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ABSTRACT An accurate and reliable traffic flow prediction is of great significance, especially the long-term
traffic flow prediction e.g., 24 hours, which can help the traffic decision-makers formulate the future
traffic management strategy. However, the long-term traffic flow prediction imposes great challenges for
decision-makers due to the nonlinear and chaotic feature of traffic flow. Therefore, in this paper, we proposed
a hybrid deep learning model based on wavelet decomposition, convolutional neural network-long and short-
term memory neural network (CNN-LSTM), called W-CNN-LSTM, to prediction next-day traffic flow. The
wavelet decomposition technology is used to decompose the original traffic flow data into high-frequency
data and low-frequency data for the improvement of predictive accuracy. The decomposed sequences are fed
into a CNN-LSTM deep learning model, where the long-term temporal features of traffic flow can be well
captured and learned. The numerical experiment is carried out against five benchmarks based on England
traffic flow dataset; the results show that the proposed hybrid approach can achieve superior forecasting skill
over the benchmarks.

INDEX TERMS Traffic flow prediction, long-term prediction, wavelet decomposition, CNN-LSTMmodel.

I. INTRODUCTION
A. MOTIVATION
The rapid development of urbanization brings great bene-
fits to people, but also brings about some inconvenience,
which urges the researchers to solve these challenges in their
industries. For instance, in order to deal with the economic
issues and the technical issues in energy, [1] propose a novel
transactive energy trading framework. In order to implement
voltage control, a distributed online voltage control algorithm
is proposed in [2]. Reference [3] propose two distributed
voltage control algorithms to overcome these challenges in
multiphase unbalanced distribution networks. For transporta-
tion, traffic problems caused by the rapid increase of the
number of motor vehicles, such as traffic congestion, traffic
accidents and traffic delays, impose huge challenges and
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pressure to urban transportationmanagement system.Making
a reliable trafficmanagement plan based on forecasting traffic
flow is the effective way to deal with traffic problems [4].
The traffic flow represents the number of vehicles passing
through the road on each time interval. However, the number
of vehicles on the road increases with the increase of people’s
travel demands, and the road network becomesmore complex
with the rapid development of the city, which makes the
traffic flow more prominent in complexity and randomness.
In addition, now, transportation filed has entered the era of
big data. All these make it more difficult for the traditional
traffic flow prediction model to fit the traffic data and to
make a best forecast [5]. Moreover, most of the traditional
traffic flow prediction models only focus on single time-step
prediction, although of scientific significance, then cannot
satisfy the practical application of multi-time step traffic flow
prediction. An accurate long-term traffic flow prediction is of
great practical significance to the transportation management
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system and congestion analysis early warning system of intel-
ligent transportation system [6].

B. LITERATURE REVIEW
In the past decade, with the development of intelligent
transportation, traffic flow prediction has become a research
hotspot in the intelligent transportation. Many experts
and scholars have committed to the traffic flow predic-
tion research and proposed a large number of prediction
methods.

Accurate traffic condition prediction is the premise to
realize active traffic control and dynamic traffic distribu-
tion effectively. Reference [7] propose localized space-time
autoregressive for traffic flow forecasting on urban road net-
work and formulated a new parameters estimation method to
reduce computational complexity. A hybrid short-term traffic
flow prediction model based on the multifractal characteris-
tics of traffic flow time series is proposed in [8]. Reference [9]
establish a simple and effective mixed traffic flow prediction
model, which combines Auto-regressive Integrated Moving
Average Model (ARIMA) and genetic programming (GP)
model to capture the different aspects of the underlying traffic
flow patterns. The grey correlation prediction of traffic data
with panel data characteristics is studied in [10], which adopt
the ARMIA model for prediction. For this, [11] simulate the
response of the expressway system to the change of traffic
state and proposed a spatiotemporal traffic flow prediction
model without off-line parameter calibration. Reference [12]
in order to improve the accuracy of traffic flow prediction,
a combination prediction model based on GM, ARIMA and
GRNN is proposed, and then used to establish a combination
model of road traffic flow based on fixed weight. Refer-
ence [13] develops a novel Bayesian combination method
(BCM) to improve the performance of traditional BCM for
short-term traffic flow forecasting. Three single predictors,
ARMIA, Kalman Filter (KF) and back propagation neural
network (BPNN), were designed and incorporated into the
BCM to make full use of the advantages of each method.

However, in recent years, traffic data has experienced sig-
nificant growth and entered the era of traffic big data. Due to
the nonlinearity and randomness of traffic flow, researchers
turned their attentions to using the deep learning technologies
for traffic flow prediction. By taking into account the spatial
and temporal correlations, a novel deep-learning-based traffic
flow prediction method is proposed in [14]. Reference [15]
studies the correlation between weather parameters and traf-
fic flow and proposed a novel overall framework to improve
traffic flow prediction. Furthermore, [16] proposes a traffic
prediction method based on the deep belief networks model
structure and multitask regression is applied to predict the
traffic flow of single output and multitask output. A deep
code learning technique is proposed in [17], and applied to
the Macao intelligent system. Recently, the recurrent neural
network (RNN) and the variant of RNN (like LSTM [18])
are widely regarded as an appropriate method to capture the

temporal and spatial information in a variety of fields, such
as text classification [19], energy [20], or transportation [21].

However, most of the existing forecasting studies in traf-
fic field focus on the short-term traffic flow prediction,
while the long-term traffic flow prediction is particularly
meaningful since it involves more information about the
future for traffic system planning an effective plan. There-
fore, we propose a hybrid deep learning algorithm, in which
the CNN-LSTM is used to predict the traffic flow for next
24 hours, and the wavelet decomposition method is used
to decompose the information of the original traffic volume
data. The experimental results show that our proposed model
can achieve accurate prediction performance, which is better
than the traditional model (e.g., ARIMA), Neural networks
(e.g., NLP), and deep learning model (e.g., LSTM, CNN and
CNN-LSTM).

Themain contributions of our work are briefly summarized
as follows:

1). We proposed a hybrid deep learning model to
long-term multi-variable traffic flow modeling tasks, and
applied wavelet decomposition to improve the prediction
performance.

2). Based on the publicly available dataset, we con-
duct extensive experiments to evaluate the performance of
W-CNN-LSTM, experimental results show the superiority of
the proposed model against the benchmark.

The rest of the paper is organized as follows: Section II
introduces the proposed hybrid forecasting framework,
W-CNN-LSTM, and describes the assessment indicators of
performance for our proposed model and the benchmarks;
Section III describes the experimental procession ofW-CNN-
LSTM; Section IV is case studies; Section V presents the
concluding remarks.

II. THE PROPOSED HYBRID DEEP LEARNING
FRAMEWORK
In this section, a hybrid day-ahead traffic flow forecast-
ing deep learning framework, which comprises the wavelet
decomposition and CNN-LSTM model, was formulated and
proposed.

A. WAVELET TRANSFORM
In signal processing, Fourier transform can reveal the internal
relationship between time-domain data and frequency-domain
data [22]. It is a popular classical signal decomposition
method in the traditional stationary signal analysis and pro-
cessing. Thewavelet transform [23] is developed based on the
short-time Fourier transform,which overcomes the shortcom-
ing of the Fourier transform, such as the window problem,
to decompose the original time-domain data through the
filter. The wavelet transform filter can be divided into low
pass filter and high pass filter, and through these filters,
the original time-domain data can be decomposed into a set of
low-frequency data CAn and several sets of high-frequency
data CD1 to CDn. The common wavelet transform has two
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forms, continuous wavelet transform (CWT) and discrete
wavelet transform (DWT).

CWT is a complex signal transform process used to decom-
pose a continuous time function into several wavelet, as fol-
low as:

Xw(a, b) =

+∞∫
−∞

f (t)ψ∧ab (t)dt (1)

where a > 0 is scalability factor, b is translation factor.
Both factors control the scale of the wavelet transform. f (t) is
the original function. ψ∧ab(t) is conjugate function of ψab(t).
ψab(t) is Mother Wavelet, express as:

ψab(t) =
1
√
a
ψ

(
t − a
b

)
(2)

In practical applications, DWT is more common than con-
tinuous wavelet transform, is a discrete input and discrete
output, and is no simple and clear formula to express the
relationship between input and output, can only be expressed
by hierarchical architecture. The expression is shown in Fig.1.
X [n] denote the input signal of length n, L[n] and H [n] are
the loss pass filter and high pass filter, respectively, ↓Q is the
downsampling filter.

FIGURE 1. Algorithm structure of DWT.

After decomposition, the reconstructed signal is by adding
up all the low-frequency and high-frequency signals, express
as:

f (t) = CAnl(ψ(t))+
n∑
i=1

CDih(ψ(t)) (3)

where l(ψab(t)) denote low pass filter, h(ψab(t)) denote high
pass filter.

B. CNN-LSTM MODULE
The CNN-LSTM framework for forecasting traffic flow
consists of a series connection of CNN and LSTM. The
CNN network [24] applied in this method only comprises
the convolutional layer and ReLU activation layer. CNN pass
convolution operation to learning these complex traffic flow
features such as temporal information and the traffic flow
eigenvalue of last days. Convolution operation can reduce the
number of neuron parameters and make the hybrid model
deeper. The CNN structure of proposed model is shown
in Fig.2. If X = x1, x2, . . . , xn is the traffic information input

FIGURE 2. Algorithm structure of CNN.

vector, where n denotes the 24 hours unit per window. The
operation of convolution layer and activation layer as follows,

x lj = f (g(
∑
i∈Im

x l−1i
∗wlij + b

l
j)) (4)

where Im denotes the number of feature map, wlij and blj are
weights of the kernel and bias for i-th input feature map and
j-th output feature map corresponding to l-th convolutional
layer, respectively. g(·) is a user-defined activation function,
f (·) is the ReLU activation as follows as expression (5), ∗

represent a convolutional operation.

f (x) = max(0, x) (5)

RNN model is widely applied in time series learning.
However, the traditional RNN is not very suitable for the
long time series prediction due to the gradient problem. Thus,
a variant of the RNN, i.e., LSTM network is proposed to
mitigate gradient explosion or disappearance through gating
mechanisms and cell memory. As such, the long temporal
dependence can be well learned using this configuration.
The structure of an LSTM for information flows is sketched
in Fig.3. The update process of LSTM model at timestep t
can be described as follows:

ft = δ(Wf xt + Uf ht−1 + bf ) (6)

it = δ(Wixt + Uiht−1 + bi) (7)

ot = δ(Woxt + Uoht−1 + bo) (8)

c∗t = tanh(Wc∗xt + Uc∗ht−1 + bc∗ ) (9)

ct = ft ◦ ct−1 + it ◦ c∗t (10)

ht = ot tanh(ct ) (11)

FIGURE 3. Algorithm structure of LSTM.

11266 VOLUME 9, 2021



Y. Li et al.: Hybrid Deep Learning Framework for Long-Term Traffic Flow Prediction

where ◦ denotes the Hadamard product, it , ft and ot are the
output of input gate, forget gate and output gate. c∗t is the
new state of t time-step cell memory, ct is the final state of t
time-step cell memory that is participate in next time-step cell
memory operation and ht is the final output of the memory
unit. Wi, Wf , Wo, Wc∗ , Ui, Uf , Uo and Uc∗ are coefficient
matrixes of these gates; b is bias, δ(·) is sigmoid function
as formulated in (12), tanh(·) is tanh function as formulated
in (13).

δ(x) =
1

1+ e−x
(12)

tanh(x) =
1− e−2x

1+ e−2x
(13)

Then, the full connection (FC) layer activates the input
information ht by (14) and yield the final traffic flow pre-
diction. The entire model is depicted in Fig.4.

yt = g(ht ) (14)

where yt is the final traffic flow prediction output of t-th time,
g(·) denotes the FC layer activation function.

This work aims to predict the hourly traffic flow for the
next day by using a set of explanatory variables in the previ-
ous days, including the traffic flow information and calendar
information. The mapping relationship between the point
estimates and the inputs can be formulated under the deep
learning framework as,

ft+1:t+p = cnnlstm(H:t , st
∣∣Ft+1:t+p ) (15)

where ft+1:t+p denotes the multi-step traffic volume out-
put, p is the timestep, H:t denotes the variable of historical
data, including the traffic volume and temporal information.
Ft+1:t+p is the known characteristic variable of traffic flow in
the future p time stamps.

C. EVALUATION CRITERIA
An excellent point forecasting model is required to accu-
rately capture the future traffic flow trends. To verify the
performance of the proposed traffic flow prediction model,
we applied three evaluation indexes, including root mean
square error (RMSE), mean absolute error (MAE), and good-
ness of fit (R-Square). The expression of these evaluation
indexes are as follows:

RMSE =

√√√√ 1
N

N∑
i=1

(yi − yi∗)2 (16)

MAE =
1
N

N∑
i=1

∣∣yi − yi∗∣∣ (17)

R2 = 1−

∑N
i=1 (yi − yi

∗)2∑N
i=1 (yi − ŷi)2

(18)

where N represents the number of traffic flow, yi is the real
traffic flow data, and y∗i is the predicted traffic flow after
wavelet reconstruction by (3). ŷi is the mean value of the

real traffic flow data. Naturally, the smaller the RMSE and
MAE index values, the more accurate the model prediction.
R2 infinitely close to 1 denotes that the predictions are as
close as the real values. In addition, we applied mean square
error (MSE) as the loss function for model training.

MSE =
1
N

N∑
i=1

(yi − yi∗)2 (19)

III. EXPERIMENTAL SETUP
A. DATA DESRCRIPTION AND PREPROCESSING
The traffic flow data used in our work is collected from high-
ways England organization [25], which records the traffic
volume data with 15 minutes resolution from 1 Jul 2018 to
28 Jan 2020 on the M6 main northbound lanes between the
J4 and J4A in England. However, a large number of missing
data is observed between 1 Oct 2018 to 27 Oct 2018, thus we
only retained the samples measured from 1 Jul 2018 to 30 Sep
2018 and that from 28 Oct 2018 to 28 Jan 2020. The former
period will be used for testing and the latter is for training.

In our work, we predict the day-ahead hourly traffic vol-
ume based on the traffic information in the prior days. In order
to fulfill our prediction requirements, the 15-min traffic flow
data is converted into the hourly data beforehand. Apart from
the traffic volume data, we also include the calendar variables,
such as year, month, day, hour and holiday. The traffic data
information for this long-term traffic flow prediction study is
listed in TABLE 1.

TABLE 1. Traffic flow and feature data information.

Then, we normalize the original traffic data and the tem-
poral data according to formula (20). Next, decompose the
normalized raw traffic volume by the DWT, which yield a
low-frequently data and several group high-frequently data,
same as shown in Fig.5. Finally, we divided last datasets into
training set, verification set according to the condition of 8:2.
The training set is applied to train different hyper-parameters
model and update the weights and bias of neuron cell. And
then verification set verify the skill of these hyper-parameters
models, which is through the formula (3) reconstruct the pre-
diction values and inverse normalization, and the prediction
values is calculate the critical indexes with the real observed
traffic flow. Finally, the reconstructed prediction values of
test set are inverse normalization to calculate the evaluation
indexes by (16)-(18) as the model predictive performance

VOLUME 9, 2021 11267



Y. Li et al.: Hybrid Deep Learning Framework for Long-Term Traffic Flow Prediction

FIGURE 4. The overall proposed W-CNN-LSTM structure. The normalized raw traffic flow is put into the DWT and processed by the filters.
Then, these wavelet datasets are fed to the CNN-LSTM, respectively. The high and low frequency data predicted by CNN-LSTM are
denormalization and reconstruction to output the next-day traffic flow prediction values.

TABLE 2. The determination results of four groups of wavelet parameters.

TABLE 3. The experiment results of different historical input scale.

evaluation.

xnorm =
x − xmin

xmax − xmin (20)

B. PARAMETERS DETERMINATION OF WAVELET
DECOMPOSITION
In order to make full advantages of DWT, and improve the
performance of hybrid model, it is necessary to select the
order of wavelet decomposition beforehand. To this end,
we tested four different decomposition orders to find the
optimal order of wavelet decomposition, based on the last
day as the historical input. The training dataset was applied
to feed the four groups of models, and then the experimental

FIGURE 5. 168 hours of traffic flow raw data and 3 order wavelet
decomposition (the low frequency and high frequency data).

results were produced by the test set, the final model results
are shown in TABLE 2. It can be seen that the prediction
performance of the 3-orderW-CNN-LSTM ismore excellent,
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TABLE 4. The W-CNN-LSTM and benchmarks setup parameters.

FIGURE 6. The low pass data of different order wavelet decomposition.

and the forecasting performance of the 2, 4 and 5 order
decomposition is unsatisfactory, especially the 5-order
W-CNN-LTSM.

This conclusion can be also obtained from the vibration
trend of the low-frequency arrays of the four groups of
wavelet decomposition, show in Fig.6. It is obviously that
the fluctuation trends of CA3 is relatively stable, which can
explain the reason that the accuracy of order 3 are better than
that of order 2, 4 and 5. This indicates that the stationarity
of the low-frequency filter data can determine whether the
wavelet decomposition plays an auxiliary role well.

LSTM is an important part framework of CNN-LSTM and
yield the traffic flow vector features according to the traffic
historical information fed. The scale of historical data has

an impact on LSTM exploring the traffic flow eigenvalue.
Therefore, according to the results of TABLE 2, 3-order
W-CNN-LSTM is satisfactory in long-term traffic forecast-
ing, we apply the 3-order model framework to set up another
three experiments to find the scale of historical data that can
enhance model accuracy in the 24 hours ahead traffic predic-
tion. The final experimental results are shown in TABLE 3.
It can be seen again that 3-order hybrid model can achieve
superior forecasting skill. Where R2 indexes are all larger
than 0.90, and MAE values are less than 300. It can be seen
taking the traffic information in last 3 days as the historical
scale of LSTM can activate the LSTM skill well. Therefore,
we adopted the 3-order hybrid model with last 3 days as the
historical input as our prediction framework and compared
with the benchmark model.

IV. CASE STUDIES
In this section, we verified the effectiveness of the proposed
W-CNN-LSTMmodel against the benchmarks, including tra-
ditional statistical model, ARMIA, and four advanced mod-
els: LSTM, Multilayer Perceptron (MLP), CNN, as well as
CNN-LSTM. ARIMA is the most commonly used bench-
mark for single point forecasts of traffic prediction. the LSTM
forecast method is a widely used deep learning model in
traffic prediction and is known to be easy to outperform
for short look-ahead time. In the experiment, these deep
learning/machine learning models needs to find the best
hyper-parameters, including batch size, number of neurons,
layer number of neural networks, and activation function of
neural network. For ARIMA, auto_arima is used to search
the optimal parameters automatically. After comprehensive
experiment, we obtained the final configuration results of
these models through the evaluation of the verification set,
as shown in TABLE 4.

To be fair, the traffic volumes in the last three days are taken
as the historical information of the next for MLP, CNN and
LSTM. The final experiment results are shown in TABLE 5.
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FIGURE 7. 24hour-ahead traffic flow forecasting results for various prediction models in one week.

TABLE 5. Experiment results of W-CNN-LSTM and benchmarks.

As we can see, the traffic flow prediction performance of
the traditional statistical model does not satisfy the long-term
traffic prediction performance, the R2 is less than 0.1 and
the RMSE or MAE is greater than 1000. Then, MLP, CNN
and LSTM have roughly the same performance with rela-
tively high R2 index. Compared with experimental results
of ARIMA, machine learning model can output satisfactory
prediction values in the long-term traffic flow prediction.
Further, from the RMSE and MAE, it is obviously that
CNN-LSTM is more accurate than LSTM and CNN since
combining the advantages of both, which CNN layers can
explore the features between several variables affecting traffic
flow and LSTM can explores the long-term dependency. This
result indicates that the CNN-LSTM model is more suitable
to model the long-term traffic flow patterns than the original
RNN variants model. Furthermore, the wavelet transform can
enhance the predictive performance of CNN-LSTM model.
The hybrid deep learning mode on the basis of wavelet
decomposition and W-CNN-LSTM is more accurate than
the CNN-LSTM. Fig.7 shows the traffic flow predictions for
various models. It can be seen that deep learning model can
well predict the trend of traffic flow.

V. CONCLUSION
Long-term traffic flow is a new milestone for traffic flow pre-
diction and a new field worth exploring. In order to maximize

the performance of CNN-LSTM in the day-ahead traffic flow
prediction, the original traffic flow data were firstly decom-
posed through wavelet transform, and each group of decom-
posed data was used to train an independent CNN-LSTM
model. The predicted traffic flow data from decomposed
data and independent CNN-LSTMswere reconstructed as the
final predictions. Through verifying on the real-life traffic
flow data measured in the England highway, the proposedW-
CNN-LSTM model shows superior predictive performance
than ARMIA, LSTM, CNN, MLP as well as its counterpart
without wavelet decomposition process.
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