 | 942 | 135 | 754 | 87.1
KDIIZBI{\I]\;[ 653 | 35 809 | 856 | 38 | 972 | 936 | 42 | 891 | 815 | 09 | 866 | 956 | 73 | 78.9 | 89.2
DBN-
EGWO- | 922 | 49 787 | 965 | 05 | 982 | 981 | 1.1 | 981|902 | 02 | 865|875 | 1.1 | 965 | 94.0
KELM
Normal Fuzzers Analysis Backdoors Dos
UNSW-NBIS
Unit%) | TPR | FPR P TPR [FPR | P | TPR |FPR | P | TPR | FPR | P | TPR | FPR | P
BP 527 | 25 729 | 276 | 68 | 554 | 447 | 566 | 339 | 00 | 00 | 209 | 10.6 | 240 | 196

RBF 56.6 | 49.3 83.7 146 | 11.2 | 603 | 3.5 | 254 | 259 | 0.8 0.8 | 253 | 235 | 48 | 22.6
SVM 89.2 | 289 76.9 557 ] 95 | 592 | 555 | 36.8 | 448 | 27.6 | 3.2 | 189 | 309 | 2.5 | 34.6
LIBSVM | 82.6 | 30.5 80.7 339 | 253 | 639 | 694 | 23.7 | 55.7 | 22.1 | 29 | 204 | 442 | 54 | 309
KELM 81.6 14.9 71.5 69.6 | 176 | 609 | 1.8 | 448 | 63.2 1.7 2.3 09 ]356 | 00 | 123
CNN 88.6 | 204 81.2 59.6 | 157 | 652 | 249 | 68.4 | 30.1 0.0 19 | 103 | 334 | 0.8 | 29.1
DBN 879 | 235 78.9 543 | 133 | 644 | 7.6 | 69.2 | 258 | 0.0 0.0 05 | 402 | 0.0 | 258

DBN-

KELM 91.5 | 264 89.0 55.6 | 22.3 | 652 | 29.6 | 41.5 | 36.8 | 0.0 0.0 0.0 | 395 | 0.0 | 309
DBN-

EGWO- | 924 6.2 89.3 628 | 47 | 654 | 648 | 1.3 | 100 | 0.0 1.2 00 | 414 | 7.6 7.6
KELM

Exploits Generic Reconnaissance Shellcode Worms

Unit(%) | TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P Acc
BP 45.6 0.0 78.9 509 | 1.9 | 80.7 | 0.0 0.0 | NaN | 445 | 53 33 | 129 | 59 | 0.03 | 50.9

RBF 46.8 | 33.8 75.6 616 | 84 | 788 | 0.0 0.0 | NaN | 23.6 | 83 42 | 256 | 306 | 02 | 45.6
SVM 55.6 | 27.1 82.7 709 | 29 | 81.1 | 33.8 | 53 | 556 | 503 | 39 69 | 335 (213] 09 | 529
LIBSVM | 60.3 154 83.2 804 | 57 | 89 | 486 | 94 | 672 | 554 | 59 3.7 |1 40.7 | 20.1 | 29 | 554
KELM 422 | 25.0 80.3 577 1 49 | 885 | 579 | 3.7 | 623 | 49.6 | 3.7 55 | 406 | 159 | 1.3 | 659
CNN 62.1 22.7 89.4 794 | 7.7 | 89.7 | 541 | 56 | 52.7 | 592 | 29 64 | 607 | 123 | 3.7 | 70.2

DBN 56.9 3.5 85.6 72.6 | 17.6 | 90.2 | 25.0 | 8.8 | 669 | 573 | 13 79 1459 | 39 2.2 | 68.6
DBN-
KELM 59.6 4.5 86.9 80.2 | 155 | 923 | 609 | 39 | 676 | 589 | 09 | 113 | 483 | 1.2 25 | 75.6
DBN-
EGWO- 60.4 29 90.1 99.8 | 09 | 97.7 | 66.7 | 2.4 | 68.0 | 62.0 | 0.68 | 152 | 50.0 | 0.08 | 3.2 | 79.5
KELM
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TABLE 11. (Continued.) Experimental results of multi classification of each algorithm on test set.

DBN 55.6 3.6 84.5 772 | 17.7 | 912 | 246 | 68 | 66.8 | 562 | 2.2 12.7 | 309 | 7.9 34 | 69.2
DBN-
KELM 59.4 5.4 85.9 829 | 159 | 925 | 582 | 40 | 67.0 | 574 1.9 139 | 453 | 33 53 | 744
DBN-
EGWO- 60.1 3.1 89.6 998 | 0.8 | 98.0 | 648 | 26 | 67.1 | 59.3 | 0.69 | 15.0 | NaN | 0.1 00 | 794
KELM
Normal SSH-Patator FTP-Patator Dos Web
CICIDS2017
Unit(%) TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P TPR | FPR P
BP 71.4 10.2 89.5 925 | 21.3 | 852 | 36.6 1.6 | 815 | 83.6 | 26.6 | 623 | 733 | 834 | 11.1
RBF 77.7 9.2 92.5 616 | 119 | 925 | 546 | 62 | 622 | 86.7 | 319 | 66.7 | 74.6 | 84.7 | 13.2
SVM 857 | 223 83.4 847 | 124 | 723 | 61.3 | 6.1 703 | 87.5 | 203 | 74.1 | 82.2 | 86.6 | 20.3
LIBSVM | 864 3.8 84.3 855 | 223 | 813 | 762 | 22 | 749 | 89.3 | 279 | 88.2 | 833 | 834 | 13.6
KELM 63.3 9.6 92.7 884 | 58 | 81.2 | 329 | 69 | 71.6 | 90.2 | 22.3 | 68.3 | 772 | 623 | 15.6
CNN 79.1 8.4 90.6 87.1 6.7 | 844 | 419 | 105 | 774 | 865 | 146 | 746 | 832 | 749 | 174
DBN 87.2 5.8 91.2 905 | 9.6 | 81.6 | 46.0 | 29 822 | 92.8 | 133 | 819 | 87.6 | 872 | 153
DBN-
KELM 86.4 1.5 94.2 947 | 75 | 875 1.6 1.9 | 84.6 | 929 | 19.6 | 857 | 863 | 863 | 6.5
DBN-
EGWO- 92.1 0.5 98.7 97.3 1.3 | 946 | 77.1 | 032 | 724 | 89.4 14 | 929 | 945 | 92.3 | 0.34
KELM
Bot DDoS PortScan
Unit(%) TPR | FPR P TPR | FPR P TPR | FPR P Acc
BP 85.6 1.8 75.9 825 | 108 | 842 | 313 | 02 | 875 63.5
RBF 84.7 6.2 73.8 602 | 94 | 814 | 56.7 | 0.5 | 68.0 62.7
SVM 88.5 5.1 89.3 75.1 | 15.6 | 75.6 0 0 NaN 79.3
LIBSVM | 894 22 91.1 769 | 7.8 | 682 | 109 | 0.8 | 71.8 81.6
KELM 94.5 6.9 86.5 753 | 5.6 | 72.6 | 293 | 0.14 | 81.2 79.4
CNN 84.5 11.5 84.3 724 | 164 | 783 | 50.7 | 0.5 | 93.2 77.2
DBN 92.6 2.9 78.3 802 | 17.7 | 67.2 | 542 | 0.11 | 90.2 83.2
DBN-
KELM 94.9 3.9 80.9 844 | 199 | 604 | 82.8 | 04 | 923 84.4
DBN-
EGWO- 87.4 0.32 83.6 704 | 0.8 | 809 | 92.1 | 0.09 | 82.9 97.1
KELM

data features by employing the dimensionality reduction abil-
ity of DBN for complex high-dimensional network intrusion
data features. The combination with the enhanced grey wolf
optimizer is viable to optimize the kernel extreme learning
machine classification model for the purpose of improving
the performance of KELM. The DBN-EGWO-KELM model,
on the one hand, uses RBM to ensure the feature extraction
performance of DBN; on the other hand, it uses the optimiza-
tion capability of EGWO to enable KELM to quickly obtain
the optimal E, s and other parameters, thereby enhancing
KELM'’s high-dimensional Data classification capabilities.
The experimental results show that: 1) The data classification
performance of the DBN-EGWO-KELM intrusion detection
model is stable and not sensitive to specific datasets; 2) The
DBN-EGWO-KELM intrusion detection model successfully
solves the problems of low accuracy, precision and true posi-
tive rate of existing methods; 3) On the four network intrusion
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detection datasets, the DBN-EGWO-KELM intrusion detec-
tion model has obvious advantages in various evaluation indi-
cators compared with existing methods. The DBN-EGWO-
KELM intrusion detection model provides a new and feasible
solution for network security detection. In the future, we will
continue to conduct in-depth research on the dimensionality
reduction and classification of deep belief networks, and
expand the application scope of the model.
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